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Introduction

L Statistics of extremes

The framework

m statistics of extremes : estimate extreme quantiles of a
random variable (r.v.) Y, which are defined as

P(Y > ¢(a)) =

with @« — 0
m "conditional" extreme value statistics : we consider estimation
of conditional extreme quantiles, defined as

PY > q(a,2)|X =2) =«

with @ — 0, where X € RP is a covariate vector (or
explanatory variable) associated with Y’

< regression setting : we are interested in just one variable
(response variable) and we want to study how its distribution
(and in particular, its conditional tail characteristics) depends
on a set of variables (explanatory variables)
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Introduction

L Statistics of extremes

The framework

Some examples :

m magnitude of earthquakes given their location (Pisarenko et
Sornette, 2003)

m amount of production of a firm given available inputs (e.g.,
labor, capital) (Daouia et al., 2010)

m analysis of extreme rainfalls given the geographical location
(Gardes et Girard, 2010)

m analysis of survival of patients with HIV given their age at
diagnosis (Ndao et al., 2014; Ameraoui et al., 2016)
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Introduction

L Statistics of extremes

The framework

Difficulty : estimating the survival function
Fy)=1-F(y) =P(Y >y)

(or conditional survival function F(y|z) = P(Y > y|X = x) when
covariates are present) beyond the maximum observed value
Y(ny = max(Yy,...,Yy).

One cannot merely use the edf (or any version adapted to presence
of covariates).

Why ? Consider a sample Y7,...,Y,, of ni.i.d. r.v. and let
Y1) <... < Y(n) be the ordered data. Let

Q(p) == inf{y : F(y) > p}

be the quantile function.
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Introduction

L Statistics of extremes

The framework

To estimate F(-), one can use the empirical distribution function

. i
Fo(y) = o if y € [Yi), Yiiv1))s

where Y(; is the i-th order sample value. Usual estimate of Q(-) is
the empirical quantile function

Qnlp) = int{y : Fuly) > p}.

Problems arise when considering high quantiles Q(1 — «) with
a < % One cannot simply assume that such values of Y are
impossible.

= these observations show that it is necessary to develop special
techniques to investigate extreme quantiles of a distribution
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Introduction

L Statistics of extremes

Asymptotic distribution of the sample maximum

Theorem (Fisher-Tippett, 1928 ; Gnedenko, 1943)

Let (Yy) ERs F(-). If there exist norming sequences (a, > 0), (b,)

and some non degenerate cdf H, (with v a real value) such that

. Yv(n) —bn
lim P ( < y) = H,(y),

n—oo an,

then H, is of the form

Ho(y) = { exp (—(1 - fyy)ll/v) si vy #0,
! exp(— exp(—y)) si v =0,

where y; = max(0, y).

m H,(-) is known as the (generalized) extreme value distribution

m the parameter + is called the extreme value index (EVI)
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Introduction

L Statistics of extremes

Extreme value index

According to the sign of ~y, three cases can be distinguished :

m If v >0, F(-) is said to belong to Fréchet domain of
attraction (DA) (or to be "of Fréchet-Pareto type" or a
"heavy-tailed" distribution). Recall that Fréchet distribution
has d.f. H,(y) = exp(—y~'/7), y > 0.

Roughly speaking, the survival function F(y) =1 — F(y) — 0
at a polynomial speed, that is, as y~/7 when y — cc.

Example : Cauchy, Pareto, Student, F-distribution

m If v =0, F(-) is said to belong to Gumbel DA as the maxima
are attracted to Gumbel d.f. Ho(y) = exp(—e~¥) (exponential
decrease of the tail of F') = "light-tailed" distributions

Example : normal, exponential, Gamma, lognormal
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Introduction

L Statistics of extremes

Extreme value index

m If v <0, F() is said to belong to Weibull DA : F(y) = 0 for
y > yr (right end-point).

Example : uniform, Beta
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Introduction

L Statistics of extremes

Extreme value index
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FIGURE 1 — Examples of distributions belonging to Weibull (v = —1),
Gumbel (v = 0) and Fréchet (y = 1) domains of attraction.

— the EVI is closely related to the tail behaviour of a cdf. Thus,

knowledge of ~ is crucial for estimating extreme quantiles.
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Introduction

L Statistics of extremes

Fréchet domain of attraction (y > 0)

The d.f. F(-) belongs to Fréchet DA if and only if there exists a
slowly varying function £(-), that is, a function satisfying

vVt >1, lim =1

such that F(y) =y~ '/74(y). Then :

F(t p
Vt>1, lim (ty) t~1/7 lim fty) = ¢,

and F'(-) is said to be a regular varying function.

