Estimation of conditional extreme quantiles with random censoring

Jean-François DUPUY

joint work with Pathé NDAO and Aliou DIOP (Saint Louis University, Senegal)

SCHOOL "MATHEMATICAL METHODS OF STATISTICS" Angers, 20 June 2016

Outline

- Introduction
- Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Perspectives

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

The framework

 \blacksquare statistics of extremes : estimate extreme quantiles of a random variable (r.v.) Y, which are defined as

$$\mathbb{P}(Y > q(\alpha)) = \alpha$$

with $\alpha \to 0$

"conditional" extreme value statistics : we consider estimation of conditional extreme quantiles, defined as

$$\mathbb{P}(Y > q(\alpha, x)|X = x) = \alpha$$

with $\alpha \to 0$, where $X \in \mathbb{R}^p$ is a covariate vector (or explanatory variable) associated with Y

The framework

Some examples:

- magnitude of earthquakes given their location (Pisarenko et Sornette, 2003)
- amount of production of a firm given available inputs (e.g., labor, capital) (Daouia et al., 2010)
- analysis of extreme rainfalls given the geographical location (Gardes et Girard, 2010)
- analysis of survival of patients with HIV given their age at diagnosis (Ndao *et al.*, 2014; Ameraoui *et al.*, 2016)

Difficulty: estimating the survival function

$$\bar{F}(y) := 1 - F(y) = \mathbb{P}(Y > y)$$

(or conditional survival function $\bar{F}(y|x)=\mathbb{P}(Y>y|X=x)$ when covariates are present) beyond the maximum observed value $Y_{(n)}:=\max(Y_1,\ldots,Y_n).$

One cannot merely use the edf (or any version adapted to presence of covariates).

Why? Consider a sample Y_1,\ldots,Y_n of n i.i.d. r.v. and let $Y_{(1)}\leq\ldots\leq Y_{(n)}$ be the ordered data. Let

$$Q(p) := \inf\{y : F(y) \ge p\}$$

be the quantile function.

The framework

To estimate $F(\cdot)$, one can use the empirical distribution function

$$\hat{F}_n(y) = \frac{i}{n} \text{ if } y \in [Y_{(i)}, Y_{(i+1)}),$$

where $Y_{(i)}$ is the i-th order sample value. Usual estimate of $Q(\cdot)$ is the empirical quantile function

$$\hat{Q}_n(p) = \inf\{y : \hat{F}_n(y) \ge p\}.$$

Problems arise when considering high quantiles $Q(1-\alpha)$ with $\alpha<\frac{1}{n}.$ One cannot simply assume that such values of Y are impossible.

 \Rightarrow these observations show that it is necessary to develop special techniques to investigate extreme quantiles of a distribution

Asymptotic distribution of the sample maximum

Theorem (Fisher-Tippett, 1928; Gnedenko, 1943)

Let $(Y_n) \overset{i.i.d.}{\sim} F(\cdot)$. If there exist norming sequences $(a_n > 0), (b_n)$ and some non degenerate cdf H_{γ} (with γ a real value) such that

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{Y_{(n)} - b_n}{a_n} \le y\right) = H_{\gamma}(y),$$

then H_{γ} is of the form

$$H_{\gamma}(y) = \begin{cases} \exp\left(-(1+\gamma y)_{+}^{-1/\gamma}\right) & \text{si } \gamma \neq 0, \\ \exp(-\exp(-y)) & \text{si } \gamma = 0, \end{cases}$$

where $y_+ = \max(0, y)$.

- \blacksquare $H_{\gamma}(\cdot)$ is known as the (generalized) extreme value distribution
- \blacksquare the parameter γ is called the extreme value index (EVI)

Extreme value index

According to the sign of γ , three cases can be distinguished :

If $\gamma>0$, $F(\cdot)$ is said to belong to Fréchet domain of attraction (DA) (or to be "of Fréchet-Pareto type" or a "heavy-tailed" distribution). Recall that Fréchet distribution has d.f. $H_{\gamma}(y)=\exp(-y^{-1/\gamma}),\ y>0$.

Roughly speaking, the survival function $\bar{F}(y)=1-F(y)\to 0$ at a polynomial speed, that is, as $y^{-1/\gamma}$ when $y\to\infty$.

