Counting points on curves in average polynomial time

David Harvey
University of New South Wales
20th February 2018
Workshop on numerical methods for algebraic curves
Le Centre Henri Lebesgue, Rennes

The zeta function

Definition

Let $X=$ smooth projective curve of genus g over \mathbf{F}_{p}.
The zeta function of X is the power series

$$
Z(T)=\exp \left(\sum_{k=1}^{\infty} \frac{\left|X\left(\mathbf{F}_{p^{k}}\right)\right|}{k} T^{k}\right) \in \mathbf{Q}[[T]]
$$

It is actually a rational function of the form

$$
Z(T)=\frac{L(T)}{(1-T)(1-p T)}
$$

where $L(T) \in \mathbf{Z}[T]$ has degree $2 g$.
Knowledge of $Z(T)$ is equivalent to knowledge of $L(T)$.
It is effectively computable: enough to compute $\left|X\left(\mathbf{F}_{p}\right)\right|, \ldots,\left|X\left(\mathbf{F}_{p^{g}}\right)\right|$.

Example

Let X be the genus two hyperelliptic curve with affine equation

$$
y^{2}=x^{5}+x+1
$$

over \mathbf{F}_{p} where $p=1000003$.
Then

$$
\left|X\left(\mathbf{F}_{p}\right)\right|=1000329, \quad\left|X\left(\mathbf{F}_{p^{2}}\right)\right|=1000007333965
$$

which implies that

$$
Z(T)=\frac{L(T)}{(1-T)(1-p T)}
$$

where

$$
L(T)=1+325 T+719790 T^{2}+325 p T^{3}+p^{2} T^{4}
$$

Global case

Now consider a smooth projective curve X of genus g over \mathbf{Q}.
Let $X_{p}=$ reduction of X modulo p.
For all but finitely many primes, this reduction makes sense and yields a smooth projective curve of genus g over \mathbf{F}_{p}. For the rest of the talk, we ignore the "bad" primes.

Let $L_{p}(T)=$ corresponding L-polynomial for X_{p}.

Problem

Given curve X / \mathbf{Q} and a bound N, compute $L_{p}(T)$ for all $\operatorname{good} p<N$.

Applications: study Sato-Tate distributions, BSD conjecture.
Typically N is around 2^{20} or 2^{30}.

Example

Again take X defined over \mathbf{Q} by

$$
y^{2}=x^{5}+x+1
$$

The bad primes are 3, 7, 23, and for the good primes we have

$$
\begin{aligned}
L_{5}(T) & =1+10 T^{2}+25 T^{4} \\
L_{11}(T) & =1-4 T+14 T^{2}-44 T^{3}+121 T^{4} \\
L_{13}(T) & =1+T+4 T^{2}+13 T^{3}+169 T^{4} \\
L_{17}(T) & =1+4 T+22 T^{2}+68 T^{3}+289 T^{4} \\
L_{19}(T) & =1-4 T+14 T^{2}-76 T^{3}+361 T^{4}
\end{aligned}
$$

Counting points, one prime at a time

Some possible algorithms:
1 Naive point enumeration up to $\mathbf{F}_{p g}$. Complexity $p^{O(g)}$.
2 Shanks-Mestre baby-step/giant-step. Complexity $p^{O(g)}$ (with better big- O constant).

These bounds are exponential in both g and $\log p$.
BSGS is quite effective in practice for small genus (especially $g \leq 2$) for a wide range of p. Highly optimised implementation smalljac by Sutherland.

Counting points, one prime at a time

3 Schoof-Pila.
Complexity $(\log p)^{C_{g}}$ where C_{g} grows exponentially with g.
4 Kedlaya-type algorithms.
Complexity $g^{O(1)} p^{1 / 2+\epsilon}$ (exponent of g depends on class of curve)
Polynomial in $\log p$ or g, but not both.
Major open problem: is it possible to obtain complexity polynomial in both g and $\log p$?

