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Algebraic curves

An algebraic variety is the zero locus of finite number of polynomial
equations in finite number of variables.

Defined over a field k if the polynomials have coefficients in that field.

A curve is an algebraic variety of dimension 1, always smooth and
projective, e.g. y2 = x3 + ax + b elliptic curve.

However, sometimes defined by (singular) plane model f (x , y) = 0.

k will always be a finite field Fq or the field of rational numbers Q.

Recall that q = pn and for all such q there exists a unique finite field Fq

with q elements.
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Zeta function

Let X be an algebraic curve over a finite field Fq with q = pn.

Definition

Z (X ,T ) := exp

( ∞∑
i=1

|X (Fqi )|
T i

i

)

Example (Projective line)

Z (P1
Fq
,T ) = exp

( ∞∑
i=1

(qi + 1)
T i

i

)

= exp

( ∞∑
i=1

T i

i

)
exp

( ∞∑
i=1

(qT )i

i

)

=
1

(1− T )(1− qT )
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Weil conjectures

Theorem (Weil, 1948)

Let X be a smooth projective curve of genus g over Fq. Then

Z (X ,T ) =
χ(T )

(1− T )(1− qT )

with χ(T ) ∈ Z[T ] of degree 2g. Moreover,

χ(T ) =

2g∏
i=1

(1− αiT ),

where:

the αi are algebraic integers,

of absolute value
√

q,

permuted by α 7→ q/α.
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Computing zeta functions

Since the zeta function is given by a finite amount of data, one can hope
to compute it.

Problem

Compute Z (X ,T ) efficiently.

Bounds on the the degrees of the numerator and denominator of Z (X ,T )
are known, so computing Z (X ,T ) reduces to computing a finite number
of X (Fqi ).

For a curve of genus g , have to compute up to X (Fqg ). Counting naively
need at least qg operations. Too slow for all but the smallest values of q
and g .

Let us first give some applications.
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Cryptography

Can associate to curve X/Fq a finite Abelian group J(Fq) called its
Jacobian. The order of this group is χ(1). The Discrete Logarithm
Problem (DLP) on J(Fq) is:

Problem

given P,Q ∈ J(Fq) find (the smallest) n ∈ N such that nP = Q.

This problem is used in cryptography in Diffie Helmann key exchange.
When the order of J(Fq) only has small prime factors the DLP is easy.

So we need to compute χ(1) and we can do this by computing Z (X ,T ).
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Sato-Tate distributions

Let X be a smooth projective curve of genus g defined over Q.

For every prime p let Xp/Fp denote the reduction of X modulo p. Again,
for all but a finite number of p:

Z (Xp,T ) =
χp(T )

(1− T )(1− qT )

for some polynomial χp(T ) ∈ Z[T ] of degree 2g .

Problem

How is the polynomial χp(T/
√

p) distributed when p varies?

Conjectural answer: as the (reverse) characteristic polynomial of a random
conjugacy class of a certain compact group. So far only known for g = 1.

Andrew Sutherland (with coauthors) computed χp(T ) for X with g = 2
and found all predicted distributions!
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p-adic numbers

Let:

p a prime,

ordp the p-adic valuation on Z (number of factors p),

‖·‖p = p− ordp(·) associated metric on Z.

Definition (p-adic integers)

Zp is the completion of Z w.r.t. ‖·‖p.

Elements a0 + a1p + a2p2 + . . ., with ai ∈ {0, 1, . . . , p − 1}.

Zp has a unique maximal ideal (p) and Zp/pZp
∼= Fp. The field of

fractions Qp has characteristic 0.

Similarly, can define Zq such that Zq/pZq
∼= Fq, field of fractions Qq.
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p-adic cohomology

Let X/Fq be a smooth projective curve.

Can define p-adic (rigid/Monsky Washnitzer) cohomology space H1
rig(X ):

finite dimensional Qq vector space,

with action F∗q of the q-th power map Fq,

such that:

χ(T ) = det(1− F∗q T |H1
rig(X )).