Example: Cauchy, Pareto, Student, F-distribution

■ If $\gamma=0$, $F(\cdot)$ is said to belong to Gumbel DA as the maxima are attracted to Gumbel d.f. $H_0(y)=\exp(-e^{-y})$ (exponential decrease of the tail of \bar{F}) \Rightarrow "light-tailed" distributions

Example: normal, exponential, Gamma, lognormal

Extreme value index

■ If $\gamma < 0$, $F(\cdot)$ is said to belong to Weibull DA : $\bar{F}(y) = 0$ for $y > y_F$ (right end-point).

Example: uniform, Beta

Extreme value index

FIGURE 1 – Examples of distributions belonging to Weibull ($\gamma = -1$), Gumbel ($\gamma = 0$) and Fréchet ($\gamma = 1$) domains of attraction.

 \hookrightarrow the EVI is closely related to the tail behaviour of a cdf. Thus, knowledge of γ is crucial for estimating extreme quantiles.

Fréchet domain of attraction ($\gamma > 0$)

The d.f. $F(\cdot)$ belongs to Fréchet DA if and only if there exists a slowly varying function $\ell(\cdot)$, that is, a function satisfying

$$\forall t > 1, \quad \lim_{y \to \infty} \frac{\ell(ty)}{\ell(y)} = 1,$$

such that $\bar{F}(y) = y^{-1/\gamma}\ell(y)$. Then :

$$\forall t > 1, \quad \lim_{y \to \infty} \frac{\bar{F}(ty)}{\bar{F}(y)} = t^{-1/\gamma} \lim_{y \to \infty} \frac{\ell(ty)}{\ell(y)} = t^{-1/\gamma},$$

and $F(\cdot)$ is said to be a regular varying function.

Remark 1

The tail becomes heavier with increasing value of γ . In other words, the dispersion is larger and large values become more likely. For this reason, Fréchet-Pareto type distributions are useful for modeling data with large outliers.

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

Conditional extreme value index

- **a** assume that some covariate vector $X \in \mathbb{R}^p$ (with pdf g) is recorded at the same time as Y
- **a** natural approach to tail analysis in the presence of covariate information is to model the EVI as a function $\gamma_Y: \mathbb{R}^p \mapsto \mathbb{R}$ of the covariates :

$$x \mapsto \gamma_Y(x),$$

which is called conditional EVI (of Y given X = x)

■ References (Hill/moment estimators; MLE under the assumption that $\gamma_Y(x) = h(x; \beta)$ for some completely specified function h and β an unknown regression parameter; various DA; functional covariate):

Gardes and Girard (2008, 2010, 2012), Daouia *et al.* (2011), Stupfler (2013), Gardes and Stupfler (2014), Goegebeur *et al.* (2014), Ndao *et al.* (2014, 2016) . . .

Conditional extreme value index

• the conditional distribution $F(\cdot|x)$ of Y|X=x belongs to Fréchet DA, *i.e.* there exists a positive function $\gamma_Y(\cdot)$ of the covariate x such that :

$$\bar{F}(y|x) := 1 - F(y|x) = y^{-1/\gamma_Y(x)} \ell(y|x),$$

where $\ell(\cdot|x)$ is a slowly varying function :

$$\forall t > 1, \quad \lim_{y \to \infty} \frac{\ell(ty|x)}{\ell(y|x)} = 1.$$

estimation of $\gamma_Y(x)$: let $(Y_i, X_i), i = 1, ..., n$ be independent copies of the pair (Y, X)

Goegebeur *et al.* (2014) propose a kernel version of Hill estimator of $\gamma_Y(x)$, adapted from Hill estimator (1975) of the EVI in the univariate case.

Hill estimator of the EVI

Recall that for a heavy-tailed distribution :

$$\frac{\bar{F}(ty)}{\bar{F}(t)} \longrightarrow y^{-1/\gamma} \text{ as } t \to \infty \text{ for any } y > 1,$$

which can be interpreted as

$$\mathbb{P}(Y/t > y|Y > t) \approx y^{-1/\gamma}$$
 for t large, $y > 1$.