Schoof-Pila not competitive in the range of p under consideration.

Counting points, all primes simultaneously

Theorem (H. 2015, Computing zeta functions of arithmetic schemes) Let X be a scheme of finite type over \mathbf{Z}. One may compute $Z_{p}(T)$ for all $p<N$ in time $O\left(N \log ^{3+\epsilon} N\right)$.

Complexity is $O\left(\log ^{4+\epsilon} N\right)$ on average per prime, where implied constant depends on X.

For curves, the dependence on g is polynomial.

Goal for today's talk

Today I will explain in detail how to compute $L_{p}(T)$ for all $p<N$ in time $O\left(N \log ^{3+\epsilon} N\right)$, for the simplest nontrivial case: an elliptic curve of the form

$$
y^{2}=x^{3}+b x^{2}+c x, \quad b, c \in \mathbf{Z}, c\left(b^{2}-4 c\right) \neq 0
$$

The L-polynomial for each p has the form

$$
L_{p}(T)=1+a_{p} T+p T^{2}
$$

where $\left|a_{p}\right|<2 \sqrt{p}$ (the Hasse-Weil bound).
We want to compute $a_{p} \in \mathbf{Z}$ for all $\operatorname{good} p<N$.

Why I would rather live in $\mathbf{P}^{2}(\mathbf{R})$

Polynomial powers

Lemma

Let u_{p} be the coefficient of $x^{(p-1) / 2}$ (the "central coefficient") in the polynomial

$$
\left(x^{2}+b x+c\right)^{(p-1) / 2} .
$$

Then

$$
a_{p} \equiv u_{p} \quad(\bmod p)
$$

For $p \geq 17$, the bound $\left|a_{p}\right|<2 \sqrt{p}$ implies that $u_{p}(\bmod p)$ determines $a_{p} \in \mathbf{Z}$ unambiguously.

So it is enough to compute $u_{p}(\bmod p)$ for all $p<N$.

Polynomial powers

Sketch of proof of lemma:
The definition of the zeta function implies that

$$
a_{p}=p+1-\left|X\left(\mathbf{F}_{p}\right)\right| .
$$

For each $t \in \mathbf{F}_{p}$, the number of points with x-coordinate equal to t depends on whether $t^{3}+b t^{2}+c t$ is a square in \mathbf{F}_{p}. We get

$$
t^{3}+b t^{2}+c t= \begin{cases}\text { zero in } \mathbf{F}_{p} & \Longrightarrow 1 \text { point } \\ \text { square in } \mathbf{F}_{p} & \Longrightarrow 2 \text { points } \\ \text { nonsquare in } \mathbf{F}_{p} & \Longrightarrow 0 \text { points }\end{cases}
$$

There is also one point at infinity.

Polynomial powers

(sketch of proof, continued)
Thus

$$
\begin{aligned}
\left|X\left(\mathbf{F}_{p}\right)\right| & =1+\sum_{t=0}^{p-1}\left[\left(\frac{t^{3}+b t^{2}+c t}{p}\right)+1\right] \\
& \equiv 1+\sum_{t=0}^{p-1}\left(t^{3}+b t^{2}+c t\right)^{(p-1) / 2} \quad(\bmod p)
\end{aligned}
$$

Now expand out the right hand side, and use the fact that

$$
\sum_{t=0}^{p-1} t^{k} \equiv \begin{cases}-1 & \text { if } p-1 \mid k \\ 0 & \text { otherwise }\end{cases}
$$

Example

For a running example, let's take $y^{2}=x f(x)$ where

$$
f(x)=x^{2}-3 x-2
$$

We have

$$
\begin{aligned}
p=5: & f^{2}= \\
p=7: & f^{4}-6 x^{3}+5 x^{2}+12 x+4, \\
p=11: & f^{5}=\cdots-9 x^{5}+21 x^{4}+9 x^{3}-42 x^{2}-36 x-8 \\
\vdots & \\
p=103: & f^{51}=\cdots+-28 x^{7}-92250240953935920621757274295 x^{51}+\cdots
\end{aligned}
$$

For $p<N$, the total amount of data in this picture is roughly N^{3}.

