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Introduction
Statistics of extremes

The framework

statistics of extremes : estimate extreme quantiles of a
random variable (r.v.) Y , which are defined as

P(Y > q(α)) = α

with α→ 0
"conditional" extreme value statistics : we consider estimation
of conditional extreme quantiles, defined as

P(Y > q(α, x)|X = x) = α

with α→ 0, where X ∈ Rp is a covariate vector (or
explanatory variable) associated with Y

↪→ regression setting : we are interested in just one variable
(response variable) and we want to study how its distribution
(and in particular, its conditional tail characteristics) depends
on a set of variables (explanatory variables)
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Introduction
Statistics of extremes

The framework

Some examples :

magnitude of earthquakes given their location (Pisarenko et
Sornette, 2003)
amount of production of a firm given available inputs (e.g.,
labor, capital) (Daouia et al., 2010)
analysis of extreme rainfalls given the geographical location
(Gardes et Girard, 2010)
analysis of survival of patients with HIV given their age at
diagnosis (Ndao et al., 2014 ; Ameraoui et al., 2016)
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Introduction
Statistics of extremes

The framework

Difficulty : estimating the survival function

F̄ (y) := 1− F (y) = P(Y > y)

(or conditional survival function F̄ (y|x) = P(Y > y|X = x) when
covariates are present) beyond the maximum observed value
Y(n) := max(Y1, . . . , Yn).

One cannot merely use the edf (or any version adapted to presence
of covariates).

Why ? Consider a sample Y1, . . . , Yn of n i.i.d. r.v. and let
Y(1) ≤ . . . ≤ Y(n) be the ordered data. Let

Q(p) := inf{y : F (y) ≥ p}

be the quantile function.
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Introduction
Statistics of extremes

The framework

To estimate F (·), one can use the empirical distribution function

F̂n(y) = i

n
if y ∈ [Y(i), Y(i+1)),

where Y(i) is the i-th order sample value. Usual estimate of Q(·) is
the empirical quantile function

Q̂n(p) = inf{y : F̂n(y) ≥ p}.

Problems arise when considering high quantiles Q(1− α) with
α < 1

n . One cannot simply assume that such values of Y are
impossible.

⇒ these observations show that it is necessary to develop special
techniques to investigate extreme quantiles of a distribution
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Introduction
Statistics of extremes

Asymptotic distribution of the sample maximum

Theorem (Fisher-Tippett, 1928 ; Gnedenko, 1943)

Let (Yn) i.i.d.∼ F (·). If there exist norming sequences (an > 0), (bn)
and some non degenerate cdf Hγ (with γ a real value) such that

lim
n→∞

P
(
Y(n) − bn

an
≤ y

)
= Hγ(y),

then Hγ is of the form

Hγ(y) =
{

exp
(
−(1 + γy)−1/γ

+

)
si γ 6= 0,

exp(− exp(−y)) si γ = 0,

where y+ = max(0, y).

Hγ(·) is known as the (generalized) extreme value distribution
the parameter γ is called the extreme value index (EVI)
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Introduction
Statistics of extremes

Extreme value index

According to the sign of γ, three cases can be distinguished :

If γ > 0, F (·) is said to belong to Fréchet domain of
attraction (DA) (or to be "of Fréchet-Pareto type" or a
"heavy-tailed" distribution). Recall that Fréchet distribution
has d.f. Hγ(y) = exp(−y−1/γ), y > 0.

Roughly speaking, the survival function F̄ (y) = 1− F (y)→ 0
at a polynomial speed, that is, as y−1/γ when y →∞.

Example : Cauchy, Pareto, Student, F-distribution

If γ = 0, F (·) is said to belong to Gumbel DA as the maxima
are attracted to Gumbel d.f. H0(y) = exp(−e−y) (exponential
decrease of the tail of F̄ ) ⇒ "light-tailed" distributions

Example : normal, exponential, Gamma, lognormal
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Introduction
Statistics of extremes

Extreme value index

If γ < 0, F (·) is said to belong to Weibull DA : F̄ (y) = 0 for
y > yF (right end-point).

Example : uniform, Beta
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Introduction
Statistics of extremes

Extreme value index
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Figure 1 – Examples of distributions belonging to Weibull (γ = −1),
Gumbel (γ = 0) and Fréchet (γ = 1) domains of attraction.

