Statistical methods for dynamical stochastic models - DYNSTOCH 2016, University of Rennes, June 8th to June 10th

## Quasi likelihood analysis and limit order book modeling

Nakahiro Yoshida

The University of Tokyo Japan Science and Technology Agency, CREST Institute of Statistical Mathematics A Limit Order Book modeling

With Ioane Muni Toke

## Limit Order Book modeling:



• LOB is described by the multi-dimensional stochastic process

$$\mathbb{X} = ((A^{\alpha})_{\alpha=1,\dots,k_A}, (B^{\beta})_{\beta=1,\dots,k_B})$$

where

- $-A_t^{lpha}$ : total number of limit orders available at price (tick)  $p_A^{lpha}$  on the ask side at time t
- $-B_t^{\beta}$ : total number of limit orders available at price (tick)  $p_B^{\beta}$  on the bid side at time t
- The state space of X is absolutely or relatively set:
  - the price  $p_A^{\alpha}$  is at the relative  $\alpha$ -th limit order from the best quote on the same/opposite side, or  $p_A^{\alpha}$  is the absolute price

- $\bullet$  The random evolution of  $\mathbb X$  is determined by the processes
  - $-M^A$  counting number of arrivals of market orders on the ask side,
  - $-M^B$  of market orders on the bid side,
  - $-L^{\alpha}$  of limit orders at level  $\alpha$  on the ask side,
  - $-L^{\beta}$  of limit orders at level  $\beta$  on the bid side,
  - $-C^{\alpha}$  of cancellation at level  $\alpha$  on the ask side, and  $-C^{\beta}$  of cancellation at level  $\beta$  on the bid side.
- The multivariate counting process  $N^n$  consists of these counting processes. Here prices can be recognized as a function of X.
- For modeling of  $C^{\alpha}$  and  $C^{\beta}$ , we may treat  $g^{n}(t,\theta)$ proportional to  $A^{\alpha}$  and  $B^{\beta}$ , respectively, or more complicated mechanism.

## **Counting arrivals of limit orders**





Figure 1: CARR: S-conditional alpha-distribution model (red)

- Modiling limit order intensities  $\lambda_{\alpha}^{LA}$ 
  - Discover covariates from the data and give a functional representation of  $\lambda_{\alpha}^{LA}$ .
  - A relatively simple dependency has been found:

$$\lambda^{LA}_lpha = \lambda^{LA}_lpha(S_t)$$

Limit order intensity model (Muni Toke and Y)

• Intensity model (spot form) is proposed as

$$\lambda^{LA}_lpha(S) = \sum_{i=1}^3 \Lambda_i(S) \phi(lpha \delta; \mu_i(S), \mathrm{sd}_i(S)^2) \qquad (lpha \in \mathbb{R})$$

 $-\Lambda_i$  are positive functions of S

$$\Lambda_i(S) = \exp(\beta(S))\pi_i(S).$$
(1)

 $- ext{A model} \quad eta(s) = \sum_{j=0}^2 eta_j s^j.$ 

$$\mu_i(s) = \sum_{j=0}^2 \mu_{i,j} s^j \qquad \text{sd}_i(s) = \sum_{j=0}^2 \sigma_{i,j} s^j$$
$$\pi_i(s) = \frac{\exp\left(\pi_{i,0} + \pi_{i,1}s + \pi_{i,2}s^2\right)}{\sum_{j=1}^3 \exp\left(\pi_{j,0} + \pi_{j,1}s + \pi_{j,2}s^2\right)}$$
$$(\pi_{3,0} = \pi_{3,1} = \pi_{3,2} = 0)$$

where  $\delta$  is the tick size,  $\mu_{i,j}$ ,  $\sigma_{i,j}$  and  $\pi_{i,j}$  are constants depending on the asset and the environment in the sampling period.

## Limit order intensity model (by model)



Figure 2: CARR: S and intensities for given  $\alpha$  by intensity model

#### Fit model to LOB arrival numbers data

- Fit the model to the counting data of the numbers of limit orders for various spreads in a fixed time interval.
- Remark. The fitted values are not intensities but the expected numbers of limit orders in the time interval.