Recurrences

For each n, the coefficients of f^{n} satisfy a linear recurrence.
Let

$$
f^{n}=f_{0}^{n} x^{2 n}+f_{1}^{n} x^{2 n-1}+\cdots+f_{2 n}^{n}
$$

Exercise: using the relations

$$
f^{n+1}=f \cdot f^{n}, \quad\left(f^{n+1}\right)^{\prime}=(n+1) f^{\prime} \cdot f^{n}
$$

prove that

$$
f_{k}^{n}=\frac{1}{k}\left((n-k+1) b f_{k-1}^{n}+(2 n-k+2) c f_{k-2}^{n}\right) .
$$

Recurrences

Problem: it's a different recurrence for each n !

$$
f_{k}^{n}=\frac{1}{k}\left((n-k+1) b f_{k-1}^{n}+(2 n-k+2) c f_{k-2}^{n}\right) .
$$

Recurrences

Problem: it's a different recurrence for each n !

$$
f_{k}^{n}=\frac{1}{k}\left((n-k+1) b f_{k-1}^{n}+(2 n-k+2) c f_{k-2}^{n}\right) .
$$

But we only need the coefficients modulo p, and only for $n=(p-1) / 2$:

$$
f_{k}^{(p-1) / 2}=\frac{1}{k}\left(\left(-k+\frac{1}{2}\right) b f_{k-1}^{(p-1) / 2}+(-k+1) c f_{k-2}^{(p-1) / 2}\right) \quad(\bmod p) .
$$

So now we have the same recurrence for each p.

Recurrences

Let us rewrite the recurrence in vector form. Define

$$
v_{k}^{p}:=\left[\begin{array}{l}
f_{k}^{(p-1) / 2} \\
f_{k-1}^{(p-1) / 2}
\end{array}\right] \in \mathbf{Z}^{2}
$$

Then

$$
v_{k}^{p}=\frac{1}{2 k} A_{k} v_{k-1}^{p} \quad(\bmod p)
$$

where

$$
A_{k}:=\left[\begin{array}{cc}
(-2 k+1) b & (-2 k+2) c \\
2 k & 0
\end{array}\right] .
$$

Notice that A_{k} is defined over \mathbf{Z}, and no longer depends on p !!

Recurrences

The initial conditions are easy: we have $v_{0}^{p}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ for each p.
Therefore we have transformed the original problem into the problem of computing the matrix products

simultaneously, for all primes $p<N$.

Example

For $f(x)=x^{2}-3 x-2$, we need to compute

$$
\left.\begin{array}{r}
{\left[\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right]}
\end{array}(\bmod 3), \begin{array}{ll}
9 & 4 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right] \quad(\bmod 5), ~\left(\begin{array}{cc}
15 & 8 \\
6 & 0
\end{array}\right]\left[\begin{array}{ll}
9 & 4 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right] \quad(\bmod 7), ~ \begin{array}{rr}
\vdots & \\
{\left[\begin{array}{cc}
303 & 200 \\
102 & 0
\end{array}\right] \ldots\left[\begin{array}{cc}
15 & 8 \\
6 & 0
\end{array}\right]\left[\begin{array}{ll}
9 & 4 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right]} & (\bmod 103),
\end{array}
$$

Notice there are $O(N)$ rows, each row has $O(N)$ matrices, and the matrix entries have $O(\log N)$ bits.