↪→ the EVI is closely related to the tail behaviour of a cdf. Thus,
knowledge of γ is crucial for estimating extreme quantiles.
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Introduction
Statistics of extremes

Fréchet domain of attraction (γ > 0)
The d.f. F (·) belongs to Fréchet DA if and only if there exists a
slowly varying function `(·), that is, a function satisfying

∀t > 1, lim
y→∞

`(ty)
`(y) = 1,

such that F̄ (y) = y−1/γ`(y). Then :

∀t > 1, lim
y→∞

F̄ (ty)
F̄ (y)

= t−1/γ lim
y→∞

`(ty)
`(y) = t−1/γ ,

and F (·) is said to be a regular varying function.

Remark 1
The tail becomes heavier with increasing value of γ. In other
words, the dispersion is larger and large values become more likely.
For this reason, Fréchet-Pareto type distributions are useful for
modeling data with large outliers.
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Introduction
Conditional extreme value index

Conditional extreme value index

assume that some covariate vector X ∈ Rp (with pdf g) is
recorded at the same time as Y

a natural approach to tail analysis in the presence of covariate
information is to model the EVI as a function γY : Rp 7→ R of
the covariates :

x 7→ γY (x),
which is called conditional EVI (of Y given X = x)

References (Hill/moment estimators ; MLE under the
assumption that γY (x) = h(x;β) for some completely
specified function h and β an unknown regression parameter ;
various DA ; functional covariate) :

Gardes and Girard (2008, 2010, 2012), Daouia et al. (2011),
Stupfler (2013), Gardes and Stupfler (2014), Goegebeur et al.
(2014), Ndao et al. (2014, 2016) . . .
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Introduction
Conditional extreme value index

Conditional extreme value index

the conditional distribution F (·|x) of Y |X = x belongs to
Fréchet DA, i.e. there exists a positive function γY (·) of the
covariate x such that :

F̄ (y|x) := 1− F (y|x) = y−1/γY (x)`(y|x),

where `(·|x) is a slowly varying function :

∀t > 1, lim
y→∞

`(ty|x)
`(y|x) = 1.

estimation of γY (x) : let (Yi, Xi), i = 1, . . . , n be independent
copies of the pair (Y,X)

Goegebeur et al. (2014) propose a kernel version of Hill
estimator of γY (x), adapted from Hill estimator (1975) of the
EVI in the univariate case.
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Introduction
Conditional extreme value index

Hill estimator of the EVI

Recall that for a heavy-tailed distribution :

F̄ (ty)
F̄ (t)

−→ y−1/γ as t→∞ for any y > 1,

which can be interpreted as

P(Y/t > y|Y > t) ≈ y−1/γ for t large, y > 1.

Hence, it appears natural to associate a Pareto distribution (with
survival function y−1/γ) to the distribution of the relative excess
E := Y/t over a high threshold t conditionally on Y > t.
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Introduction
Conditional extreme value index

Hill estimator of the EVI
Assume that we observe n i.i.d. Y1, . . . , Yn and let Ei := Yi/t be
the i-th exceedance in the original sample, where i = 1, . . . , Nt.

The log-likelihood of γ based on excesses E1, . . . , ENt is

`(γ;E1, . . . , ENt) = −Nt ln γ −
(

1 + 1
γ

) Nt∑
i=1

lnEi.

Solving the likelihood equation

0 = ∂`(γ;E1, . . . , ENt)
∂γ

= −Nt

γ
+ 1
γ2

Nt∑
i=1

lnEi

yields Hill estimator of the EVI :

γ̂Ht = 1
Nt

Nt∑
i=1

lnEi =
∑n
i=1(lnYi − ln t)1{Yi>t}∑n

i=1 1{Yi>t}
.
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Introduction
Conditional extreme value index

A Hill-type estimator of the conditional EVI
Goegebeur et al. (2014) propose :

γ̂Htn(x) =
∑n
i=1Kh(x−Xi)(lnYi − ln tn)1{Yi>tn}∑n

i=1Kh(x−Xi)1{Yi>tn}

where
h := hn and tn are non-random sequences such that h→ 0
and tn →∞ as n→∞,
Kh(x) := h−pK(x/h) and K is a density on Rp.