Hence, it appears natural to associate a Pareto distribution (with survival function $y^{-1/\gamma}$) to the distribution of the relative excess E:=Y/t over a high threshold t conditionally on Y>t.

Hill estimator of the EVI

Assume that we observe n i.i.d. Y_1, \ldots, Y_n and let $E_i := Y_i/t$ be the i-th exceedance in the original sample, where $i = 1, \ldots, N_t$.

The log-likelihood of γ based on excesses E_1, \ldots, E_{N_t} is

$$\ell(\gamma; E_1, \dots, E_{N_t}) = -N_t \ln \gamma - \left(1 + \frac{1}{\gamma}\right) \sum_{i=1}^{N_t} \ln E_i.$$

Solving the likelihood equation

$$0 = \frac{\partial \ell(\gamma; E_1, \dots, E_{N_t})}{\partial \gamma} = -\frac{N_t}{\gamma} + \frac{1}{\gamma^2} \sum_{i=1}^{N_t} \ln E_i$$

yields Hill estimator of the EVI:

$$\hat{\gamma}_t^H = \frac{1}{N_t} \sum_{i=1}^{N_t} \ln E_i = \frac{\sum_{i=1}^n (\ln Y_i - \ln t) \mathbb{1}_{\{Y_i > t\}}}{\sum_{i=1}^n \mathbb{1}_{\{Y_i > t\}}}.$$

A Hill-type estimator of the conditional EVI

Goegebeur et al. (2014) propose:

$$\widehat{\gamma}_{t_n}^H(x) = \frac{\sum_{i=1}^n K_h(x - X_i)(\ln Y_i - \ln t_n) 1_{\{Y_i > t_n\}}}{\sum_{i=1}^n K_h(x - X_i) 1_{\{Y_i > t_n\}}}$$

where

- $h := h_n$ and t_n are non-random sequences such that $h \to 0$ and $t_n \to \infty$ as $n \to \infty$,
- $K_h(x) := h^{-p}K(x/h)$ and K is a density on \mathbb{R}^p .

Theorem (Goegebeur et al., 2014)

Under regularity conditions, $\widehat{\gamma}_{t_n}^H(x)$ is a consistant estimator of $\gamma_Y(x)$ and $\sqrt{nh^p\bar{F}(t_n|x)}(\widehat{\gamma}_{t_n}^H(x)-\gamma_Y(x))$ is asymptotically normal.

 \hookrightarrow no estimator of extreme quantiles is provided

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

The problem

We observe n independent triplets :

$$\mathcal{D}_n := (X_i, \delta_i, Z_i), i = 1, \dots, n$$

where

- $Z_i = \min(Y_i, C_i)$ and C_i is a censoring r.v.,
- $\delta_i = 1_{\{Y_i < C_i\}},$
- X_i is a covariate with density q on \mathbb{R}^p .

Objective : estimate $\gamma_Y(\cdot)$ and $q(\alpha, \cdot)$ from the sample \mathcal{D}_n .

The problem

We assume that

- the conditional distribution function $G(\cdot|x)$ of C given x belongs to Fréchet DA, with conditional EVI $\gamma_C(x)$
- lacksquare Y and C are independent given x

 \Longrightarrow the conditional distribution function $H(\cdot|x)$ of Z given X=x belongs to Fréchet DA and has conditional EVI

$$\gamma_Z(x) = rac{\gamma_Y(x)\gamma_C(x)}{\gamma_Y(x) + \gamma_C(x)} = \gamma_Y(x)p_x
eq \gamma_Y(x), \quad ext{where}$$

$$p_x = \frac{\gamma_C(x)}{\gamma_Y(x) + \gamma_C(x)} = \lim_{z \to \infty} \frac{\bar{H}^1(z|x)}{\bar{H}(z|x)} = \lim_{z \to \infty} \frac{\mathbb{P}(Z > z, \delta = 1|X = x)}{\mathbb{P}(Z > z|X = x)}$$

In the literature...

Without covariates, Einmahl *et al.* (2008) propose to estimate $\gamma_Y := \gamma_Y(\cdot)$ by $\frac{\hat{\gamma}_{Z,k}}{\hat{p}_k}$, where

$$\hat{p}_k = \frac{1}{k} \sum_{j=1}^k \delta_{(n-j+1)}$$

and $\delta_{(1)},\ldots,\delta_{(n)}$ are the δ_i corresponding to $Z_{(1)},\ldots,Z_{(n)}$.