Idea: first lift X to characteristic 0, then take (overconvergent) de Rham
cohomology.
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Smooth affine case

Let:

X = Spec(A) with A a smooth Fq algebra of finite type.

smooth lift A = Zq[x1, . . . , xl ]/(f1, . . . , fm) such that A⊗Zq Fq = A.

weak completion A† = Zq〈x1, . . . , xl〉†/(f1, . . . , fm), where

Zq〈x1, . . . , xl〉† := {
∑
I

aI x
I : aI ∈ Zq,∃ρ > 1 s.t. lim

|I |→∞
|aI |ρ|I | = 0}.

1-forms Ω1
A† = (A†dx1 ⊕ . . .⊕ A†dxl)/(A†df1 + . . .+ A†dfm).

d : A† 7→ Ω1
A† .

Then: H1
rig(X ) = coker(d)⊗Qq.
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Hyperelliptic curves

Let:

Fq a finite field of odd characteristic,

Q ∈ Fq[x ] monic of degree 2g + 1 without repeated roots,

X the smooth projective curve defined by y2 = Q(x).

X is a hyperelliptic curve of genus g (with a rational Weierstrass point).

For characteristic 2 or curves without a rational Weierstrass point this has
to be modified slightly.

Kedlaya (2001) proposed to compute Z (X ,T ) using p-adic cohomology.
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Kedlaya’s algorithm

Sketch:

X : y2 = Q(x) hyperelliptic of genus g over Fq with q = pn odd.

U open in X defined by y 6∈ {0,∞}.
Q ∈ Zq[x ] a monic lift of Q.

A† = Zq〈x , y , 1/y〉†/(y2 −Q).

basis for H1
rig (X ) ⊂ H1

rig (U) given by [dxy , . . . , x
2g−1 dx

y ].

lift Frobenius to A†: Fp(x) := xp, find Fp(y) ≡ yp mod p (Hensel).

Apply Fp to basis for H1
rig (X ) and reduce to find matrix Fp.

Compute χ(T ) = det(1− T Fn
p|H1

rig (X )).

Z (X ,T ) = χ(T )/((1− T )(1− qT )).
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Complexity

X/Fq hyperelliptic q = pn genus g .

Theorem (Kedlaya, 2001)

Z (X ,T ) can be computed in time O((pg4n3)1+ε).

Input size about log(p)gn, so (only) polynomial time for fixed p.

All p-adic algorithms suffer from this, but the dependence on p can be
improved to O(p1/2+ε) and average polynomial time (Harvey).
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General curves

Let X/Fq with q = pn be the smooth projective curve birational to a
(singular) plane curve

f (x , y) = 0

with f ∈ Fq[x , y ] irreducible and monic in y of degree dx , dy in y , x .

Theorem (Tuitman, 2014)

Suppose that we know a ‘good’ lift F ∈ Zq[x , y ] of f to characteristic zero
(technical). Then the zeta function of X can be computed in time:

O((pd6
y d4

x n3)1+ε)

Input size about log(p)dxdyn, so again (only) polynomial time for fixed p.

Good lift condition rather technical. However often known or easy to
construct (e.g. when g ≤ 5, joint work with Castryck).
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Some examples

Example: the modular curve X1(17)

> P<x>:=PolynomialRing(RationalField());

> R<y>:=PolynomialRing(P);

> f:=y^4 + (x^3 + x^2 - x + 2)*y^3 + (x^3 - 3*x + 1)*y^2 - (x^4 + 2*x)*y + x^3 + x^2;

> p:=101;

> ZetaFunction(f,p);

(10510100501*T^10 + 6035503258*T^9 + 1900905345*T^8 + 396288448*T^7 + 60231754*T^6 + 6865620*T^5 +

596354*T^4 + 38848*T^3 + 1845*T^2 + 58*T + 1)/(101*T^2 - 102*T + 1)

Example: a generic genus 5 curve

> C:=RandomGenus5CurveNonTrigonal(FiniteField(37));

> C;

Curve over GF(37) defined by

19*$.1^2 + 18*$.1*$.2 + 31*$.2^2 + $.1*$.3 + 19*$.2*$.3 + 25*$.3^2 + 8*$.1*$.4 + 17*$.2*$.4 + 29*$.3*$.4 +