CARR-alpha\_distribution\_model-S=1-3-18-10-11-TwoMonths.pdf

Figure 3: CARR: S-conditional alpha-distribution model (red)



CARR-alpha\_distribution\_model-S=2-3-18-10-11-TwoMonths.pdf

Figure 4: CARR: S-conditional alpha-distribution model (red)



CARR-alpha\_distribution\_model-S=3-3-18-10-11-TwoMonths.pdf

Figure 5: CARR: S-conditional alpha-distribution model (red)



 $CARR-alpha\_distribution\_model-S=4-3-18-10-11-TwoMonths.pdf$ 

Figure 6: CARR: S-conditional alpha-distribution model (red)



 $CARR-alpha\_distribution\_model-S=5-3-18-10-11-TwoMonths.pdf$ 

Figure 7: CARR: S-conditional alpha-distribution model (red)



 $CARR-alpha\_distribution\_model-S=6-3-18-10-11-TwoMonths.pdf$ 

Figure 8: CARR: S-conditional alpha-distribution model (red)



 $CARR-alpha\_distribution\_model-S=7-3-18-10-11-TwoMonths.pdf$ 

Figure 9: CARR: S-conditional alpha-distribution model (red)



CARR-alpha\_distribution\_model-S=8-3-18-10-11-TwoMonths.pdf

Figure 10: CARR: S-conditional alpha-distribution model (red)



CARR-alpha\_distribution\_model-S=9-3-18-10-11-TwoMonths.pdf

Figure 11: CARR: S-conditional alpha-distribution model (red)



CARR-alpha\_distribution\_model-S=10-3-18-10-11-TwoMonths.pdf

Figure 12: CARR: S-conditional alpha-distribution model (red)

• This analysis shows possibility of <u>regression model</u> with covariate processes.

# Ultra high frequency data and modeling by point processes

| High | frequency | financial | data |
|------|-----------|-----------|------|
|------|-----------|-----------|------|

| 📕 hpq_dis                                                                     | s_12_2010 - Xt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 帳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                |             |             |   |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---|
| ファイル(E)                                                                       | 編集(E) 書式(Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 表示♡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ヘルプ(円)                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |             |             |   |
| 7r1n(E)<br>HPQ<br>HPQ<br>HPQ<br>HPQ<br>HPQ<br>HPQ<br>HPQ<br>HPQ<br>HPQ<br>HPQ | 編集(E) 書式(Q)<br>12/01/2010 N<br>12/01/2010 N | 表示(V)<br>15:59:54<br>15:59:55<br>15:59:55<br>15:59:55<br>15:59:55<br>15:59:55<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59<br>15:59:59 | ヘルプ( <u>H</u> )<br>42.5800<br>42.5800<br>42.5800<br>42.5700<br>42.5700<br>42.5800<br>42.5800<br>42.5800<br>42.5800<br>42.5800<br>42.5800<br>42.5700<br>42.5700<br>42.5700<br>42.5700<br>42.5700<br>37.2300<br>37.2100<br>37.2100<br>37.2100<br>37.2100<br>37.2100<br>37.2200<br>37.2200<br>37.2300<br>37.2200<br>37.2300<br>37.2300<br>37.2200<br>37.2300<br>37.2300<br>37.2300<br>37.2300<br>37.2300 | 700 F<br>100 8<br>100 8<br>200 8<br>394 8<br>100 8<br>100 8<br>100 8<br>6300 8<br>100 8<br>100 8<br>100 8<br>100 8<br>1044254 6<br>182284 0<br>200 8<br>100 8<br>100 8<br>100 8<br>200 8<br>100 8<br>200 F<br>300 8<br>288 8<br>200 F<br>712 F |             |             |   |
| DIS<br>DIS<br>DIS                                                             | 12/01/2010 N<br>12/01/2010 N<br>12/01/2010 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9:30:15<br>9:30:15<br>9:30:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.2500<br>37.2000<br>37.2500                                                                                                                                                                                                                                                                                                                                                                         | 108 0<br>100 0<br>1584 0                                                                                                                                                                                                                       | 0<br>0<br>0 | 0<br>0<br>0 | ~ |

• Epps effect (1979)

A natural correlation estimator has a bias in high frequent observations

- -<u>non-synchronicity</u> of the observations
- $\frac{\text{microstructure}}{\text{No BM in ultra high frequency sampling}}$
- lead-lag
- relativity of prices In Limit order Book, "Price" is a functional of the state of LOB.
- Dependency on covariates
- To incorporate these effects, we will consider a point process regression model.