References: Gomes and Oliveira (2003), Einmahl *et al.* (2008), Brahimi *et al.* (2013), Worms and Worms (2014)...

 \hookrightarrow idea is to correct for censoring by using an appropriate weight : "inverse-probability-of-censoring" method (same idea used in missing data problem)

Estimating $\gamma_Y(x)$

recall that

$$p_x = \lim_{z \to \infty} \frac{\bar{H}^1(z|x)}{\bar{H}(z|x)} = \lim_{z \to \infty} \frac{\mathbb{P}(Z > z, \delta = 1|X = x)}{\mathbb{P}(Z > z|X = x)}$$

lacksquare we estimate respectively $ar{H}^1(z|x)$ and $ar{H}(z|x)$ by

$$\frac{\sum_{i=1}^{n} K_h(x - X_i) 1_{\{Z_i > z, \delta_i = 1\}}}{\sum_{i=1}^{n} K_h(x - X_i)} \quad \text{and} \quad \frac{\sum_{i=1}^{n} K_h(x - X_i) 1_{\{Z_i > z\}}}{\sum_{i=1}^{n} K_h(x - X_i)}$$

then we construct

$$\begin{split} \widehat{p}_{t_n}(x) &= \sum_{i=1}^n B_i(x) \mathbf{1}_{\{Z_i > t_n, \delta_i = 1\}} \bigg/ \sum_{i=1}^n B_i(x) \mathbf{1}_{\{Z_i > t_n\}} \end{split}$$
 where $B_i(x) = K_h\left(x - X_i\right) \bigg/ \sum_{j=1}^n K_h\left(x - X_j\right)$

Estimating $\gamma_Y(x)$

Finally, we estimate $\gamma_Y(x)$ by :

$$\widehat{\gamma}_{t_n}^{(c,H)}(x) = \frac{\widehat{\gamma}_{t_n}^H(x)}{\widehat{p}_{t_n}(x)}$$

Regularity hypothesis

- if $(x_1, x_2) \in \mathbb{R}^p \times \mathbb{R}^p$, we denote by $d(x_1, x_2)$ the distance between x_1 and x_2
- Lipschitz conditions : there exist positive constants c_{γ} , c_{g} , c_{ℓ} and y_{0} such that

$$\left| \frac{1}{\gamma(x_1)} - \frac{1}{\gamma(x_2)} \right| \le c_{\gamma} d(x_1, x_2)$$

$$|g(x_1) - g(x_2)| \le c_g d(x_1, x_2)$$

$$\sup_{y \ge y_0} \left| \frac{\ln \ell(y|x_1)}{\ln y} - \frac{\ln \ell(y|x_2)}{\ln y} \right| \le c_{\ell} d(x_1, x_2)$$

Asymptotics

Proposition (PN, AD & JFD, 2016)

Let (t_n) be a positive sequence such that as $n\to\infty$: $t_n\to\infty$, $nh^p\bar{H}(t_n|x)\to\infty$ and $nh^{p+2}\bar{H}(t_n|x)(\log t_n)^2\to0$. Let x be such that g(x)>0. Then, as $n\to\infty$,

$$\sqrt{nh^p \bar{H}(t_n|x)} (\widehat{p}_{t_n}(x) - p_x) \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, \frac{p_x(1 - p_x) ||K||_2^2}{g(x)} \right),$$

with $||K||_2^2 = \int K^2(u) du$.

Asymptotics

Theorem (PN, AD & JFD, 2016)

Let (t_n) be a positive sequence such that as $n\to\infty$: $t_n\to\infty$, $nh^p\bar{H}(t_n|x)\to\infty$ and $nh^{p+2}\bar{H}(t_n|x)(\log t_n)^2\to0$. Let x be such that g(x)>0. Then, as $n\to\infty$,

$$\sqrt{nh^p \bar{H}(t_n|x)} \left(\widehat{\gamma}_{t_n}^{(c,H)}(x) - \gamma_Y(x) \right) \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, \frac{\gamma_Y^3(x)}{\gamma_Z(x)} \frac{\|K\|_2^2}{g(x)} \right).$$

Remark 2 (Asymptotic variance (a.v.))

