Introduction to random fields and scale invariance: Lecture ||

Hermine Biermé

4th april 2016, Stochastic Geometry conference, Nantes

Outlines

- 1 Random fields and scale invariance
- 2 Sample paths properties
- 3 Simulation and estimation
- 4 Geometric construction and applications

Lecture 2:

- Sample paths regularity
 - 1 Hölder regularity
 - 2 Critical Hölder exponent
 - 3 Directional Hölder regularity
- 2 Hausdorff dimension of graphs
 - Hausdorff measures and dimensions
 - 2 Upper bound of graphs Hausdorff dimension
 - 3 Lower bound of graphs Hausdorff dimension

Stochastic continuity and modification

<u>De</u>finition

Let $X=(X_x)_{x\in\mathbb{R}^d}$ be a random field. We say that X is stochastically continuous at point $x_0\in\mathbb{R}^d$ if

$$\forall \varepsilon > 0, \lim_{x \to x_0} \mathbb{P}(|X_x - X_{x_0}| > \varepsilon) = 0.$$

Definition

Let $X=(X_x)_{x\in\mathbb{R}^d}$ be a random field. We say that $\tilde{X}=(\tilde{X}_x)_{x\in\mathbb{R}^d}$ is a modificiation of X if

$$\forall x \in \mathbb{R}^d, \mathbb{P}(X_x = \tilde{X}_x) = 1.$$

Remark: It follows that X and \tilde{X} have the same law.

Regularity

Definition

$$|X(x) - X(y)| \le A||x - y||^{\gamma}, \forall x, y \in K.$$

Theorem (Kolmogorov-Chentsov 1956)

If there exist $0 < \beta < \delta$ and C > 0 such that

$$\mathbb{E}\left(|X(x)-X(y)|^{\delta}\right) \leq C\|x-y\|^{d+\beta}, \forall x,y \in K,$$

then there exists \tilde{X} a modification of X γ -Hölder on K, for all $\gamma < \beta/\delta$.

For $k \ge 1$ we introduce the dyadic points of $[0,1]^d$

$$\mathcal{D}_k = \left\{ \frac{j}{2^k}; \forall 1 \le i \le d, 0 \le j_i \le 2^k \right\}.$$

Note that for $x \in [0,1]^d$, $\exists x_k \in \mathcal{D}_k$ with $\|x - x_k\|_{\infty} \leq 2^{-k}$. Let $\gamma \in (0, \beta/\delta)$. For $i, j \in [0, 2^k]^d \cap \mathbb{N}^d$ with $i \neq j$ define

$$E_{i,j}^{k} = \{ \omega \in \Omega; |X_{i/2^{k}}(\omega) - X_{j/2^{k}}(\omega)| > ||i/2^{k} - j/2^{k}||_{\infty}^{\gamma} \}.$$

By assumption and Markov inequality

$$\mathbb{P}(E_{i,j}^k) \le 2^{-k(d+\beta-\gamma\delta)} \|i-j\|_{\infty}^{d+\beta-\gamma\delta}.$$

Let set

$$E^{k} = \bigcup_{(i,j)\in[0,2^{k}]; 0<\|i-j\|_{\infty}\leq 5} E_{i,j}^{k}.$$

It follows that

$$\mathbb{P}(E^{k}) \leq 5^{d+\beta-\gamma\delta} 2^{-k(d+\beta-\gamma\delta)} \#\{(i,j) \in [0,2^{k}]; 0 < \|i-j\|_{\infty} \leq 5 \\
\leq 5^{d+\beta-\gamma\delta} 10^{d} 2^{-k(\beta-\gamma\delta)}$$

Hence, by Borel Cantelli $\mathbb{P}(\limsup E^k) = 0$ and $\tilde{\Omega} = \bigcup_k \cap_{l \geq k} E^l$ is such that $\mathbb{P}(\tilde{\Omega}) = 1$. For $\omega \in \tilde{\Omega}$, $\exists k^*(\omega)$ s.t. $\forall l \geq k^*(\omega)$, $x, y \in \mathcal{D}_l$ with $0 < \|x - y\|_{\infty} \leq 52^{-l}$

$$|X_x(\omega) - X_y(\omega)| \le ||x - y||_{\infty}^{\gamma}.$$

Let us set $\mathcal{D} = \bigcup_k \mathcal{D}_k$. For $x, y \in \mathcal{D}$ with $0 < ||x - y||_{\infty} \le 2^{-k^*(\omega)}$, $\exists ! l \ge k^*(\omega)$ with

$$2^{-(l+1)} < ||x-y||_{\infty} \le 2^{-l}$$
.