Modeling high frequency data by point processes

- Multivariate point process
  - -Hewlett (2006)
  - the clustered arrivals of buy and sell trades using Hawkes processes
  - -Large (2007) Extension by using a finer description of orders
  - Bowsher (2007) Generalized Hawkes model
  - -E. Bacry et al. (2013) Price as "upward – downward counting processes"
  - -Chen and Hall (2013)
    - the intraday trading times of a common stock traded on the Australian Stock Exchange, the ANZ stock.

#### Modeling high frequency data by point processes

- Limit order book
  - -R. Cont, Stoikov and Talreja (2010)
  - -Abergel and Jedidi (2013)
  - -Smith, Farmer, Gillemot and Krishnamurthy (2003)
  - Muni Toke and Pomponio (2011)

Point process regression model

## Ogihara and Yoshida, arXiv 2015

• The d-dimensional point process  $N^n = (N^{n,\alpha})_{\alpha \in \mathcal{I}}$ on  $I = [T_0, T_1], \mathcal{I} = \{1, ..., d\}$ , is assumed to have

an intensity process 
$$n\lambda^n(t, heta)$$
 defined by $\lambda^n(t, heta) = g^n(t, heta) + \int_{\hat{T}_0}^{t-} K^n(t,s, heta) dX^n_s,$ 

where  $\theta$  is a parameter and  $\hat{T}_0 < T_0 < T_1$ .

• Examples.

$$\lambda^n(t, heta) = \lambda^\infty(t, heta) = g(V_t, heta) 
onumber \ \lambda^n(t, heta) = \lambda^\infty(t, heta) = g(t,\gamma) + \int_0^t e^{-b(t-s)} AV_s ds$$

for a random covariate process  $V_t$ .

• More precisely, we will work on

 $- ext{a stochastic basis } \mathcal{B} = (\Omega, \mathcal{F}, \mathrm{F}, P),$ 

- $-\mathrm{F} = \left(\mathcal{F}_t\right)_{t\in \hat{I}}$  being a filtration on  $(\Omega, \mathcal{F})$ , where  $\hat{I} = [\hat{T}_0, T_1] \supset I$  and  $n \in \mathbb{N}$ .
- -For each  $n \in \mathbb{N}$  and  $\theta \in \Theta$ ,  $(g^n(t, \theta))_{t \in I}$  is a ddimensional predictable process,
- $(K^{n}(t, s, \theta))_{s \in [\hat{T}_{0}, t)}$  is a  $d \times d_{0}$  matrix-valued optional process for  $t \in I, \mathcal{I}_{0} = \{1, ..., d_{0}\}$ , and
- $-(X_t^n)_{t\in \hat{I}}$  is a  $\mathbf{d}_0$ -dimensional F-adapted right-continuous increasing process on  $\mathcal{B}$ .
- The multivariate point process  $N^n$  is compensated by the process  $(\int_{T_0}^t n\lambda^n(s,\theta)ds)_{t\in I}$  when  $\theta$  is the true value of the unknown parameter.
- No common jumps of different elements of  $N^n$

#### Our model

- regression of the intensities to covariate processes and their history
- $\bullet$  finite time horizon and the intensities of point processes tends to  $\infty$  —- non-ergodic statistics

### Locally Poissonian and Globally non-ergodic model



Local model such as  $\lambda_{lpha}^{LA}(S_t)$  becomes a fibre.