- additional term $||K||_2^2/g(x)$, compared to the censored case without covariate (Beirlant *et al.*, 2007)
- in the absence of censoring, our a.v. reduces to the a.v. in Goegebeur *et al.* (2014)
- consistant estimator of the a.v. \Rightarrow IC for $\gamma_Y(x)$

Outline of the proof

We decompose

$$\sqrt{nh^p \bar{H}(t_n|x)} \left(\widehat{\gamma}_{t_n}^{(c,H)}(x) - \gamma_Y(x) \right) = \frac{1}{p_x} \sqrt{nh^p \bar{H}(t_n|x)} \left(\widehat{\gamma}_{t_n}^H(x) - \gamma(x) \right)
- \frac{\gamma_Y(x)}{p_x} \sqrt{nh^p \bar{H}(t_n|x)} \left(\widehat{p}_{t_n}(x) - p_x \right)
+ o_{\mathbb{P}}(1).$$

We prove asymptotic normality of $X_n(x) :=$

$$\sqrt{\frac{nh^p}{g(x)^2\bar{H}(t_n|x)}} \begin{pmatrix} \frac{\frac{1}{n}\sum_{i=1}^n K_h(x-X_i)1_{\{Z_i>t_n\}} - \bar{H}(t_n|x)g(x) \\ \frac{1}{n}\sum_{i=1}^n K_h(x-X_i)1_{\{Z_i>t_n,\delta_i=1\}} - \bar{H}^1(t_n|x)g(x) \\ \frac{1}{n}\sum_{i=1}^n K_h(x-X_i)\log\left(\frac{Z_i}{t_n}\right)1_{\{Z_i>t_n\}} - \int_{t_n}^{\infty} \frac{\bar{H}(z|x)g(x)}{z} dz \end{pmatrix}$$

and then apply the delta-method. To prove asymptotic normality of $\mathbb{X}_n(x)$: Cramér-Wold and CLT for triangular arrays.

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

Non-censored case (fixed $\alpha \in (0,1)$)

 \blacksquare suppose we want to estimate the conditional quantile $q(\alpha,x)$ defined by

$$\mathbb{P}(Y > q(\alpha, x)|X = x) = \alpha$$

kernel estimator of the conditional survival function :

$$\widetilde{\tilde{F}}_n(y|x) = \sum_{i=1}^n K_h(x - X_i) 1_{\{Y_i > y\}} / \sum_{i=1}^n K_h(x - X_i)$$

we consider its generalized inverse:

$$\widehat{q}_n(\alpha, x) = \widetilde{\overline{F}}_n^{\leftarrow}(\alpha|x) = \inf\{y, \widetilde{\overline{F}}_n(y|x) \le \alpha\}.$$

References: Stone (1977), Stute (1986), Samanta (1989), Berlinet *et al.* (2001)

Non-censored case $(\alpha_n \to 0 \text{ as } n \to \infty)$

 \blacksquare conditional extreme quantile : we want to estimate $q(\alpha_n,x)$ such that

$$\mathbb{P}(Y > q(\alpha_n, x) | X = x) = \alpha_n$$

with $\alpha_n \to 0$ as $n \to \infty$

lacksquare generalized inverse of $ar{F}_n$:

$$\widehat{q}_n(\alpha_n, x) = \widetilde{\widetilde{F}}_n^{\leftarrow}(\alpha_n | x) = \inf\{y, \widetilde{\widetilde{F}}_n(y | x) \le \alpha_n\}$$

• $\sqrt{nh^p\alpha_n}\left(\frac{\widehat{q}_n(\alpha_n,x)}{q(\alpha_n,x)}-1\right)$ is asymptotically zero-mean normal, under some conditions which entail :

$$\alpha_n > \log^p(n)/n$$

⇒ restriction on the order of the estimable extreme quantiles

Non-censored case: Weissman estimator

■ kernel Weissman estimator : an adaptation of Weissman estimator (1978) of extreme quantiles to the conditional case

$$\hat{q}_n^W(\alpha_n, x) = \hat{q}_n(\beta_n, x) \left(\frac{\beta_n}{\alpha_n}\right)^{\hat{\gamma}_n(x)}$$

where $\widehat{q}_n(\beta_n,x)$ is the kernel estimator of $q(\beta_n,x)$

Remark 3

The term $(\beta_n/\alpha_n)^{\hat{\gamma}_n(x)}$ is an extrapolating term which allows to estimate conditional extreme quantiles of arbitrarily small order α_n .

