Kernel Methods for Persistence Diagrams

Mathieu Carrière ${ }^{1}$, Steve Oudot ${ }^{1}$, Maks Ovsjanikov ${ }^{2}$

Stochastic Geometry and its Applications, Nantes
April 6, 2016

1: DataShape, Inria Saclay, mathieu.carriere@inria.fr, steve.oudot@inria.fr
2: LIX, Ecole Polytechnique, maks@lix.polytechnique.fr

Introduction

Statistical Learning

- Characterize shape points $x \in S$ with signature vectors $X \in \mathbb{R}^{d}$
- Assume $(X, Y) \sim P$
- Find a classifier $f: X \mapsto Y=f(X)$

Statistical Learning

- Assume shape S has two labels (segments) $Y=-1 /+1$
- Select classifier that minimizes the following loss:

$$
\mathbb{E}_{P}[\phi(Y f(X))]+\|f\|
$$

- Support Vector Machine (SVM) use the hinge loss: $\phi(u)=\max (0,1-u)$
- Linear SVM: $f(X)=a^{T} X+b$
- Kernel SVM: $f(X)=a^{T} \Psi(X)+b$ where Ψ is a mapping to a RKHS
- When more than 2 labels: multi-class SVM

Introduction

- Shape $=$ triangle mesh
- "Good" signatures are necessary for a good model
- Can be very different by nature:
- local/global
- intrinsic/extrinsic
- volumetric/defined on the surface
- type of information (geometry, topology...)
- Satisfy the following properties:
- be invariant to deformation classes (rotation, scaling...)
- be stable
- be informative
- bring complementary information to common signatures
- be representable as vectors in \mathbb{R}^{d}

Introduction

Examples:

- curvature (mean, gaussian)
- PCA features
- spin image
- shape context
- shape diameter function
- kernel signatures (heat kernel, wave kernel)
- geodesic features (eccentricity)

Introduction

- General context: use persistent homology to build topological signatures
- Issues with existing techniques:
- global
- costly to compute
- not well suited for learning
- Contribution: local topological efficient and provably stable signature in \mathbb{R}^{d}

Persistence Diagrams

Kernels

Applications
Shape Segmentation
Shape Matching

Persistence Diagrams

Persistence Diagrams

- Persistence Diagrams (PDs) are the building blocks of the topological signature
- PDs are sets of points in $\overline{\mathbb{R}}^{2}$

Persistence Diagrams

Pick a point x

- Record topological changes (i.e. homology) of growing geodesic ball centered on x
- \rightarrow Record appearance and filling of every hole in the ball
- For every hole, create point (x, y) in PD with
- $x=$ radius of appearance
- $y=$ radius of filling
\#:
\# :
\#!

WHWHWH

- Stability?
- Distance between PDs?
- Distance between shapes?

Distance between PDs

Let $\mathrm{PD}=\left\{p_{1} \ldots p_{n}\right\}$ and $\mathrm{PD}^{\prime}=\left\{\begin{array}{lll}q_{1} & \ldots & q_{m}\end{array}\right\}$ be two PDs. Let $S=\mathrm{PD} \cup P_{\Delta}\left(\mathrm{PD}^{\prime}\right)$ and $S^{\prime}=\mathrm{PD}^{\prime} \cup P_{\Delta}(\mathrm{PD})\left(|S|=\left|S^{\prime}\right|\right)$. Then:

$$
d_{b}^{\infty}\left(\mathrm{PD}, \mathrm{PD}^{\prime}\right)=\inf _{\phi: S \rightarrow S^{\prime}} \sup _{i=1 \ldots n} c\left(p_{i}, \phi\left(p_{i}\right)\right)
$$

where $c\left(p_{i}, \phi\left(p_{i}\right)\right)=\left\|p_{i}-\phi\left(p_{i}\right)\right\|_{\infty}$

Distance between shapes

- A correspondence between metric spaces X and Y is a subset C of $X \times Y$ such that:
- $\forall x \in X, \exists y \in Y$ s.t. $(x, y) \in C$
- $\forall y \in Y, \exists x \in X$ s.t. $(x, y) \in C$
- The metric distortion $\epsilon_{m}(C)$ of C is:

$$
\epsilon_{m}(C)=\sup _{(x, y) \in C,\left(x^{\prime}, y^{\prime}\right) \in C}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

Stability

Theorem: Corresponding points in nearly-isometric shapes have similar PDs:

$$
d_{b}^{\infty}\left(D_{x}, D_{y}\right) \leq 20 \inf _{C:(x, y) \in C} \epsilon_{m}(C)
$$

Kernels

Kernel

- $d_{b}^{\infty}=$ cost of optimal matching \rightarrow costly to compute in practice
- Kernel SVM? $K\left(D, D^{\prime}\right)=\exp \left(-\frac{d_{b}^{\infty}\left(D, D^{\prime}\right)^{2}}{2 \sigma^{2}}\right)$
- d_{b}^{∞} is not conditionally negative definite $\rightarrow K$ is not a valid kernel
- Idea: see PDs as metric spaces to turn them into vectors