Moreover, one can find $n \ge l+1$ s.t. $x,y \in \mathcal{D}_n$ and $\forall k \in [l,n-1]$, $\exists x_k,y_k \in \mathcal{D}_k$ with $\|x-x_k\|_{\infty} \le 2^{-k}$ and $\|y-y_k\|_{\infty} \le 2^{-k}$. We set $x_n = x$ and $y_n = y$. Therefore

$$||x_I - y_I||_{\infty} \le ||x_I - x||_{\infty} + ||x - y||_{\infty} + ||y - y_I||_{\infty}$$

 $\le 22^{-I} + ||x - y||_{\infty}$

But $2^{-l} < 2\|x - y\|_{\infty}$ and $\|x_l - y_l\|_{\infty} \le 5\|x - y\|_{\infty} \le 52^{-l}$ and since $l \ge k^*(\omega)$

$$|X_{x_I}(\omega) - X_{y_I}(\omega)| \leq ||x_I - y_I||_{\infty}^{\gamma} \leq 5^{\gamma} ||x - y||_{\infty}^{\gamma}.$$

But for all $k \in [I, n-1]$, $\|x_k - x_{k+1}\|_{\infty} \le 2^{-k} + 2^{-(k+1)} \le 32^{-(k+1)}$ s.t. $|X_{x_k}(\omega) - X_{x_{k+1}}(\omega)| \le \|x_k - x_{k+1}\|_{\infty}^{\gamma} \le (3/2)^{\gamma} 2^{-k\gamma}$.

Similarly,

$$|X_{y_k}(\omega) - X_{y_{k+1}}(\omega)| \le ||y_k - y_{k+1}||_{\infty}^{\gamma} \le (3/2)^{\gamma} 2^{-k\gamma}.$$

It follows that

$$|X_{x}(\omega) - X_{y}(\omega)| \leq \sum_{k=1}^{n-1} |X_{x_{k}}(\omega) - X_{x_{k+1}}(\omega)| + |X_{x_{l}}(\omega) - X_{y_{l}}(\omega)|$$

$$+ \sum_{k=1}^{n-1} |X_{y_{k}}(\omega) - X_{y_{k+1}}(\omega)|$$

$$\leq \frac{2 \times 3^{\gamma}}{2^{\gamma} - 1} \times 2^{-l\gamma} + 5^{\gamma} ||x - y||_{\infty}^{\gamma}$$

$$\leq c_{\gamma} ||x - y||_{\infty}^{\gamma}$$

By chaining, it follows that $\forall x, y \in \mathcal{D}$

$$|X_x(\omega)-X_y(\omega)|\leq c_\gamma 2^{k^*(\omega)}||x-y||_\infty^\gamma,$$

and we set $A(\omega)=c_\gamma 2^{k^*(\omega)}$. Hence we have proven that $orall \omega\in ilde\Omega,$ $x,y\in \mathcal D$,

$$|X_x(\omega) - X_y(\omega)| \le A(\omega) ||x - y||_{\infty}^{\gamma}.$$

We set $\tilde{X}_x(\omega)=0$ if $\omega\notin\tilde{\Omega}$. For $\omega\in\tilde{\Omega}$, if $x\in\mathcal{D}$ we set $\tilde{X}_x(\omega)=X_x(\omega)$. Otherwize, there exists $(x_k)_k$ a sequence of dyadic points such that $x_k\to x$. Therefore $(X_{x_k}(\omega))$ is a Cauchy sequence and we define $\tilde{X}_x(\omega)$ as its limit. By stochastic continuity we have

$$\mathbb{P}(\tilde{X}_{x}=X_{x})=1.$$

Critical Hölder exponent

Definition

Let $\gamma \in (0,1)$. A random field $(X(x))_{x \in \mathbb{R}^d}$ admits γ as critical Hölder exponent on $[0,1]^d$ if :

(a) $\forall s < \gamma$, a.s. X satisfies $H(s) : \exists A \ge 0 \text{ rv s.t. } \forall x,y \in [0,1]^d$,

$$|X(x)-X(y)|\leq A||x-y||^{s}.$$

(b) $\forall s > \gamma$, a.s. X fails to satisfy H(s).

Proposition (Adler, 1981)

Let $(X(x))_{x\in\mathbb{R}^d}$ be a Gaussian random field. If $\forall \delta>0$, $\exists c_1,c_2>0$,

$$c_1 ||x - y||^{2\gamma + \delta} \le \mathbb{E} (X(x) - X(y))^2 \le c_2 ||x - y||^{2\gamma - \delta}$$

ightharpoonup critical Hölder exponent on $[0,1]^d=\gamma$ for any continuous version of X.