Theorem (Goegebeur et al., 2014)
Under regularity conditions, γ̂Htn(x) is a consistant estimator of
γY (x) and

√
nhpF̄ (tn|x)(γ̂Htn(x)− γY (x)) is asymptotically

normal.

↪→ no estimator of extreme quantiles is provided
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Estimation of the conditional extreme value index with censoring

The problem

We observe n independent triplets :

Dn := (Xi, δi, Zi), i = 1, . . . , n

where
Zi = min(Yi, Ci) and Ci is a censoring r.v.,
δi = 1{Yi≤Ci},
Xi is a covariate with density g on Rp.

Objective : estimate γY (·) and q(α, ·) from the sample Dn.
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Estimation of the conditional extreme value index with censoring

The problem

We assume that
the conditional distribution function G(·|x) of C given x
belongs to Fréchet DA, with conditional EVI γC(x)
Y and C are independent given x

=⇒ the conditional distribution function H(·|x) of Z given X = x
belongs to Fréchet DA and has conditional EVI

γZ(x) = γY (x)γC(x)
γY (x) + γC(x) = γY (x)px 6= γY (x), where

px = γC(x)
γY (x) + γC(x) = lim

z→∞
H̄1(z|x)
H̄(z|x)

= lim
z→∞

P(Z > z, δ = 1|X = x)
P(Z > z|X = x)
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Estimation of the conditional extreme value index with censoring

In the literature. . .

Without covariates, Einmahl et al. (2008) propose to estimate
γY := γY (·) by γ̂Z,k

p̂k
, where

p̂k = 1
k

k∑
j=1

δ(n−j+1)

and δ(1), . . . , δ(n) are the δi corresponding to Z(1), . . . , Z(n).

References : Gomes and Oliveira (2003), Einmahl et al. (2008),
Brahimi et al. (2013), Worms and Worms (2014). . .

↪→ idea is to correct for censoring by using an appropriate weight :
"inverse-probability-of-censoring" method (same idea used in
missing data problem)
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Estimation of the conditional extreme value index with censoring

Estimating γY (x)

recall that

px = lim
z→∞

H̄1(z|x)
H̄(z|x)

= lim
z→∞

P(Z > z, δ = 1|X = x)
P(Z > z|X = x)

we estimate respectively H̄1(z|x) and H̄(z|x) by
n∑
i=1

Kh(x−Xi)1{Zi>z,δi=1}

n∑
i=1

Kh(x−Xi)
and

n∑
i=1

Kh(x−Xi)1{Zi>z}

n∑
i=1

Kh(x−Xi)

then we construct

p̂tn(x) =
n∑
i=1

Bi(x)1{Zi>tn,δi=1}

/ n∑
i=1

Bi(x)1{Zi>tn}

where Bi(x) = Kh (x−Xi)
/∑n

j=1Kh (x−Xj)
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Estimation of the conditional extreme value index with censoring

Estimating γY (x)

Finally, we estimate γY (x) by :

γ̂
(c,H)
tn (x) =

γ̂Htn(x)
p̂tn(x)
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Estimation of the conditional extreme value index with censoring

Regularity hypothesis

if (x1, x2) ∈ Rp × Rp, we denote by d(x1, x2) the distance
between x1 and x2

Lipschitz conditions : there exist positive constants cγ , cg, c`
and y0 such that ∣∣∣ 1

γ(x1) −
1

γ(x2)

∣∣∣ ≤ cγd(x1, x2)

|g(x1)− g(x2)| ≤ cgd(x1, x2)

sup
y≥y0

∣∣∣∣ ln `(y|x1)
ln y − ln `(y|x2)

ln y

∣∣∣∣ ≤ c`d(x1, x2)
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Estimation of the conditional extreme value index with censoring

Asymptotics

Proposition (PN, AD & JFD, 2016)
Let (tn) be a positive sequence such that as n→∞ : tn →∞,
nhpH̄(tn|x)→∞ and nhp+2H̄(tn|x)(log tn)2 → 0. Let x be such
that g(x) > 0. Then, as n→∞,

√
nhpH̄(tn|x)(p̂tn(x)− px) D−→ N

(
0, px(1− px)‖K‖22

g(x)

)
,

with ‖K‖22 =
∫
K2(u)du.
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Estimation of the conditional extreme value index with censoring

Asymptotics

Theorem (PN, AD & JFD, 2016)
Let (tn) be a positive sequence such that as n→∞ : tn →∞,
nhpH̄(tn|x)→∞ and nhp+2H̄(tn|x)(log tn)2 → 0. Let x be such
that g(x) > 0. Then, as n→∞,

√
nhpH̄(tn|x)

(
γ̂

(c,H)
tn (x)− γY (x)

) D−→ N
(

0, γ
3
Y (x)
γZ(x)

‖K‖22
g(x)

)
.