19*$.4^2 + 18*$.1*$.5 + 27*$.2*$.5 + 26*$.3*$.5 + 14*$.4*$.5 + 32*$.5^2,

12*$.1^2 + 31*$.1*$.2 + 18*$.2^2 + 11*$.1*$.3 + 24*$.2*$.3 + 21*$.3^2 + 12*$.1*$.4 + 4*$.2*$.4 + 21*$.3*$.4

+ 22*$.4^2 + 4*$.1*$.5 + 31*$.2*$.5 + 23*$.3*$.5 + 20*$.4*$.5 + 35*$.5^2,

21*$.1^2 + 35*$.1*$.2 + 17*$.2^2 + 8*$.1*$.3 + 12*$.2*$.3 + 32*$.3^2 + 34*$.1*$.4 + 22*$.2*$.4 + 24*$.3*$.4 +

18*$.4^2 + 19*$.1*$.5 + 10*$.2*$.5 + 19*$.3*$.5 + 10*$.4*$.5

> ZetaFunction(C);

(69343957*T^10 - 5622483*T^9 + 1418284*T^8 + 217671*T^7 - 2997*T^6 + 6604*T^5 - 81*T^4 + 159*T^3 + 28*T^2

- 3*T + 1)/(37*T^2 - 38*T + 1)

Fields very small in these examples, but same thing works over GF (p) with
p ∼ 215 and GF (q) with q = pn much larger still!
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Precision

Can only compute with p-adic numbers to finite precision N (i.e. mod pN).

Recall that

χ(T ) = χ2gT 2g + . . .+ χ1T + 1 =

2g∏
i=1

(1− αiT )

with |αi | =
√

q and α 7→ q/α permuting the αi . So |χi | ≤
(2g
g

)
qg/2 and

χ2g−i = qg−iχi . Sufficient to compute χ to precision N such that

pN > 2

(
2g

g

)
qg/2.

Have to keep track of p-adic precision throughout the algorithm. This
involves very interesting (and rather technical) mathematics.
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Rational points

X/Q a smooth projective curve of genus g > 1.

Given by (singular) plane model f (x , y) = 0.

Theorem (Faltings, 1983)

The set X (Q) of rational points on X is finite.

Usually points are easily found by a search (if they exist).

Example (g = 4)

f (x , y) = y3 − (x5 − 2x4 − 2x3 − 2x2 − 3x)

X (Q) ⊃ {(1,−2), (0, 0), (−1, 0), (3, 0),∞}

Problem

How to prove that these are all points?
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Chabauty’s theorem

J will denote the Jacobian variety of X , i.e. divisors of degree 0 modulo
divisors of functions. Note that J is naturally an abelian variety.

Theorem (Mordell-Weil)

J(Q) is a finitely generated abelian group.

Given a point b ∈ X (Q), we get an embedding X (Q)→ J(Q):

P 7→ (P)− (b)

Theorem (Chabauty, 1941)

Let r be the rank of J(Q). If r < g then X (Q) is finite.

Coleman: can make this effective using p-adic line integrals.
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Coleman integrals

Let:

p a prime at which X has good reduction,

P,Q ∈ X (Qp),

ω a 1-form on XQp (more generally on some wide open of a rigid
analytic space).

In the 80’s Coleman defined path independent line integrals∫ Q

P
ω

which can be extended to integrate over D ∈ J(Qp), where J is the
Jacobian of X (above: D = (Q)− (P)).
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Properties

The Coleman integral has the following properties:

1 Linearity:
∫ Q
P (aω1 + bω2) = a

∫ Q
P ω1 + b

∫ Q
P ω2.

2 Additivity in endpoints:
∫ Q
P ω =

∫ R
P ω +

∫ Q
R ω.

3 Change of variables: If V ′ ⊂ X ′ is a wide open subspace of a rigid
analytic space X ′ and φ : V → V ′ a rigid analytic map then∫ Q
P φ∗ω =

∫ φ(Q)
φ(P) ω.