Gaussian s.i. fields

Corollary

For X s.i. Gaussian s.t. $\forall \delta > 0$, $\exists c_1, c_2 > 0$,

$$c_1 ||x||^{2\gamma + \delta} \le v_X(x) = \mathbb{E}((X_x - X_0)^2) \le c_2 ||x||^{2\gamma - \delta},$$

any continuous version of X have critical Hölder exponent on $[0,1]^d=\gamma$.

Exples:

- FBF with $v_H(x) = ||x||^{2H}$ and EFBF $v_{H,\alpha}(x) = c_{H,\alpha}(x/||x||)||x||^{2H}$ critical Hölder exponent = H
- OU $v(t) = 2 (c(0) c(t)) = 2(1 e^{-\theta|t|})$ critical Hölder exponent = 1/2
- OS $v_{H,E}(x) = \left(\sum_{i=1}^{d} |\langle x, \theta_i \rangle|^{2\alpha_i}\right)^H$ critical Hölder exponent $= H \min_{1 \le i \le d} \alpha_i$

Directional Hölder regularity

Let $x_0 \in \mathbb{R}^d$ and $\theta \in S^{d-1}$, the line process $L_{x_0,\theta}(X) = (X(x_0 + t\theta))_{t \in \mathbb{R}}$ has variogram $v_{\theta}(t) = \mathbb{E}\left((X(x_0 + t\theta) - X(x_0))^2\right) = v_X(t\theta)$.

Definition (Bonami, Estrade, 2003)

Let $\theta \in S^{d-1}$. We say that X admits $\gamma(\theta) \in (0,1)$ as directional regularity in the direction θ if $\forall \delta > 0$, $\exists c_1, c_2 > 0$,

$$c_1|t|^{2\gamma(\theta)+\delta} \leq v_{\theta}(t) = v_X(t\theta) \leq c_2|t|^{2\gamma(\theta)-\delta},$$

Proposition (Bonami, Estrade, 2003)

If $\exists \gamma: S^{d-1} \to (0,1)$ s.t. $\forall \theta \in S^{d-1}$, X admits $\gamma(\theta)$ as directional regularity in the direction θ . Then γ takes at most d values. Moreover, if γ takes k values $\gamma_k < \ldots < \gamma_1$, there exist

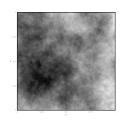
$$\{0\} = V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_k := \mathbb{R}^d$$

$$\gamma(\theta) = \gamma_i \Leftrightarrow \theta \in (V_i \setminus V_{i-1}) \cap S^{d-1}$$
.

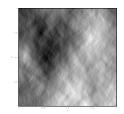
Directional Hölder regularity

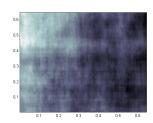
Exples:

- FBF with $v_H(x) = ||x||^{2H}$ and EFBF $v_H(x) = c_{H,\alpha}(x/||x||)||x||^{2H}$: $\forall \theta \in S^{d-1}$, directional Hölder regularity in direction $\theta = H$
- lacksquare OS $v(x) = \left(\sum_{i=1}^d |\langle x, heta_i
 angle|^{2lpha_i}
 ight)^H: orall 1 \leq i \leq d$, directional Hölder regularity in direction $\tilde{\theta}_i = H\alpha_i$ for $E\tilde{\theta}_i = \alpha_i^{-1}\tilde{\theta}_i$



H=0.5 FBF





H = 0.5, $\alpha = \pi/3$, EFBF $H\alpha_1 = 0.5$, $H\alpha_2 = 0.6$, H = 0.7

Hausdorff measures and dimensions

Definition

Let $U \subset \mathbb{R}^d$ bounded. For $\delta > 0$ and $s \geq 0$, we set

$$\mathcal{H}^{s}_{\delta}(U) = \inf \left\{ \sum_{i \in I} diam(B_{i})^{s}; (B_{i})_{i \in I} \ \delta - covering \ of \ U \right\},$$

meaning that $U \subset \bigcup_{i \in I} B_i$ with diam $(B_i) \leq \delta$.

Note that $\forall \delta < \delta'$, $\mathcal{H}^{s}_{\delta}(U) \geq \mathcal{H}^{s}_{\delta'}(U)$.