Remark 2 (Asymptotic variance (a.v.))
additional term ‖K‖22/g(x), compared to the censored case
without covariate (Beirlant et al., 2007)
in the absence of censoring, our a.v. reduces to the a.v. in
Goegebeur et al. (2014)
consistant estimator of the a.v. ⇒ IC for γY (x)
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Estimation of the conditional extreme value index with censoring

Outline of the proof

We decompose√
nhpH̄(tn|x)

(
γ̂

(c,H)
tn (x)− γY (x)

)
= 1

px

√
nhpH̄(tn|x)

(
γ̂Htn(x)− γ(x)

)
−γY (x)

px

√
nhpH̄(tn|x) (p̂tn(x)− px)

+oP(1).

We prove asymptotic normality of Xn(x) :=

√
nhp

g(x)2H̄(tn|x)


1
n

∑n
i=1Kh(x−Xi)1{Zi>tn} − H̄(tn|x)g(x)

1
n

∑n
i=1Kh(x−Xi)1{Zi>tn,δi=1} − H̄1(tn|x)g(x)

1
n

∑n
i=1Kh(x−Xi) log

(
Zi
tn

)
1{Zi>tn} −

∫∞
tn

H̄(z|x)g(x)
z dz

 ,

and then apply the delta-method. To prove asymptotic normality
of Xn(x) : Cramér-Wold and CLT for triangular arrays.
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Estimation of conditional extreme quantiles with censoring

Non-censored case (fixed α ∈ (0, 1))

suppose we want to estimate the conditional quantile q(α, x)
defined by

P(Y > q(α, x)|X = x) = α

kernel estimator of the conditional survival function :

˜̄Fn(y|x) =
n∑
i=1

Kh(x−Xi)1{Yi>y}
/ n∑

i=1
Kh(x−Xi)

we consider its generalized inverse :

q̂n(α, x) = ˜̄F←n (α|x) = inf{y, ˜̄Fn(y|x) ≤ α}.

References : Stone (1977), Stute (1986), Samanta (1989),
Berlinet et al. (2001)
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Estimation of conditional extreme quantiles with censoring

Non-censored case (αn → 0 as n→∞)

conditional extreme quantile : we want to estimate q(αn, x)
such that

P(Y > q(αn, x)|X = x) = αn

with αn → 0 as n→∞
generalized inverse of ˜̄Fn :

q̂n(αn, x) = ˜̄F←n (αn|x) = inf{y, ˜̄Fn(y|x) ≤ αn}
√
nhpαn

(
q̂n(αn,x)
q(αn,x) − 1

)
is asymptotically zero-mean normal,

under some conditions which entail :

αn > logp(n)/n

⇒ restriction on the order of the estimable extreme quantiles
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Estimation of conditional extreme quantiles with censoring

Non-censored case : Weissman estimator

kernel Weissman estimator : an adaptation of Weissman
estimator (1978)of extreme quantiles to the conditional case

q̂Wn (αn, x) = q̂n(βn, x)
(
βn
αn

)γ̂n(x)

where q̂n(βn, x) is the kernel estimator of q(βn, x)

Remark 3
The term (βn/αn)γ̂n(x) is an extrapolating term which allows to
estimate conditional extreme quantiles of arbitrarily small order αn.
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Estimation of conditional extreme quantiles with censoring

Censored case

kernel Kaplan-Meier estimator (Beran, 1981)

̂̄Fn(t|x) =


∏n
i=1

[
1− Bi(x)∑n

j=1
1{Zj≥Zi}Bj(x)

]1{Zi≤t,δi=1}

if t ≤ Z(n)

0 if t > Z(n)

(which reduces to ˜̄Fn(t|x) in the absence of censoring). Its
generalized inverse :

q̂cn(α, x) = ̂̄F←n (α|x) = inf{t, ̂̄Fn(t|x) ≤ α}.