## Quasi Likelihood Analysis (QLA)

- Ibragimov-Hasminskii and Kutoyants' program + polynomial type large deviation inequality
  - = Quasi likelihood analysis:
  - -ergodic / non-ergodic
  - $-\operatorname{limit}$  theorems for QMLE and QBE
  - convergence of moments
  - -Y. AISM 2011

#### **Recall Point Process Regression Model**

 $N^n=(N^{n,\alpha})_{\alpha\in\mathcal{I}}$  has an intensity process  $n\lambda^n(t,\theta)$  defined by

$$\lambda^n(t, heta) = g^n(t, heta) + \int_{\hat{T}_0}^{t-} K^n(t,s, heta) dX^n_s,$$

- We shall consider estimation for the unknown parameter  $\theta$ .
- Observations

$$egin{aligned} &(N^{n,lpha}_t)_{t\in I,lpha\in\mathcal{I}},\quad (X^{n,eta}_t)_{t\in\hat{I},eta\in\mathcal{I}_0},\ &(g^{n,lpha}(t, heta))_{t\in I,lpha\in\mathcal{I}, heta\in\Theta},\ &(K^{n,lpha}_eta(t,s, heta))_{t\in I,s\in[\hat{T}_0,t),lpha\in\mathcal{I},eta\in\mathcal{I}_0, heta\in\Theta}. \end{aligned}$$

This is the case, for example, when  $g^{n,\alpha}(t,\theta)$  is a function of  $\theta$  and some observable covariate process:

 $g^{n,lpha}(t, heta)=g^{lpha}(t,V_t, heta) ext{ with observable } V_t$ 

• The quasi log likelihood is given by

$$egin{aligned} l_n( heta) &= \sum_{lpha \in \mathcal{I}} igg( \int_{T_0}^{T_1} \log[n\lambda^{n,lpha}(t, heta)] dN_t^{n,lpha} \ &- \int_{T_0}^{T_1} [n\lambda^{n,lpha}(t, heta)-1] dt igg) \end{aligned}$$

for observed point process  $N^n$ . Obviously, "-1" in the second integral can be eliminated for maximization. The factor "n" in the first integral is also unnecessary. Thus we can use

$$\ell_n(\theta) = \sum_{\alpha \in \mathcal{I}} \left( \int_{T_0}^{T_1} \log \lambda^{n,\alpha}(t,\theta) dN_t^{n,\alpha} - \int_{T_0}^{T_1} n\lambda^{n,\alpha}(t,\theta) dt \right)$$
(2)

instead of  $l_n(\theta)$ .

We shall work with the statistical random field

$$\mathbb{H}_n( heta) = \ell_n( heta)$$

on  $\Theta$  and apply the frame of the quasi likelihood analysis. The random fields  $\mathbb{Z}_n$  is defined on  $\mathbb{U}_n = \{u \in \mathbb{R}^p; \theta_u \in \Theta\}, \theta_u = \theta^* + n^{-1/2}u$ , by

$$egin{split} \mathbb{Z}_n(u) &= \expig(\mathbb{H}_n( heta_u) - \mathbb{H}_n( heta^*)ig) \ &= \expig(\sum_{lpha=1}^{\mathsf{d}}\int_{T_0}^{T_1}\lograc{\lambda^{n,lpha}(t, heta_u)}{\lambda^{n,lpha}(t, heta^*)}\,dN^{n,lpha}_t \ &- \sum_{lpha=1}^{\mathsf{d}}\int_{T_0}^{T_1}nig[\lambda^{n,lpha}(t, heta_u) - \lambda^{n,lpha}(t, heta^*)ig]dtig). \end{split}$$

## Assumptions

- Assume that the boundary of  $\Theta$  is good and that the function  $\Theta \ni \theta \mapsto \lambda^n(t, \theta)$  has continuous extension to  $\overline{\Theta}$  when the QMLE is discusses.
- Let  $\varepsilon$  be a positive number less than 1/2.
- $ullet ar{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$