The tail becomes heavier with increasing value of «. In other
words, the dispersion is larger and large values become more likely.
For this reason, Fréchet-Pareto type distributions are useful for
modeling data with large outliers.
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Introduction
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Introduction

L Conditional extreme value index

Conditional extreme value index

m assume that some covariate vector X € RP (with pdf g) is
recorded at the same time as Y

m a natural approach to tail analysis in the presence of covariate
information is to model the EVI as a function vy : R? — R of
the covariates :

x = vy (z),
which is called conditional EVI (of Y given X = z)

m References (Hill/moment estimators; MLE under the
assumption that vy (z) = h(x; 8) for some completely
specified function h and 8 an unknown regression parameter;
various DA ; functional covariate) :

Gardes and Girard (2008, 2010, 2012), Daouia et al. (2011),
Stupfler (2013), Gardes and Stupfler (2014), Goegebeur et al.
(2014), Ndao et al. (2014, 2016) . ..
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Introduction

L Conditional extreme value index

Conditional extreme value index

m the conditional distribution F'(-|z) of Y| X = z belongs to
Fréchet DA, i.e. there exists a positive function 7y (-) of the
covariate z such that :

Fylr) =1 - F(ylz) =y~ /" @(yla),

where ¢(-|z) is a slowly varying function :

ot
vis1, dim )
y=oo L(y|x)
m estimation of vy (z) : let (Y;, X;),i =1,...,n be independent

copies of the pair (Y, X)

Goegebeur et al. (2014) propose a kernel version of Hill
estimator of vy (z), adapted from Hill estimator (1975) of the
EVI in the univariate case.
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Introduction

L Conditional extreme value index

Hill estimator of the EVI

Recall that for a heavy-tailed distribution :

F(ty) ~1/
—_ — 7T ast— oo forany y > 1,
F(t) Yy Yy

which can be interpreted as
P(Y/t > y|Y > t) ~ y~'/7 for ¢ large, y > 1.

Hence, it appears natural to associate a Pareto distribution (with
survival function y~1/7) to the distribution of the relative excess
E :=Y/t over a high threshold ¢ conditionally on Y > ¢.
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Introduction

L Conditional extreme value index

Hill estimator of the EVI

Assume that we observe n i.i.d. Y7,...,Y, and let E; := Y]/t be

the i-th exceedance in the original sample, where i = 1,..., N;.
The log-likelihood of 7y based on excesses Ey, ..., En, is
1\ &
Uv; Er,y...,EN,) = —Nilnvy — <1 + fy> ZlnEZ—.
i=1

Solving the likelihood equation

ag(’YaEla’EN)
0= o ¢ :_7+ ZlnE

yields Hill estimator of the EVI :

N; n
¢ 2 (InY; —Int)l
;yt[{: 1 2 :h’lEZ: ZL—I(H n ) {Y>t}
Ne i

Zz 1 1{Y >t}
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Introduction

L Conditional extreme value index

A Hill-type estimator of the conditional EVI

Goegebeur et al. (2014) propose :

_ X Kale = X) (Y —Int) 1y,

~H
Ve L
Ay L Ka(e — X)L o0,y

where

m h:= h, and t, are non-random sequences such that h — 0
and t,, — o0 as n — 0o,

m Kp(x) ;== h PK(z/h) and K is a density on RP.

Theorem (Goegebeur et al., 2014)

Under regularity conditions, ﬁg(:c) is a consistant estimator of

vy (z) and \/nhPE(t,|z) (3 (z) — vy (z)) is asymptotically
normal.

< no estimator of extreme quantiles is provided
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Estimation of the conditional extreme value index with censoring
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Estimation of the conditional extreme value index with censoring

The problem

We observe n independent triplets :
Dn = (XZ(57,ZZ),Z = 1,...,n

where
m Z; = min(Y;, C;) and Cj is a censoring r.v.,

" 0 = lyi<cip
m X, is a covariate with density g on R”.

Objective : estimate vy (-) and g(a, -) from the sample D,,.
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Estimation of the conditional extreme value index with censoring

The problem

We assume that

m the conditional distribution function G(-|z) of C' given z
belongs to Fréchet DA, with conditional EVI v¢& ()

m Y and C are independent given x

— the conditional distribution function H(-|z) of Z given X =«
belongs to Fréchet DA and has conditional EVI

_ @l _ o 2).  wher
0@ o HGR) P2 >z5=1X =a)
Y () +c(z)  ame H(zlz) oo P(Z > 2| X =)
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Estimation of the conditional extreme value index with censoring

In the literature. ..

Without covariates, Einmahl et al. (2008) propose to estimate
W= ()b

ﬁk? !