Feature Map

finite metric space

Feature Map

finite metric space

Feature Map

finite metric space

Feature Map

finite metric space

$(5,4,3,0,0, \cdots)$
sorted sequence with finite support (shape context)

distribution of distances

Feature Map

$$
\Phi=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}
$$

finite metric space

$(5,4,3,0,0, \cdots)$
sorted sequence with finite support (shape context)

Stability

$$
\Phi=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}
$$

finite metric space $\in \mathbf{P}_{\infty}\left(\mathbb{R}^{2}\right)$

$(5,4,3,0,0, \cdots) \in \ell^{\infty}$
sorted sequence with finite support (shape context)

Stability

$$
\Phi=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}
$$

finite metric space $\in \mathbf{P}_{\infty}\left(\mathbb{R}^{2}\right)$

Adding the diagonal

Adding the diagonal

Adding the diagonal $\Phi=\phi_{4} \circ \phi_{3} \circ \phi_{2} \circ \phi_{1}$

Stability

$$
\begin{gathered}
K_{1}\left(D_{x}, D_{y}\right)=<\Phi\left(D_{x}\right), \Phi\left(D_{y}\right)> \\
K_{2}\left(D_{x}, D_{y}\right)=\exp \left(-\frac{\left\|\Phi\left(D_{x}\right)-\Phi\left(D_{y}\right)\right\|_{2}^{2}}{2 \sigma^{2}}\right) \\
C(N)\left\|\Phi\left(D_{x}\right)-\Phi\left(D_{y}\right)\right\|_{2} \leq\left\|\Phi\left(D_{x}\right)-\Phi\left(D_{y}\right)\right\|_{\infty} \leq 2 d_{b}^{\infty}\left(D_{x}, D_{y}\right)
\end{gathered}
$$

- $C(N)=\sqrt{\frac{2}{N(N-1)}}$ where N is the dimension
- Stability preserved whatever the number of components kept!

Stability

Computation

- Symmetry: count connected components instead of holes
- CCs are computed with triangulation + Dijkstra's algorithm
- Can be extended to point clouds with neighborhood graph

Computation

- Use Union Find data structure
- Timing:
- 3-5 min for shape with $10 \mathrm{k}-15 \mathrm{k}$ nodes
- 15 min for shape with 30 k nodes
- Computation of distance matrix $\simeq 66 \%$
- Computation of PDs $\simeq 33 \%$
- Complexity:
- Distance Matrix: $O\left(n^{2} \log (n)\right)$
- PDs: $O\left(n^{2} \log (n)\right)$
- Mapping: $O\left(n^{3}\right)$ - in practice $O(n)$
- Code available at http://geometrica.saclay.inria.fr/team/Mathieu.Carriere/

Continuity

- Kernel PCA with K_{1}

- Values vary smoothly over the shape

Not the only way to derive kernels...

- Heat diffusion map $L^{2}\left(\mathbb{R}^{2}\right)$, stability with Wasserstein distance
- Landscapes $L^{2}\left(\mathbb{R}^{2}\right)$
- Roots of complex polynomials \mathbb{R}^{d}

Application 1: Shape Segmentation

Shape Segmentation

- Learning on training set with/without topological signatures
- Smoothing of produced segmentation (graphcut algorithm)
- Evaluate segmentation with Rand Index

Results

	SB5	SB5+PDs
Human	21.3	$\mathbf{1 1 . 3}$
Cup	10.6	$\mathbf{1 0 . 1}$
Airplane	18.7	$\mathbf{9 . 3}$
Ant	9.7	$\mathbf{1 . 5}$
Chair	15.1	$\mathbf{7 . 3}$
Octopus	5.5	$\mathbf{3 . 4}$
Table	7.4	$\mathbf{2 . 5}$
Teddy	6.0	$\mathbf{3 . 5}$
Hand	21.1	$\mathbf{1 2 . 0}$
Plier	12.3	$\mathbf{9 . 2}$
Fish	20.9	$\mathbf{7 . 7}$
Bird	24.8	$\mathbf{1 3 . 5}$

Results

Results

Application 2: Shape Matching

Shape Matching

- Compute optimal map $S_{1} \rightarrow S_{2}$ that best preserves a set of signatures (with/without topological signature)
- Derive correspondence from this map
- Evaluate quality of correspondence

Results

Percentage y of points that are mapped at distance at most x from their ground truth images (equivalent of Precision-Recall curve)

Results

Flat regions are improved

Conclusion

- We introduced provably stable topological multiscale signature and kernel for points in shapes that gives complementary information to the other classical signatures
- Drawbacks: not well suited for all shapes, mapping loses information

Thank you!