- $[B1]_{\overline{j}} \text{ For each } n \in \overline{\mathbb{N}}, \, K^n(t, s, \theta) \text{ is an } \mathbb{R}^{\mathsf{d}}_+ \otimes \mathbb{R}^{\mathsf{d}_0}_+ \text{-valued} \\ \mathcal{F} \times \mathbb{B}(J) \times \mathbb{B}(\Theta) \text{-measurable function satisfying the} \\ \text{following conditions.}$ 
  - (i) For each  $(n, t, \theta) \in \mathbb{N} \times I \times \Theta$ , the process  $[\hat{T}_0, t) \ni s \mapsto K^n(t, s, \theta)$  is  $(\mathcal{F}_s)_{s \in [\hat{T}_0, t)}$ -optional. (ii) For each  $(n, t, s) \in \mathbb{N} \times J$ , the mapping  $\Theta \ni \theta \mapsto$ 
    - $egin{aligned} &K^n(t,s, heta) ext{ is } j ext{ times differentialble a.s.,} \ &\sup_{(s, heta)\in [\hat{T}_0,t) imes \Theta} |\partial^j_ heta K^n(t,s, heta)| < \infty ext{ a.s. for } t\in I, \ & ext{ and } \end{aligned}$

$$\sum_{j=0}^{ar{j}} \sup_{(n,s,t)\in ar{\mathbb{N}} imes J} \sup_{ heta\in \Theta} \|\partial^i_ heta K^n(t,s, heta)\|_p < \infty$$

for every p > 1.

(iii) For each  $(n, t, \theta) \in \mathbb{N} \times I \times \Theta$ , the mappings  $[\hat{T}_0, t) \ni s \mapsto \partial^i_{\theta} K^n(t, s, \theta) \ (i = 0, 1)$  are differentialble a.s.,  $\sup_{(s, \theta) \in [\hat{T}_0, t) \times \Theta} |\partial_s \partial^i_{\theta} K^n(t, s, \theta)| < \infty$  a.s. for  $t \in I$ , and

$$\sup_{(n,t,\theta)\in\mathbb{N}\times I\times\Theta}\sum_{i=0}^1\int_{\hat{T}_0}^t\|\partial_s\partial_\theta^iK^n(t,s,\theta)\|_pds<\infty$$

for every p > 1.

(iv) For every p > 1,

$$egin{aligned} &n^arepsilon \sum_{j=0}^1 \sup_{(t,s)\in J, heta\in\Theta} \left\| \partial^j_ heta K^n(t,s, heta) - \partial^j_ heta K^\infty(t,s, heta) 
ight\|_p \ &
ightarrow 0 \end{aligned}$$

as  $n \to \infty$ .

- $[B2]_{\overline{j}}$  For each  $(\alpha, n) \in \mathcal{I} \times \overline{\mathbb{N}}, g^{n,\alpha}(t,\theta)$  is an nonnegative  $\mathcal{F} \times \mathbb{B}(I) \times \mathbb{B}(\Theta)$ -measurable function for which the following conditions are fulfilled.
  - (i) For each  $(n, \alpha, \theta) \in \mathbb{N} \times \mathcal{I} \times \Theta$ , the process  $(g^{n, \alpha}(t, \theta))_{t \in I}$  is predictable.
  - (ii) For each  $(n,t) \in \overline{\mathbb{N}} \times I$ , the mapping  $\Theta \ni \theta \mapsto g^n(t,\theta)$  is  $\overline{j}$  times differentiable a.s. and

$$\sum_{j=0}^{\mathcal{J}} \sup_{(n,t)\in ar{\mathbb{N}} imes I} \sup_{ heta\in \Theta} ig\| (\partial_{ heta})^j g^n(t, heta) ig\|_p < \infty$$

for every p > 1. (iii) For every p > 1,

$$n^{arepsilon}\sum_{j=0}^{1}\sup_{t\in I}\sup_{ heta\in\Theta}\left\|\partial_{ heta}^{j}g^{n}(t, heta)-\partial_{ heta}^{j}g^{\infty}(t, heta)
ight\|_{p}
ightarrow 0$$

as  $n \to \infty$ .

