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Introduction
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Statistical Learning

I Characterize shape points x ∈ S with signature vectors
X ∈ Rd

I Assume (X ,Y ) ∼ P

I Find a classifier f : X 7→ Y = f (X )
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Statistical Learning

I Assume shape S has two labels (segments) Y = −1/+ 1

I Select classifier that minimizes the following loss:

EP [φ(Yf (X ))] + ‖f ‖

I Support Vector Machine (SVM) use the hinge loss:
φ(u) = max(0, 1− u)

I Linear SVM: f (X ) = aTX + b

I Kernel SVM: f (X ) = aTΨ(X ) + b where Ψ is a mapping to a
RKHS

I When more than 2 labels: multi-class SVM
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Introduction

I Shape = triangle mesh

I “Good” signatures are necessary for a good model

I Can be very different by nature:
I local/global
I intrinsic/extrinsic
I volumetric/defined on the surface
I type of information (geometry, topology...)

I Satisfy the following properties:
I be invariant to deformation classes (rotation, scaling...)
I be stable
I be informative
I bring complementary information to common signatures
I be representable as vectors in Rd
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Introduction

Examples:

I curvature (mean, gaussian)

I PCA features

I spin image

I shape context

I shape diameter function

I kernel signatures (heat kernel, wave kernel)

I geodesic features (eccentricity)
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Introduction

I General context: use persistent homology to build
topological signatures

I Issues with existing techniques:

I global

I costly to compute

I not well suited for learning

I Contribution: local topological efficient and provably stable
signature in Rd
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Persistence Diagrams

Kernels

Applications
Shape Segmentation
Shape Matching
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Persistence Diagrams
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Persistence Diagrams

I Persistence Diagrams (PDs) are the building blocks of the
topological signature

I PDs are sets of points in R̄2

+∞
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Persistence Diagrams

Pick a point x

I Record topological changes (i.e. homology) of growing
geodesic ball centered on x

I → Record appearance and filling of every hole in the ball

I For every hole, create point (x , y) in PD with
I x = radius of appearance
I y = radius of filling
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I Stability?

I Distance between PDs?

I Distance between shapes?
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Distance between PDs

Let PD = {p1 ... pn} and PD′ = {q1 ... qm} be two PDs.
Let S = PD ∪ P∆(PD′) and S ′ = PD′ ∪ P∆(PD) (|S | = |S ′|).
Then:

d∞b (PD,PD′) = inf
φ:S→S ′

sup
i=1...n

c(pi , φ(pi ))

where c(pi , φ(pi )) = ‖pi − φ(pi )‖∞
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d∞b (PD1, PD2)
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Distance between shapes

I A correspondence between metric spaces X and Y is a subset
C of X × Y such that:

I ∀x ∈ X ,∃y ∈ Y s.t. (x , y) ∈ C
I ∀y ∈ Y ,∃x ∈ X s.t. (x , y) ∈ C

I The metric distortion εm(C ) of C is:

εm(C ) = sup(x ,y)∈C ,(x ′,y ′)∈C |dX (x , x ′)− dY (y , y ′)|

x
x′

y′
y
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Stability

Theorem: Corresponding points in nearly-isometric shapes have

similar PDs:

d∞b (Dx ,Dy) ≤ 20 infC :(x ,y)∈C εm(C )
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Kernels
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Kernel

I d∞b = cost of optimal matching → costly to compute in
practice

I Kernel SVM? K (D,D ′) = exp
(
−d∞

b (D,D′)2

2σ2

)
I d∞b is not conditionally negative definite → K is not a valid

kernel

I Idea: see PDs as metric spaces to turn them into vectors
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4

Adding the diagonal

• useful for when point clouds have different
cardinalities

• diagonal has infinite multiplicity
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4

Adding the diagonal

• useful for when point clouds have different
cardinalities

• some points may prefer the diagonal to other points
to reduce the cost of the matching

• diagonal has infinite multiplicity
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Dij = min{ ‖xi − xj‖∞,

‖xi − x̄i‖∞,
‖xj − x̄j‖∞}
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Stability

K1(Dx ,Dy ) =< Φ(Dx),Φ(Dy ) >

K2(Dx ,Dy ) = exp

(
−‖Φ(Dx)− Φ(Dy )‖2

2

2σ2

)
C (N)‖Φ(Dx)− Φ(Dy )‖2 ≤ ‖Φ(Dx)− Φ(Dy )‖∞ ≤ 2d∞b (Dx ,Dy )

I C (N) =
√

2
N(N−1) where N is the dimension

I Stability preserved whatever the number of components
kept!
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Stability
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Computation

I Symmetry: count connected components instead of holes

I CCs are computed with triangulation + Dijkstra’s algorithm

I Can be extended to point clouds with neighborhood graph
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Computation

I Use Union Find data structure

I Timing:
I 3-5 min for shape with 10k-15k nodes
I 15 min for shape with 30k nodes
I Computation of distance matrix ' 66%
I Computation of PDs ' 33%

I Complexity:
I Distance Matrix: O(n2 log(n))
I PDs: O(n2 log(n))
I Mapping: O(n3) – in practice O(n)

I Code available at
http://geometrica.saclay.inria.fr/team/Mathieu.Carriere/
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Continuity

I Kernel PCA with K1

I Values vary smoothly over the shape
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Not the only way to derive kernels...

I Heat diffusion map L2(R2), stability with Wasserstein distance

I Landscapes L2(R2)

I Roots of complex polynomials Rd
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Application 1: Shape Segmentation
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Shape Segmentation

I Learning on training set with/without topological signatures

I Smoothing of produced segmentation (graphcut algorithm)

I Evaluate segmentation with Rand Index
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Results

SB5 SB5+PDs

Human 21.3 11.3
Cup 10.6 10.1

Airplane 18.7 9.3
Ant 9.7 1.5

Chair 15.1 7.3
Octopus 5.5 3.4

Table 7.4 2.5
Teddy 6.0 3.5
Hand 21.1 12.0
Plier 12.3 9.2
Fish 20.9 7.7
Bird 24.8 13.5
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Results
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Results
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Application 2: Shape Matching
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Shape Matching

I Compute optimal map S1 → S2 that best preserves a set of
signatures (with/without topological signature)

I Derive correspondence from this map

I Evaluate quality of correspondence
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Results

Percentage y of points that are mapped at distance at most x from
their ground truth images (equivalent of Precision-Recall curve)
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Results

Flat regions are improved
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Results
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Conclusion

I We introduced provably stable topological multiscale signature
and kernel for points in shapes that gives complementary
information to the other classical signatures

I Drawbacks: not well suited for all shapes, mapping loses
information
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Thank you!
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