Censored case

■ kernel Kaplan-Meier estimator (Beran, 1981)

$$\widehat{\bar{F}}_n(t|x) = \begin{cases} \prod_{i=1}^n \left[1 - \frac{B_i(x)}{\sum_{j=1}^n \mathbbm{1}_{\{Z_j \geq Z_i\}} B_j(x)} \right]^{\mathbbm{1}_{\{Z_i \leq t, \delta_i = 1\}}} & \text{if } t \leq Z_{(n)} \\ 0 & \text{if } t > Z_{(n)} \end{cases}$$

(which reduces to $\tilde{\bar{F}}_n(t|x)$ in the absence of censoring). Its generalized inverse :

$$\widehat{q}_n^c(\alpha, x) = \widehat{\bar{F}}_n^{\leftarrow}(\alpha | x) = \inf\{t, \widehat{\bar{F}}_n(t | x) \le \alpha\}.$$

■ kernel Weissman estimator : conditional case with censoring

$$\widehat{q}_n^{(c,W)}(\alpha,x) = \widehat{q}_n^c \left(\widehat{\bar{F}}_n(Z_{(n-k)}|x), x\right) \left(\frac{\widehat{\bar{F}}_n(Z_{(n-k)}|x)}{\alpha}\right)^{\widehat{\gamma}_{Z_{(n-k)}}^{(c,H)}(x)}$$

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

Simulation design

■ 500 samples $\{(X_i, \delta_i, Z_i), i = 1, \dots, n\}$ of size n = 200, 400, 600, 800 with Y|X = x distributed as Pareto with

$$\mathbb{P}(Y > y | X = x) = y^{-1/\gamma_Y(x)}$$

and

$$\gamma_Y(x) = 0.5 \left(0.1 + \sin(\pi x) \times \left(1.1 - 0.5 \exp\left(-64 (x - 0.5)^2 \right) \right) \right)$$

- lacktriangle proportion of censored data : 10%, 25%, 40%
- **Objective** : estimate $\gamma_Y(\cdot)$ and $q(1/1000, \cdot)$ on [0, 1]
- kernel : $K(x) = \frac{15}{16}(1 x^2)^2 1_{\{-1 \le x \le 1\}}$
- comparison with so-called "complete-case" method

Choosing the bandwidth h and threshold t_n

• we select the bandwidth h using the a cross-validation criterion (Daouia *et al.*, 2011; Gardes et Girard, 2012...):

$$h^* := \arg\min_{h} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\mathbb{1}_{\{Z_i > Z_j\}} - \widehat{\bar{F}}_{n,-i}(Z_j | X_i) \right)^2,$$

where $\hat{\bar{F}}_{n,-i}$ is the kernel conditional Kaplan-Meier estimator

$$\hat{\bar{F}}_n(t|x) = \left\{ \begin{array}{ll} \prod_{i=1}^n \left[1 - \frac{B_i(x)}{\sum_{j=1}^n 1_{\{Z_j \geq Z_i\}} B_j(x)} \right]^{1_{\{Z_i \leq t, \delta_i = 1\}}} & \text{si } t \leq Z_{(n)} \\ 0 & \text{si } t > Z_{(n)} \end{array} \right.$$

(depending on h) calculated on the subsample of observations $\{(X_i, \delta_i, Z_i), 1 \leq j \leq n, j \neq i\}$,

■ threshold t_n selection : we consider $t_n = Z_{(n-k)}$ and we select k as follows :

Choosing the bandwidth h and threshold t_n

- I we calculate $\widehat{\gamma}_{Z_{(n-k)}}^{(c,H)}(x)$ for $k=1,\ldots,n-1$,
- 2 we form successive "blocks" of estimates $\widehat{\gamma}_{Z_{(n-k)}}^{(c,H)}(x)$ (one block for $k\in\{1,\dots,15\}$, a second block for $k\in\{16,\dots,30\}$ and so on),
- 3 we calculate the standard deviation of the $\widehat{\gamma}_{Z_{(n-k)}}^{(c,H)}(x)$ within each block,
- 4 we consider the block with minimal standard deviation and take the median value k^* of the k in the block.