Definition

The s-dimensional Hausdorff measure of U is defined by

$$\mathcal{H}^{s}(U) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(U) \in [0, +\infty],$$

 $s\mapsto \mathcal{H}^s(U)$ jumps from $+\infty$ to 0 : Hausdorff dimension of U

$$dim_H(U) = \inf \{s \geq 0; \mathcal{H}^s(U) = 0\} = \sup \{s \geq 0; \mathcal{H}^s(U) = +\infty\}.$$

Hausdorff measures and dimensions

Remark: in general we do not know the value of $\mathcal{H}^{s^*}(U) \in [0,+\infty]$ at $s^* = \dim_H(U)$. But

$$\mathcal{H}^{s}(U) > 0 \Rightarrow \dim_{H}(U) \geq s$$

 $\mathcal{H}^{s}(U) < +\infty \Rightarrow \dim_{H}(U) \leq s$

Exple: $U = [0,1]^d$, $\|\cdot\|_{\infty}$, $U \subset \bigcup_{i=1}^{N_{\delta}} B_i(\delta)$ and $\mathcal{H}^s_{\delta}(U) \leq c \delta^{s-d}$. It follows that for $s \geq d$, $\mathcal{H}^s(U) < +\infty$ and $\dim_H(U) \leq d$. Let $U \subset \bigcup_{i \in I} B_i \subset \bigcup_{i \in I} B_i(r_i)$ and $1 = \mathcal{L}eb(U) \leq \sum_i r_i^d$ s.t. $\mathcal{H}^d(U) > 0$ and $\dim_H(U) = d$.

Proposition

If U is a non-empty open bounded set of \mathbb{R}^d then $\dim_H(U) = d$.

Hausdorff dimensions for Hölder functions

Let $f:[0,1]^d \to \mathbb{R}$ and write

$$G_f = \{(x, f(x)); x \in [0, 1]^d\} \subset \mathbb{R}^{d+1}.$$

Note that $\dim_H \mathcal{G}_f \geq d$.

Proposition

If
$$|f(x) - f(y)| \le C||x - y||_{\infty}^{\gamma}$$
 for $\gamma \in (0, 1]$, then $dim_H \mathcal{G}_f \le d + 1 - \gamma$.

Write $[0,1]^d \subset \bigcup_{i=1}^{N_\delta} x_i + [0,\delta]^d$, then

$$\mathcal{G}_{f} \subset \bigcup_{i=1}^{N_{\delta}} (x_{i} + [0, \delta]^{d}) \times (f(x_{i}) + [-C\delta^{\gamma}, C\delta^{\gamma}])$$

$$\subset \bigcup_{i=1}^{N_{\delta}} \bigcup_{j=1}^{N_{\delta}} (x_{i} + [0, \delta]^{d}) \times (f(x_{i}) + I_{j}(\delta)).$$

Hence
$$\mathcal{H}^s_{\delta}(\mathcal{G}_f) \leq N_{\delta}N^{\gamma}_{\delta}\delta^s \leq c\delta^{-d+\gamma-1+s}$$
. Therefore $s>d+1-\gamma$ implies $\mathcal{H}^s(\mathcal{G}_f)=0$ and $\dim_H\mathcal{G}_f\leq d+1-\gamma$.

Frostman criteria for random fields

Theorem

Let $(X_x)_{x \in \mathbb{R}^d}$ be a second order field a.s. continuous on $[0,1]^d$ s.t. $\exists s > 1$,

$$\int_{[0,1]^d \times [0,1]^d} \mathbb{E}\left(\left(|X_x - X_y|^2 + \|x - y\|^2\right)^{-s/2}\right) dx dy < +\infty,$$

then a.s. $dim_H \mathcal{G}_X \geq s$.

Corollary

Let $(X(x))_{x\in\mathbb{R}^d}$ be a Gaussian random field. If $\forall \delta>0$, $\exists c_1,c_2>0$,

$$c_1 ||x - y||^{2\gamma + \delta} \le \mathbb{E} (X(x) - X(y))^2 \le c_2 ||x - y||^{2\gamma - \delta},$$

for any continuous modification \tilde{X} of X

$$\Rightarrow$$
 $\dim_H \mathcal{G}_{\tilde{\mathbf{x}}} = d + 1 - \gamma$ a.s

References

- R. Adler (1981): The Geometry of Random Fields. John Wiley & Sons
- A. Ayache and F. Roueff (2003): A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series. Appl. Comput. Harmon. Anal., 14, 75–82
- A. Benassi, S. Cohen and J. Istas (2013): Fractional Fields and Applications. *Springer*
- A. Bonami and A. Estrade (2003) Anisotropic analysis of some Gaussian Models. J. Fourier Anal. Appl., 9, 215–236
- Davies and Hall (1999): Fractal Analysis of surface roughness by using spatial data J. R. Stat. Soc. Ser. B, 61, 3–37
- K. J. Falconer (1990): Fractal geometry. John Wiley & Sons.