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Stochastic continuity and modification

Let X = (Xx)y crd be a random field. We say that X is
stochastically continuous at point xo € R? if

Ve > 0, lim P(|Xx — X,| > ¢€) =0.
X—>X0

Definition
Let X = (Xx)xere be a random field. We say that X = (X)ycped is
a modificiation of X if

Vx € RY, P(X, = Xy) = 1.

Remark : It follows that X and X have the same law.



Regularity

Let K =[0,1]9. Let v € (0,1). A random field X = (Xy)xcgd is
~v-Hélder on K if there exists a rv A such that a.s.

[X(x) = X < Allx =y, vx,y € K.

Theorem (Kolmogorov-Chentsov 1956)
If there exist 0 < 8 < & and C > 0 such that

E (1X(x) = X()°) < Clix = yl|**7,¥x,y € K,

then there exists X a modification of X ~v-Hélder on K, for all
v < B/4.



Proof of Theorem Step 1

For k > 1 we introduce the dyadic points of [0, 1]¢
Dy = {zjk;\ﬂ <i<d0<ji< 2k}.

Note that for x € [0,1]9, Ixx € Dy with ||x — xk|loo < 27K,
Let v € (0,3/9). For i,j € [0,2K]9 " N9 with i # j define

Ef = {w € QX or (w) = Xj o (@)] > [17/2% = j/25|1 2.
By assumption and Markov inequality

P(Ef;) < 27 HEHIT) i — | d+5-0,



Proof of Theorem Step 1

Let set
EX = U EF;.
(i4)€[0,2K];0<li—jllo0 <5

It follows that

ITA=0=kdTA=) 1 (i, j) € [0,2K];0 < [|i — jl|oo < 5}
5d+ﬁ*’7510d2*k(5*75)

P(EF) <
<

Hence, by BoNreI Cantelli }P’(Iim~sup EK) =0 and Q= Uy Ni>k E'is
such that P(Q2) = 1. For w € Q, 3k*(w) s.t. VI > k*(w), x,y € D,
with 0 < [|x = y|oc < 527

[Xx(w) = Xy (W)] < lIx =yl



Proof of Theorem Step 2

Let us set D = U Dy. For x,y € D with 0 < ||x — y|leo < 27K©),
Al > k*(w) with

270F) < |Ix = y]loe <27

Moreover, one can find n > |+ 1s.t. x,y € D, and Vk € [I,n— 1],
Ixk, Yk € Dk with [|x — xxk|loo < 27K and ||y — yklloo < 275, We
set x, = x and y, = y. Therefore

X = yilloo < 11x1 = Xlloo + X = ¥lloo + lly = 1lloo
< 274 x — vl

But 2~/ < 2||x = ylloo and [|x1 — ¥illoo < 5]|x = ¥|loo < 52~ and
since | > k*(w)

[ X (w) = Xy ()] < 31 = willds < 57[x = yl[Z



Proof of Theorem Step 2

But for all k € [/,n — 1],
Xk — Xig1lloo < 27K 27 (k1) < 30— (kH1) g ¢

X () = Xy ()] < e — 3k < (3/2)72747,
Similarly,

X, (@) = Xy (@) < Iy — yirllZ < (3/2)72757.
It follows that

n—1

Xa(@) = Xy ()] < D X (@) = Xy ()] + X (@) = X ()]
k=I

n—1
+ ZIka(W) Xy (@)]
2><37 /
-y s _ v
< xSk -y
< olx =yl



Proof of Theorem Step 3

By chaining, it follows that Vx,y € D
[Xe(@) = Xy ()] < 2@ x = y|1L,

and we set A(w) = ¢,2K"(“). Hence we have proven that Vw € Q,
x,y €D,
[Xx(w) = Xy ()] < Alw)llx = ¥l

We set X, (w) =0 ifw ¢ Q. For w e Q, if x € D we set

Xi(w) = Xy(w). Otherwize, there exists (xi)x a sequence of dyadic
points such that xx — x. Therefore (X, (w)) is a Cauchy sequence
and we define X, (w) as its limit. By stochastic continuity we have

P(Xy = Xy) = 1.



Critical Holder exponent

Let v € (0,1). A random field (X(x))xcrs admits v as critical Hélder
exponent on [0,1]9 if :

(a) Vs <, a.s. X satisfies H(s) : 3A >0 rv s.t. Vx,y € [0,1]¢,

[X(x) = X(y)| < Allx = y|I°.
(b) Vs >, a.s. X fails to satisfy H(s).
Proposition (Adler, 1981)
Let (X(x))xere be a Gaussian random field. If Y6 >0, 31, ¢ > 0,
alx =y SE(X(x) = X(y))* < ellx =yl

w critical Holder exponent on [0,1]¢ = ~ for any continuous version of X.