Finally, we estimate $\gamma_Y(x)$ by calculating

$$\widehat{\gamma}_{t_n}^{(c,H)}(x) = \frac{\widehat{\gamma}_{t_n}^H(x)}{\widehat{p}_{t_n}(x)}$$

with $(h, k) = (h^*, k^*)$.

Simulation results for conditional EVI (n = 200, 400)

FIGURE 2 – Left: 10% censoring, middle: 25%, right: 40%.

Simulation results for conditional EVI (n = 600, 800)

FIGURE 3 – Left: 10% censoring, middle: 25%, right: 40%.

Simulation results for conditional extreme quantiles (n = 200, 400)

FIGURE 4 – Left: 10% censoring, middle: 25%, right: 40%.

Simulation results for conditional extreme quantiles (n = 200, 400)

FIGURE 5 – Left: 10% censoring, middle: 25%, right: 40%.

- 1 Introduction
 - Statistics of extremes
 - Conditional extreme value index
- 2 Estimation of the conditional extreme value index with censoring
- 3 Estimation of conditional extreme quantiles with censoring
- 4 Simulations
- 5 Discussion

Discussion

- \blacksquare asymptotics for kernel Weissman estimator in presence of censoring $\widehat{q}_n^{(c,W)}(\alpha,x)$
- uniform results w.r.t. x
- weakening of the assumption of independent censoring

Some references

- Ameraoui A., Boukhetala K., Dupuy J.-F., 2016. Bayesian estimation of the tail index of a heavy-tailed distribution under random censoring. To appear in COMPUTATIONAL STATISTICS & DATA ANALYSIS.
- Beirlant J., Goegebeur Y., Teugels J., Segers J., 2004. Statistics of Extremes: Theory and Applications. John Wiley & Sons, Ltd.
- Daouia A., Gardes L., Girard S., Lekina A., 2011. Kernel estimators of extreme level curves. TEST 20(2), 311-333.
- Einmahl J.H.J., Fils-Villetard A., Guillou A., 2008. Statistics of extremes under random censoring. BERNOULLI 14(1), 207-227.

Some references

- Gardes L., Girard S., 2010. Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels. EXTREMES 13(2), 177-204.
- Goegebeur Y., Guillou A., Schorgen A., 2014. Nonparametric regression estimation of conditional tails: the random covariate case. STATISTICS 48(4), 732-755.
- Ndao P., Diop A., Dupuy J.-F., 2016. Nonparametric estimation of the conditional extreme-value index with random covariates and censoring. JOURNAL OF STATISTICAL PLANNING AND INFERENCE 168, 20-37.
- Ndao P., Diop A., Dupuy J.-F., 2014. Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring. COMPUTATIONAL STATISTICS & DATA ANALYSIS 79, 63-79.

Grandes lignes de la démonstration

 \blacksquare soit $\ell = (\ell_1, \ell_2, \ell_3)^{\top} \in \mathbb{R}^3$, $\ell \neq 0$. On a :

$$\ell^{\top} \mathbb{X}_n(x) := \sum_{i=1}^n T_{i,n}$$

où pour chaque n, les $T_{1,n}, \ldots, T_{n,n}$ sont indépendants centrés. Notons $s_{n,x}^2 = \text{var}(\ell^\top \mathbb{X}_n(x))$.

 \blacksquare condition de Lyapounov : il existe $\delta>0$ tel que

$$\frac{1}{s_{n,x}^{2+\delta}} \sum_{i=1}^n \mathbb{E}(|T_{i,n}|^{2+\delta}) \longrightarrow 0 \text{ quand } n \to \infty.$$

Alors

$$\frac{\ell^{\top} \mathbb{X}_n(x)}{s_{n,r}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$