#### Assumptions

[B3] For each  $n \in \mathbb{N}$  and  $\beta \in \mathcal{I}_0$ ,  $(X_t^{n,\beta})_{t \in \hat{I}}$  is a nondecreasing  $(\mathcal{F}_t)_{t \in \hat{I}}$ -adapted process, and for each  $\beta \in \mathcal{I}_0$ , there exists a non-decreasing process  $(X_t^{\infty,\beta})_{t \in I}$ such that

$$\sup_{\substack{(n,t)\in\mathbb{N} imes\hat{I}}} ig\|X^{n,eta}_tig\|_p < \infty ext{ and } \ n^arepsilon \sup_{t\in\hat{I}} ig\|X^{n,eta}_t - X^{\infty,eta}_tig\|_p o 0$$

as  $n \to \infty$ , for every p > 1.  $(\hat{I} = [\hat{T}_0, T_1].)$ 

[B4] For each  $(\omega, n, \alpha, t, \theta) \in \Omega \times \mathbb{N} \times \mathcal{I} \times I \times \Theta$ ,  $\lambda^{n,\alpha}(t, \theta) = 0$  if and only if  $\lambda^{n,\alpha}(t, \theta) = 0$ , and  $\|\lambda^{n,\alpha}(t, \theta)^{-1}\| \leq \infty$ 

$$\sup_{(n,t,\theta)\in I\times\Theta} \|\lambda^{n,\alpha}(t,\theta)^{-1}\mathbf{1}_{\{\lambda^{n,\alpha}(t,\theta)\neq 0\}}\|_p < \infty$$

for every p > 1 and  $\alpha \in \mathcal{I}$ .

## Information matrix and Limit intensity process

• Let

$$\Gamma = \sum_{lpha \in \mathcal{I}} \int_{T_0}^{T_1} (\partial_ heta \lambda^{\infty,lpha})^{\otimes 2} (\lambda^{\infty,lpha})^{-1} (t, heta^*) dt,$$

where

$$\lambda^{\infty,\alpha}(t,\theta) = g^{\infty,\alpha}(t,\theta) + \int_{\hat{T}_0}^{t-} K^{\infty,\alpha}_{\beta}(t,s,\theta) dX^{\infty,\beta}_s$$
(3)

for  $t \in I$ .

•  $\lambda^{\infty,\alpha}(t,\theta)$  is possibly random.

#### Key index

$$\mathbb{Y}(\theta) := -\sum_{\alpha=1}^{\mathsf{d}} \int_{T_0}^{T_1} \left[ \lambda^{\infty,\alpha}(t,\theta) - \lambda^{\infty,\alpha}(t,\theta^*) - \log \frac{\lambda^{\infty,\alpha}(t,\theta)}{\lambda^{\infty,\alpha}(t,\theta^*)} \lambda^{\infty,\alpha}(t,\theta^*) \right] dt$$
(4)

$$\chi_0 := \inf_{ heta \in \Theta \setminus \{ heta^*\}} rac{-\mathbb{Y}( heta)}{| heta - heta^*|^2}.$$

The nondegeneracy of the key index  $\chi_0$  will play an essential role in our argument.

[B5] For every L > 0, there exists a constant  $C_L$  such that

$$P[\chi_0 < r^{-1}] \leq rac{C_L}{r^L} \quad (orall r > 0).$$

Theorem 1. (Polynomial type large deviation inequality) Suppose that Conditions  $[B1]_4$ ,  $[B2]_4$ , [B3], [B4]and [B5] are fulfilled. Then, for every L > 0, there exists a constant  $C_L$  such that

$$Pigg[ \sup_{u\in \mathbb{V}_n(r)}\mathbb{Z}_n(u)\geq e^{-r}igg] \leq rac{C_L}{r^L}$$

for all r > 0 and all  $n \in \mathbb{N},$  where  $\mathbb{V}_n(r) = \{ u \in \mathbb{U}_n; |u| \ge r \}.$ 

#### Quasi likelihood analysis

Denote by  $C_{\uparrow}(\mathbb{R}^{\mathsf{p}})$  the set of continuous functions  $f : \mathbb{R}^{\mathsf{p}} \to \mathbb{R}$  at most polynomial growth.