kernel Weissman estimator : conditional case with censoring

q̂(c,W )
n (α, x) = q̂cn

( ̂̄Fn(Z(n−k)|x), x
) ̂̄Fn(Z(n−k)|x)

α

γ̂
(c,H)
Z(n−k)

(x)
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Simulations

Simulation design

500 samples {(Xi, δi, Zi), i = 1, . . . , n} of size n = 200, 400,
600, 800 with Y |X = x distributed as Pareto with

P(Y > y|X = x) = y−1/γY (x)

and

γY (x) = 0.5
(
0.1 + sin(πx)×

(
1.1− 0.5 exp

(
−64 (x− 0.5)2

)))
proportion of censored data : 10%, 25%, 40%
Objective : estimate γY (·) and q(1/1000, ·) on [0, 1]
kernel : K(x) = 15

16(1− x2)21{−1≤x≤1}

comparison with so-called "complete-case" method
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Simulations

Choosing the bandwidth h and threshold tn

we select the bandwidth h using the a cross-validation
criterion (Daouia et al., 2011 ; Gardes et Girard, 2012. . . ) :

h∗ := arg min
h

n∑
i=1

n∑
j=1

(
1{Zi>Zj} −

̂̄Fn,−i(Zj |Xi)
)2
,

where ̂̄Fn,−i is the kernel conditional Kaplan-Meier estimator

̂̄Fn(t|x) =


∏n
i=1

[
1− Bi(x)∑n

j=1 1{Zj≥Zi}Bj(x)

]1{Zi≤t,δi=1}
si t ≤ Z(n)

0 si t > Z(n)

(depending on h) calculated on the subsample of observations
{(Xj , δj , Zj), 1 ≤ j ≤ n, j 6= i},

threshold tn selection : we consider tn = Z(n−k) and we select
k as follows :
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Simulations

Choosing the bandwidth h and threshold tn
1 we calculate γ̂(c,H)

Z(n−k)
(x) for k = 1, . . . , n− 1,

2 we form successive "blocks" of estimates γ̂(c,H)
Z(n−k)

(x) (one
block for k ∈ {1, . . . , 15}, a second block for k ∈ {16, . . . , 30}
and so on),

3 we calculate the standard deviation of the γ̂(c,H)
Z(n−k)

(x) within
each block,

4 we consider the block with minimal standard deviation and
take the median value k∗ of the k in the block.

Finally, we estimate γY (x) by calculating

γ̂
(c,H)
tn (x) =

γ̂Htn(x)
p̂tn(x)

with (h, k) = (h∗, k∗).
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Simulations

Simulation results for conditional EVI (n = 200, 400)
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Figure 2 – Left : 10% censoring, middle : 25%, right : 40%.
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Simulations

Simulation results for conditional EVI (n = 600, 800)
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Figure 3 – Left : 10% censoring, middle : 25%, right : 40%.
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Simulations

Simulation results for conditional extreme quantiles
(n = 200, 400)
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Figure 4 – Left : 10% censoring, middle : 25%, right : 40%. 41 / 46



Simulations

Simulation results for conditional extreme quantiles
(n = 200, 400)

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

q(
1

10
00

, x
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

q(
1

10
00

, x
)

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

q(
1

10
00

, x
)

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

q(
1

10
00

, x
)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

q(
1

10
00

, x
)

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

x

q(
1

10
00

, x
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
10

20
30

40
50

60

Figure 5 – Left : 10% censoring, middle : 25%, right : 40%. 42 / 46
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Discussion

Discussion

asymptotics for kernel Weissman estimator in presence of
censoring q̂(c,W )

n (α, x)
uniform results w.r.t. x
weakening of the assumption of independent censoring
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Annexe

Grandes lignes de la démonstration

soit ` = (`1, `2, `3)> ∈ R3, ` 6= 0. On a :

`>Xn(x) :=
n∑
i=1

Ti,n

où pour chaque n, les T1,n, . . . , Tn,n sont indépendants
centrés. Notons s2

n,x = var(`>Xn(x)).
condition de Lyapounov : il existe δ > 0 tel que

1
s2+δ
n,x

n∑
i=1

E(|Ti,n|2+δ) −→ 0 quand n→∞.

Alors
`>Xn(x)
sn,x

d−→ N (0, 1).
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