The accumulating remainder tree, in one slide

 Suppose we want to compute:| M_{1} | $\left(\bmod Q_{1}\right)$, |
| ---: | :---: |
| $M_{2} M_{1}$ | $\left(\bmod Q_{2}\right)$, |
| $M_{3} M_{2} M_{1}$ | $\left(\bmod Q_{3}\right)$, |
| $M_{4} M_{3} M_{2} M_{1}$ | $\left(\bmod Q_{4}\right)$, |
| $M_{5} M_{4} M_{3} M_{2} M_{1}$ | $\left(\bmod Q_{5}\right)$, |
| \cdots | |
| $M_{n} M_{n-1} \cdots M_{5} M_{4} M_{3} M_{2} M_{1}$ | $\left(\bmod Q_{n}\right)$, |

Algorithm (assuming n odd):
(1) multiply pairs of adjacent M_{i} 's and Q_{i} 's,
(2) recursively compute

$$
\begin{aligned}
\left(M_{2} M_{1}\right) & \left(\bmod Q_{2} Q_{3}\right), \\
\left(M_{4} M_{3}\right)\left(M_{2} M_{1}\right) & \left(\bmod Q_{4} Q_{5}\right), \\
\cdots & \left(M_{n-1} M_{n-2}\right) \cdots\left(M_{4} M_{3}\right)\left(M_{2} M_{1}\right)
\end{aligned}\left(\begin{array}{l}
\left(\bmod Q_{n-1} Q_{n}\right),
\end{array}\right.
$$

(3) make the obvious corrections.

Example

Initial problem for $N=128$, with 63 rows:

Example

First recursive step, 31 rows:

$$
\begin{array}{r}
{\left[\begin{array}{ll}
35 & 0 \\
12 & 0
\end{array}\right]}
\end{array} \begin{aligned}
& (35), \\
& {\left[\begin{array}{cc}
387 & 168 \\
1091 & 528 \\
324 & 192
\end{array}\right]\left[\begin{array}{cc}
35 & 0 \\
387 & 168 \\
12 & 0
\end{array}\right]}
\end{aligned}\left(\begin{array}{ll}
35 & 0 \\
120 & 64
\end{array}\right](99), \quad(195),
$$

Example

Second recursive step, 15 rows:

$$
\begin{gathered}
{\left[\begin{array}{cc}
15561 & 0 \\
4968 & 0
\end{array}\right]}
\end{gathered}\left(\begin{array}{cc}
2692297 & 1340976 \\
805200 & 403200
\end{array}\right]\left[\begin{array}{cc}
15561 & 0 \\
4968 & 0
\end{array}\right] \quad(156009)
$$

$\left[\begin{array}{cc}25150018761 & 13987917216 \\ 7115707800 & 3978428160\end{array}\right] \ldots$

$\ldots\left[\begin{array}{cc}2692297 & 1340976 \\ 805200 & 403200\end{array}\right]\left[\begin{array}{cc}15561 & 0 \\ 4968 & 0\end{array}\right] \quad(236267625)$.

Analysis

Number of recursion levels is $O(\log N)$.
At top level, have $O(N)$ matrices with $O(\log N)$-bit entries.
At each recursive level, half as many matrices, but entries have twice as many bits... so bit size at each level is still $O(N \log N)$.
Use FFT integer multiplication and division: cost is $O\left(N \log ^{2+\epsilon} N\right)$ per level.

Total cost: $O\left(N \log ^{3+\epsilon} N\right)$ bit operations (ignoring bit size of b and c).

Sample timings for hyperelliptic curves

Genus 2 , time to compute $L_{p}(T)$ for all $p<2^{30}$:

Baby-step/giant-step (smalljac)	1.4 years
Average polynomial time	1.3 days

Genus 3, time to compute $L_{p}(T)$ for all $p<2^{30}$:

Accelerated Kedlaya (hypellfrob)	3.8 years
Average polynomial time	4.0 days

(Timings from H. \& Sutherland, 2016)

Summary

- The "accumulating remainder tree" algorithm can be used to evaluate certain types of matrix products modulo many primes simultaneously.
- It is very memory intensive, and spends most of its time computing Fourier transforms of large integers.
- In the application to point counting, one must first express the point-counting problem in terms of such matrix products.

Thank you!