Theorem 2. Suppose that Conditions  $[B1]_4$ ,  $[B2]_4$ , [B3], [B4] and [B5] are fulfilled. Then

$$(a) \sqrt{n}(\hat{\theta}_n - \theta^*) \to^{d_s} \Gamma^{-1/2} \zeta \text{ as } n \to \infty.$$
  

$$(b) E[f(\sqrt{n}(\hat{\theta}_n - \theta^*))] \to \mathbb{E}[f(\Gamma^{-1/2} \zeta)] \text{ as } n \to \infty \text{ for all } f \in C_{\uparrow}(\mathbb{R}^p).$$

Theorem 3. Suppose that Conditions  $[B1]_4$ ,  $[B2]_4$ , [B3], [B4] and [B5] are fulfilled. Then

$$(a) \sqrt{n}(\tilde{\theta}_n - \theta^*) \to^{d_s} \Gamma^{-1/2} \zeta \text{ as } n \to \infty.$$
  

$$(b) E[f(\sqrt{n}(\tilde{\theta}_n - \theta^*))] \to \mathbb{E}[f(\Gamma^{-1/2} \zeta)] \text{ as } n \to \infty \text{ for all } f \in C_{\uparrow}(\mathbb{R}^p).$$

Example: A point process driven by a diffusion process

$$\lambda^n(t, heta) = \lambda^\infty(t, heta) = g(V_t, heta)$$

for  $t \in I$ .

- $V_t$ : a non-degenerate multi-dimensional diffusion process as the covariate
- For the non-degeneracy of  $\chi_0$ , there are
  - an analytic criterion
  - -a geometric criterion.
  - -cf. Uchida-Y (SPA 2013)

### Support function

Let

$$egin{aligned} Q(x, heta, heta^*) &= g(x, heta)^{-1}g(x, heta^*) - 1 \ &-\log\left(g(x, heta)^{-1}g(x, heta^*)
ight) \end{aligned}$$

then

$$-2\mathbb{Y}( heta)=rac{1}{T}\int_0^T Q(V_t, heta, heta^*)g(V_t, heta^*)dt.$$

A support function f is a function such that

$$Q(x, heta, heta^*)g(x, heta^*)| heta- heta^*|^{-2}\geq |f(x, heta)|^arrho,$$

for a constant  $\rho \in (0, \infty)$ . Recall

$$\chi_0 = \inf_{ heta 
eq heta ^*} rac{-\mathbb{Y}( heta)}{| heta - heta ^*|^2} \geq \inf_{ heta 
eq heta ^*} rac{1}{2T} \int_0^T |f(V_t, heta)|^arrho dt.$$

#### Analytic criterion: nondegeneracy of a tensor field

- For simplicity, let d = 1 and suppose that V is a nondegenerate Itô process.
- Suppose that  $\mathcal{X}_0$  is a neighborhood of compact supp $\mathcal{L}\{V_0\}$ , and that  $\Theta$  is compact.
- For each  $(x_0, \theta) \in \mathcal{X}_0 \times \Theta$ ,  $\max_{j=0,...,J-1} \left| \partial_x^j f(x_0, \theta) \right| > 0$ .

Then [B5] holds.

- Remarks.
  - -Similar condition in the multi-dimensional case.
  - It is possible to give a condition for a degenerate diffusion on manifold. However the condition becomes much more complicated. (Uchida and Y LeMans2009, ISM RM2011, Paris2012)

#### Geometric criterion

## • Example.

$$-f(x, heta)=x_1x_2(x_1- heta_1x_2^2)( heta_2x_1+x_2^2)$$

 $-V = (V_t) = (V_{1,t}, V_{2,t})$ : a nondegenerate diffusion with uniform initial distribution on  $\operatorname{supp} \mathcal{L}\{V_0\} = \{0\} \times [0, 1].$ 

-Show

$$Pigg[ \inf_{ heta} \int_0^1 |f(V_t, heta)|^2 dt < rac{1}{r} igg] \leq rac{C_L}{r^L}.$$

– The null set  $\{f = 0\}$  is not a regular submanifold.