1k
p %Z (n—j+1)

and d(1),...,d(,) are the §; corresponding to Z(y),..., Z(,).

References : Gomes and Oliveira (2003), Einmahl et al. (2008),
Brahimi et al. (2013), Worms and Worms (2014). ..

— idea is to correct for censoring by using an appropriate weight :
"inverse-probability-of-censoring" method (same idea used in
missing data problem)

23 /46



Estimation of the conditional extreme value index with censoring

Estimating vy ()

m recall that

. H'(z|x) . P(Z>z06=1X=2x)
pr = lim ———= = lim

m we estimate respectively H'(z|z) and H(z|x) by

Z Kh(x - Xi)l{Z7,>z,57,:1} Z Kh(l' - Xi)l{Z,,>z}
=1 i=1

and

ZK}L(.’L’in) ZK}z(T*Xv)
i=1 i=1

m then we construct

(@) = Y Bzt | B 70
i=1 i=1

where Bj(z) = Ky, (z — Xi)/Z?:l Kp (v — Xj)
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Estimation of the conditional extreme value index with censoring

Estimating vy ()

Finally, we estimate vy (z) by :

~H
~(e.H) Tt (%)
)= =
Vtn ( ) Dr., (.17)
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Estimation of the conditional extreme value index with censoring

Regularity hypothesis

m if (z1,22) € RP x RP, we denote by d(z1,x2) the distance
between x1 and x9

m Lipschitz conditions : there exist positive constants ¢, ¢4, ¢
and yo such that

‘ 1 _ 1
(1) y(z2)
l9(w1) — g(22)| < cyd(x1,72)
Inf(ylzi) Inf(y|as)
Iny Iny

’ < cyd(z1,22)

sup < cpd(x1, 72)

Y2>y0
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Estimation of the conditional extreme value index with censoring

Asymptotics

Proposition (PN, AD & JFD, 2016)

Let (¢,) be a positive sequence such that as n — oo : ¢, — o0,
nhPH (t,|r) — oo and nh?*2H (t,|r)(logt,)? — 0. Let = be such
that g(z) > 0. Then, as n — oo,

AP (n]2) (B (2) — pa) 2o N (0, il ?gnm% |

with | K3 = [ K?(u)du.
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Estimation of the conditional extreme value index with censoring

Asymptotics

Theorem (PN, AD & JFD, 2016)

Let (¢,) be a positive sequence such that as n — oo : ¢, — o0,
nhPH (t,|z) — oo and nhPt2H (t,|z)(logt,)? — 0. Let = be such
that g(z) > 0. Then, as n — oo,

VP (to]2) (35 (@) — v (@) 25 N <0, R (@) IK ”3> |

vz(z) g(z)

Remark 2 (Asymptotic variance (a.v.))

m additional term || K||3/g(z), compared to the censored case
without covariate (Beirlant et al., 2007)

m in the absence of censoring, our a.v. reduces to the a.v. in
Goegebeur et al. (2014)

m consistant estimator of the a.v. = IC for vy (z)
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Estimation of the conditional extreme value index with censoring

Outline of the proof

We decompose

wh H (o) (35 @) =2y (@) = o\ fnl A (tafo) (G (@) = 1(2)
28 ok i 1af2) 51, ()~ )
“!‘O]p(l).

We prove asymptotic normality of X,,(z) :=

LY K — Xi)lz,50,) — ﬁgtn\x)g(x)
T ,IL ZZ 1 Kp (96 - X )1{2 Stn,0;=1} — (tn|ﬂf)g($)

nhp

n

and then apply the delta-method. To prove asymptotic normality
of X,,(x) : Cramér-Wold and CLT for triangular arrays.
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Estimation of conditional extreme quantiles with censoring
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Estimation of conditional extreme quantiles with censoring

Non-censored case (fixed a € (0, 1))

m suppose we want to estimate the conditional quantile g(«, x)
defined by

PY > q(a,z)| X =2) =«

m kernel estimator of the conditional survival function :
~ n n
Falyl) = Y- Ko = X)1iyimyy /| 3 Kl = X))
i=1 i=1
we consider its generalized inverse :

Gn(0,x) = F{(alz) = inf{y, Fa(ylz) < a}.