4 Fundamental theorem of calculus:
∫ Q
P df = f (Q)− f (P) for f a rigid

analytic function on V .

A residue disk on XQp is the inverse image under reduction mod p of a
single point. Coleman integrals within a single residue disk are called tiny.
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Tiny integrals

Let: P,Q ∈ X (Qp) points in the same residue disk, ω ∈ H0(XQp ,Ω
1).

Then
∫ Q
P ω can be computed by expanding ω in a local coordinate t on

the disk:
ω =

∑
i≥0

ci t
idt

and integrating as usual∫ t(Q)

t(P)

∑
i≥0

ci t
idt =

∑
i≥0

ci
i + 1

(t(Q)i+1 − t(P)i+1).

When P and Q not in the same residue disk, does not work: series do not
converge.

Analytic continuation fails over Qp. Coleman: use Frobenius action on
p-adic cohomology.
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p-adic cohomology

Let U ⊂ X be an open such that X − U is smooth over Zp and
ω1, . . . , ω2g ∈ Ω1(UQp) a basis for H1

dR(XQp).

Then there exist:

a matrix Φ ∈ M2g×2g (Qp),

(overconvergent) functions f1, . . . , f2g on some open of XQp ,

such that

F∗p(ωi ) = dfi +

2g∑
j=1

Φijωj for i = 1, . . . , 2g .

We can take ω1, . . . , ωg to be a basis for H0(XQp ,Ω
1).
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General integrals

Recall that

F∗p(ωi ) = dfi +

2g∑
j=1

Φijωj for i = 1, . . . , 2g .

Assume that Fp(P) = P and Fp(Q) = Q (Teichmüller points). No loss of
generality, can correct with tiny integrals. Integrating, we find∫ Q

P
ωi =

∫ Fp(Q)

Fp(P)
ωi =

∫ Q

P
F∗p(ωi ) = fi (Q)− fi (P) +

∑
j

Φij

∫ Q

P
ωj .

So we can determine the
∫ Q
P ωi by solving the linear system

(Φ− I )

∫ Q

P
ωi = fi (P)− fi (Q) for i = 1, . . . , 2g .
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Chabauty-Coleman

Assume a point b ∈ X (Q) is known and embed X ↪→ J into its Jacobian
by P 7→ (P)− (b).

Theorem (Chabauty-Coleman)

Let r denote the Mordell-Weil rank of J and suppose that r < g. Then
there exists ω ∈ H0(XQp ,Ω

1) such that
∫ P
b ω = 0 for all P ∈ X (Q).

Sketch of proof.

X (Q) X (Qp)

J(Q) J(Qp) H0(XQp ,Ω
1)∗

D 7→
∫
D

AJb

X (Q) lands in a subspace of H0(XQp ,Ω
1)∗ of dimension at most r .
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Implementation

Together with Balakrishnan we have developed and implemented algorithm
for computing (single) Coleman integrals and carrying out effective
Chabauty on arbitrary curves:

www.github.com/jtuitman/Coleman

Note that we need Mordell-Weil rank r to be known and r < g .

When r ≥ g there is an extension of the effective Chabauty method by
Kim (non-Abelian Chabauty), involving iterated Coleman integrals.

Together with Balakrishnan, Dogra, Müller and Vonk we have recently
succeeded in applying Kim’s method to the split Cartan modular curve of
level 13 (also known as the cursed curve).
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Example

Let us return to the example f (x , y) = y3 − (x5 − 2x4 − 2x3 − 2x2 − 3x).
The Magma function RankBounds() proves that the rank of J is 1. This
uses work of Poonen-Schaefer (1997). Now we use our code:

> load "coleman.m";

> Q:=y^3 - (x^5 - 2*x^4 - 2*x^3 - 2*x^2 - 3*x);

> p:=7;

> N:=15;

> data:=coleman_data(Q,p,N);

> Qpoints:=Q_points(data,1000); // PointSearch

> #vanishing_differentials(Qpoints,data:e:=50);

3

> #effective_chabauty(data,1000:e:=50),#Qpoints;

5 5

This proves that our list of rational points is complete.
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