Gaussian s.i. fields

Corollary

For X s.i. Gaussian s.t. V6 > 0, ¢y, ¢ > 0,
allx77% < vx(x) = E((Xx = X0)?) < aIx|*7°,
any continuous version of X have critical Hélder exponent on [0,1]9 = 7.

Exples :

m FBF with vy(x) = || x||*" and EFBF VH,o(x) = cH7a(x/||x||)||x||2H
critical Holder exponent = H

m OU v(t) = 2(c(0) — c(t)) = 2(1 — e~ ?Ith
critical Holder exponent = 1/2

= 05 vyye(x) = (27:1 [(x, 9,->|2al_)H

critical Holder exponent = Hminj<j<g o



Directional Holder regularity

Let xo € RY and 6 € S92, the line process Ly, o(X) = (X(xo0 + t0)),cr
has variogram vy(t) = E ((X(xo +t0) — X(xo))z) = vx(t0).

Definition (Bonami, Estrade, 2003)

Let € S971. We say that X admits v(6) € (0,1) as directional
regularity in the direction 6 if Y6 > 0, dci, ¢ > 0,

Cl|t|2’v(0)+5 < vp(t) = vx(t0) < (:2|t_‘2'y(6)—67

Proposition (Bonami, Estrade, 2003)

If 3y: 5971 —(0,1) s.t. VO € S971, X admits (0) as directional
regularity in the direction 0. Then ~ takes at most d values. Moreover, if
v takes k values v < ... < 1, there exist

{0}=VoCWVC...C V=R

(@) =i =0 e (Vi Vi)nS§9 L



Directional Holder regularity

Exples :

m FBF with vy(x) = l|x||?" and EFBF vu(x) = cH,a(x/||x||)||xH2H :
VO € S9-1, directional Holder regularity in direction § = H

H
m 0S v(x) = (27:1 |<x,0,~>|2°"'> 1 V1 < i < d, directional Holder

regularity in direction 0; = Ha; for E); = ai_lé,-

H=10.5 FBF H=0.5, a=mn/3, EFBF Ha; =0.5 Haz = 0.6, H=0.7



Hausdorff measures and dimensions

Let U c R? bounded. For 6 > 0 and s > 0, we set

$(U) = inf {Z diam(B;)®; (Bi)ies 6 — covering of U} )

icl
meaning that U C U;e;B; with diam(B;) < 0.

Note that V§ < &', H5(U) > H5, (V).

Definition
The s-dimensional Hausdorff measure of U is defined by

H*(U) = lim H;(U) € [0, +o0],
6—0
s — H*(U) jumps from +oo to O : Hausdorff dimension of U

dimy(U) = inf {s > 0; H*(U) = 0} = sup {s > 0; H*(U) = +o0}.



Hausdorff measures and dimensions

Remark : in general we do not know the value of H* (U) € [0, +o0] at
s* = dimy(U). But

H(U)>0 = dimy(U)>s
H(U) < 400 = dimy(U) <s

Exple : U=1[0,1]%, || - [|oo, U C UM, B;(8) and H5(U) < c6°7.

It follows that for s > d, H*(U) < +o0 and dimy(U) < d.

Let U C Uje/Bi C UjeiBi(r;) and 1 = Leb(U) <Y, rd s.t. HI(U) >0
and dimy(U) = d.

Proposition

If U is a non-empty open bounded set of RY then dimy(U) = d.



Hausdorff dimensions for Holder functions

Let f:[0,1]¢ — R and write
Gr = {(x, F(x));x € [0,1]} © R,
Note that dimyGr > d.

Proposition
If|f(x) = f(y)| < Clx — y||2, for~v € (0,1], then dimuyGr < d +1 — .

- d N d
Write [0,1]¢ C Uxi+ [0,4]°, then

N J
G U (xi +[0,8]7) x (f(x;) + [-C87, C8"])
Ns Ny
c U U (a+10.607) x (F0a) + (6)).
i=1j=
Hence H5(Gr) < NsNj o < c69T7~1s. Therefore s > d +1 -~
implies H5(Gr) = 0 and dimyGr < d +1 — 1.



Frostman criteria for random fields

Let (X, )xcre be a second order field a.s. continuous on [0,1]9 s.t. 3s > 1,

/ ]E((|XX—Xy\2+HX—sz)_S/Q) dxdy < +o0,
[0,1]9 x [0,1]¢

then a.s. dimyGx > s.

Corollary
Let (X(x))xere be a Gaussian random field. If V6 > 0, Ic1, ¢ > 0,

alx =y S E(X(x) = X(1))* < callx = yIIP77°,
for any continuous modification X of X

= dimyGy =d+1—-7vas
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