- [A3']  $\operatorname{supp} \mathcal{L}\{V_0\}$  is compact, there exists a function  $f: U \times \Theta \to \mathbb{R}$  for some open neighborhood U of  $\operatorname{supp} \mathcal{L}\{X_0\}$  and the following conditions are satisfied.
  - (i) For some  $\varrho \in (0,\infty)$ ,  $Q(x,\theta,\theta^*)|\theta \theta^*|^{-2} \ge |f(x,\theta)|^{\varrho}$  for all  $(x,\theta) \in U \times (\Theta \setminus \{\theta^*\})$ .
  - (ii) For each x<sub>0</sub> ∈ U, there exist a neighborhood B in U of x<sub>0</sub> and a covering {Θ<sub>k</sub>}<sub>k=1,...,k̄</sub> of Θ such that for each k = 1, ..., k̄, there exist ξ<sub>0</sub> ∈ S, J ∈ N, some positive numbers M, c, ε<sub>0</sub>, K<sub>j</sub> (j = 1, ..., J) and some functions Ψ<sub>j</sub> : P<sup>⊥</sup><sub>ξ0</sub> B × Θ<sub>k</sub> → ℝ such that
    (a) each function P<sup>⊥</sup><sub>ξ0</sub> B ∋ y ↦ Ψ<sub>j</sub>(y, θ) ∈ ℝ is M-Lipschitz continuous for all θ ∈ Θ<sub>k</sub>,

$$egin{aligned} &(\mathrm{b}) ext{ for } (x, heta) \in B imes \Theta_k, \ &|f(x, heta)| \geq c \prod_{j=1}^J ig(|\xi_0 \cdot x - \Psi_j(P_{\xi_0}^ot x, heta)| \wedge \epsilon_0ig)^{K_j}. \end{aligned}$$

Remarks

- In [A3'],  $\overline{k}$  may depend on  $x_0$ .
- The null set

$$\{x\in B;\ f(x, heta)=0\}\subset igcup_{j=1}^J\{x\in B;\ \xi_0\cdot x=\Psi_j(P_{\xi_0}^\perp x, heta)\}$$

under [A3'](ii), that is, the graph of the functions  $\Psi_j$  covers locally the null set of f.

Theorem 4. (Uchida-Y arXiv2012, SPA2013) [A3'] + nondegenerate Itô process  $V \Rightarrow [B5]$ , and hence QLA.

$$\lambda^n(t, heta) = \lambda^\infty(t, heta) = g(t,\gamma) + \int_0^t a e^{-b(t-s)} V_s ds$$

for  $t \in I$ .

- $V_s$ : a positive non-degenerate diffusion process
- $g(t, \gamma)$ : a polynomial taking non-negative values on the interval I
- $(\gamma, a, b)$ : unknown parameters
- The non-degeneracy of  $\chi_0$  is not trivial but provable. The exponential kernel is not essential.
- A multi-dimensional extension is possible.

**Example:** A non-stationary Hawkes process

• The parametric model of two-dimensional Hawekes process with intensity process

$$\lambda^{n}(t, heta) = g(t,\gamma) + \int_{\hat{T}_{0}}^{t-} e^{-b(t-s)} A n^{-1} dN_{s}^{n}$$
 (5)

with  $heta=(\gamma,b,A).$ 

- $g_t = g(t, \gamma)$  is an  $\mathbb{R}^2$ -valued polynomial in t.(interday trend)
- The non-degeneracy of  $\chi_0$  can be proved. Ogihara-Y (arXiv 2015)

## References

[1] Yoshida, N. (2011) Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations, Annals of the Institute of Statistical Mathematics 63, 431–479

[2] Ogihara, T, Yoshida, N. (2015) Quasi likelihood analysis of point processes for ultra high frequency data, arXiv:1512.01619

[3] Clinet, S., Yoshida, N. (2015) Statistical Inference for Ergodic Point Processes and Limit Order Book arXiv:1512.01899

[4] Muni Toke, I., Yoshida, N. (2016) Modelling intensities of order flows in a limit order book arXiv:1602.03944

