Post-doctorants

Post-doctorants du CHL

2021

Charles Cifarelli, Irmar, oct. 2021 -

Charles Cifarelli a obtenu sa thèse de doctorat en 2021 de l’Université de Californie à Berkeley, sous la direction de Song Sun. Ces travaux sont en géométrie k\"ahlérienne et portent sur la classification de solitons de Ricci complètes sur certaines variétés complexes non-compactes.

David Tewodrose, Irmar, oct. 2021 -

David Tewodrose a soutenu sa thèse en 2018 à la Scuola Normale Superiore di Pisa sous la co-direction de L. Ambrosio et T. Coulhon. Il a été ensuite enseignant-chercheur non titulaire à l'Université de Cergy-Pontoise de 2018 à 2020 et en 2020/2021, il était Post-doc à l'Université Libre de Bruxelles.

Ces recherches portent sur l'analyse sur les espaces métriques en particulier sur les espaces vérifiant une condition de type courbure de Ricci synthétique minorée à la Lott-Villani et Sturm et la convergence de variétés riemaniennes sous des conditions de courbures.

Sa page web

2019


Divyang Bhimani, Irmar,oct. 2019 - july 2020

My research interest lie in the area of harmonic analysis, time-frequency analysis and nonlinear dispersive equations. I'm interested in multiplier problems in harmonic analysis and its applications to dispersive equations. I'm interested to study time behavior of solutions of nonlinear dispersive equations such as well-posedness (local and global) and ill-posedness. I’m also interested to study these equations associated to fractional harmonic oscillator.

Field of my Research: Harmonic Analysis and Partial Differential Equations

2018


Orecchia Giulio, Irmar, 2018 - oct 2020

Giulio Orecchia is now a member of the team of arithmetic geometry at IRMAR. After completing a joint master within the ALGANT program at the Universities of Leiden and Concordia, he went on to pursue a doctoral degree, under the cosupervision of David Holmes (Leiden) and Qing Liu (Bordeaux). In February 2018 he defended his PhD thesis, titles "A monodromy criterion for existence of Neron models and a result on semi-factoriality".

His research interest lies in the study of families of curves, jacobians, abelian schemes, together with their models and degenerations. He obtained results regarding criteria for existence of Neron models of jacobians/abelian schemes over bases of higher dimension. He is now working on a separate project, trying to describe the functor of connected components of a scheme in characteristic p, via the relative Frobenius map.

2017


DOUGALL Rhiannon LMJL, 2017-2018

She works in the field of dynamics and geometry. She obtained the PhD at the Univerisity of Warwick, UK, supervised by Richard Sharp, and with thesis title "Critical exponents, the spectrum of twisted transfer operators, and Kazhdan distance". Since then she has been an Henri Lebesgue postdoc at LMJL Université de Nantes September 2017 - September 2018, working with Samuel Tapie (LMJL) and Rémi Coulon and Barbara Schapira (Rennes 1).



RAMIREZ GARCIA LUNA Valente, Irmar, 2017-2019

His research belongs to the areas of complex differential equations and holomorphic foliations. These theories lay right at the intersection of dynamical systems, topology, complex analytic and complex algebraic geometry. The questions he is interested in are both at the local and global levels. In fact, the interaction between the local and global behavior is of particular interest to his research.
Currently, he is working with isomonodromic deformations of logarithmic connections over curves of positive genus. Particularly, he is trying to exhibit and understand the algebraic nature of the isomonodromy equations in particular cases.

Also, on a separate project, he is trying to understand the spectra of singularities of polynomial vector fields defined on the complex affine plane, and the spectra of fixed points of regular endomorphisms of projective plane. More ....



ROMASKEVICH Olga, Irmar, 2017-2019

Olga Romaskevich did her Master studies at the faculty of mathematics and mechanics of Moscow State University. In December 2016 she defended her thesis in co-direction between Higher School of Economics in Moscow and L'École Normale Supérieure de Lyon. After a one year teaching and research position (ATER) in l'ENS de Lyon, she is now a post-doc at IRMAR (University of Rennes 1).

Olga is interested in dynamical systems of small complexity and their different aspects : measures of complexity which are finer than topological entropy, integrability, billiard dynamics. First, now she is working on the notion of polynomial entropy for the automorphisms of complex manifolds. Second, she is studying billiard dynamics in the tilings, and fractal behavior of certain trajectories in these tilings.

2016


BAO Erkao, LMJL, 2016-2017

Erkao Bao does research in Applied Mathematics, Algebra and Geometry and Topology. Their most recent publication is 'Semi-global Kuranishi charts and the definition of contact homology.'

Erkao Bao currently works at the Department of Mathematics, University of California, Los Angeles.



CORNAGGIA Rémi,Irmar, 2016-2018

Il est depuis octobre 2016 post-doctorant rattaché à l'équipe Mécanique du pôle Analyse de l'IRMAR. Il y travaille en collaboration étroite avec Loïc Le Marrec (équipe Mécanique), Eric Darrigrand et Fabrice Mahé (équipe Analyse numérique). Leurs recherches actuelles comportent deux volets indépendants. Le premier est axé sur un nouveau modèle de milieu continu généralisé de type Riemann-Cartan développé à l'IRMAR (par L. Le Marrec et L. Rakotomanana) pour la propagation et la diffraction d'ondes élastiques en milieux complexes. Après une phase de bibliographie, deux stratégies semblent se dessiner. La première consiste à aborder un problème uniaxial, la seconde consiste à reformuler le problème sous forme de potentiels élastiques généralisés. Leurs efforts se concentrent actuellement sur cette seconde stratégie.

Le second volet, plus numérique, s'intéresse à des poutres de sections rapidement variables soumises à des chargements dynamiques. Ils développent une méthode d'éléments finis enrichis adaptée aux problèmes associés. Pour ce faire, ils proposent d'approximer une poutre par un ensemble de sous-poutres de sections exponentielles, puis de s'appuyer sur la connaissance analytique des fréquences et modes propres de chaque sous-poutre pour enrichir la base des fonctions utilisées pour la discrétisation du problème, dans l'esprit des méthodes de partition de l'unité. De premiers résultats pour la traction-compression confirment l'intérêt de cette approche. De nombreux développements sont prévus, à commencer par le traitement de la flexion de Timoshenko qui était l'objectif initial du projet.


2015


MOZHAROVSKYI Pavlo, Irmar, 2015-2016

His research interests lies in the fields of nonparametric and robust statistics, machine learning, and imputation of missing data. In the center of investigation is the statistical data depth function, an evolving machinery able to describe multivariate and functional data in a distribution-free way. He is mainly working on depth-based classification and depth-computing algorithms allowing for application of the concept of data depth by practitioners.

During the postdoc, still keeping working on depth-based supervised classification (jointly with Tatjana Lange, Karl Mosler, and Oleksii Pokotylo) and exploring the computational aspects of data depth (jointly with Rainer Dyckerhoff), he started to extend the area of research to high-dimensional data (jointly with Karl Mosler), imputation of missing values (jointly with Julie Josse and François Husson), and econometric large-scale applications: composite likelihood estimation (jointly with Jan Vogler) and nonparametric data envelopment analysis (jointly with Oleg Badunenko, see also R-package npsf).

He is now Assistant Professor in Statistics at ENSAI More ....



2014


2013