References : Stone (1977), Stute (1986), Samanta (1989),
Berlinet et al. (2001)
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Estimation of conditional extreme quantiles with censoring

Non-censored case (a,, — 0 as n — )

m conditional extreme quantile : we want to estimate g(a,, =)
such that

P(Y > q(an,z)| X =) = ay,

with a,, — 0 as n — o

m generalized inverse of l?n :
Gn (0, ) = F;L_(O‘nm) = inf{y, Fn(?/|x) <o}

m /nhPa, (% - 1) is asymptotically zero-mean normal,

under some conditions which entail :
ay, > logP(n)/n

= restriction on the order of the estimable extreme quantiles
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Estimation of conditional extreme quantiles with censoring

Non-censored case : Weissman estimator

m kernel Weissman estimator : an adaptation of Weissman
estimator (1978)of extreme quantiles to the conditional case

iV (any ) = Gu(Bs @) (@)%(z)

where ¢, (5p, x) is the kernel estimator of q(f3,, =)

The term (B,,/a,,)™(*®) is an extrapolating term which allows to
estimate conditional extreme quantiles of arbitrarily small order a,.

33 /46



Estimation of conditional extreme quantiles with censoring

Censored case

m kernel Kaplan-Meier estimator (Beran, 1981)

l{z;<t.6,=1}

= n _ Bi(x) TS
FTL(ﬂx) = Hl:l 1 Z” Liz;>2,3Bj (%) if ¢ < Z(")
0 if ¢ > Z(n)

(which reduces to F,(t|z) in the absence of censoring). Its
generalized inverse :

~

@ (a,z) = Fy (a|z) = inf{t, Fa(t]z) < a).

m kernel Weissman estimator : conditional case with censoring

(e, H)
= (z)
Fn(Z(n—k)‘x) 'YZ(n_k) '

(%

QM (e, 2) = @ (FalZ-plo), )
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Simulations
Simulation design

500 samples {(X;,d;, Z;),i =1,...,n} of size n = 200, 400,
600, 800 with Y'|X = z distributed as Pareto with

P(Y > y|X = z) =y /@
and
W (x) = 0.5 (0.1 +sin(rz) x (1.1 - 05exp (~64 (x - 0.5)°) ))

proportion of censored data : 10%, 25%, 40%
Objective : estimate 7y (-) and ¢(1,/1000, -) on [0, 1]
kernel : K () = 12(1 — 2%)?1{_1<,<1y

comparison with so-called "complete-case" method
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Simulations

Choosing the bandwidth h and threshold %,

m we select the bandwidth h using the a cross-validation
criterion (Daouia et al., 2011; Gardes et Girard, 2012...) :

n n 2
i

W= argmin (Lz>z,y - Z%n,—z'(ZﬂXi))

where Fn,,i is the kernel conditional Kaplan-Meier estimator

Lyz,<t8;,=1}

= n _ Bi(z) Lo
Faftlr) = { 1= [1 S z;> 2 Bi @) sit < Zn)

0 sit> Z(n)
(depending on h) calculated on the subsample of observations

m threshold ¢, selection : we consider ¢, = Z(,,_) and we select
k as follows :
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Choosing the bandwidth h and threshold %,

(c,H)

we calculate V2

() fork=1,...,n—1,
we form successive "blocks" of estimates 'AV(ZCF{),C (x) (one

block for k € {1,...,15}, a second block for k € {16,...,30}

and so on),
we calculate the standard deviation of the ﬁ(ZC(’Ii)k)(x) within
each block,

we consider the block with minimal standard deviation and
take the median value k* of the k in the block.

Finally, we estimate vy (z) by calculating

~H
~(c,H) tn (z)
€Tr) = —
Yo (@) P, ()

with (h, k) = (h*, k*).
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Simulations

Simulation results for conditional EVI (n = 200, 400)

FIGURE 2 — Left : 10% censoring, middle : 25%, right : 40%.
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Simulations

Simulation results for conditional EVI (n = 600, 800)

FIGURE 3 — Left : 10% censoring, middle : 25%, right : 40%.
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Simulations

Simulation results for conditional extreme quantiles
(n = 200,400)

FIGURE 4 — Left : 10% censoring, middle : 25%, right : 40%. 41/46



Simulations

Simulation results for conditional extreme quantiles
(n = 200,400)

FIGURE 5 — Left : 10% censoring, middle : 25%, right : 40%. 42/46



Discussion

Discussion



Discussion

Discussion

m asymptotics for kernel Weissman estimator in presence of
. ~e,WW)
censoring qn " (o, x)
m uniform results w.r.t.

m weakening of the assumption of independent censoring
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Annexe

Grandes lignes de la démonstration

m soit £ = (61,£2,€3)T € R?’, £#£0.0na:

n

X (2) =Y Tin

i=1
ou pour chaque n, les T 5, ..., T}, , sont indépendants
centrés. Notons s7. , = var(£ "X, (x)).

m condition de Lyapounov : il existe § > 0 tel que

1 n
575 ZE(|Ti7n|2+5) — 0 quand n — oo.

n,T =1

m Alors T
 Xn(@) 45 N(0,1).

Sn,x
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