

Xavier Caruso, Pierre Lairez, David Roe, Tristan Vaccon

Univ. Rennes 1, INRIA Saclay, MIT, 立教大学 then Univ. Limoges

Workshop - Numerical methods for algebraic curves, Rennes Feb. 20th 2018

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- Direct analysis
- Application in linear algebra
- The main lemma
- 2 *p*-adic differential equations with separation of variables

- Isogeny computation
- The original scheme
- 3 Applying differential precision
 - Applying the lemma
 - A more subtle approach
 - *p* = 2?

Why should one work with *p*-adic numbers ?

p-adic methods

■ Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;

p-adic methods

p 進精度

- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- e.g. Linear algebra, Polynomial factorization via Hensel's lemma.

p-adic methods

p 進精度

- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- e.g. Linear algebra, Polynomial factorization via Hensel's lemma.

p-adic algorithms

Going from Z/pZ to Z_p and then back to Z/pZ enables more computation ;

p-adic methods

p 進精度

- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- e.g. Linear algebra, Polynomial factorization via Hensel's lemma.

p-adic algorithms

- Going from Z/pZ to Z_p and then back to Z/pZ enables more computation ;
- Kedlaya's and Lauder's counting-point algorithms via p-adic cohomology;

p-adic methods

p 進精度

- Working in Q_p instead of Q, one can handle more efficiently the coefficients growth ;
- e.g. Linear algebra, Polynomial factorization via Hensel's lemma.

p-adic algorithms

- Going from Z/pZ to Z_p and then back to Z/pZ enables more computation ;
- Kedlaya's and Lauder's counting-point algorithms via p-adic cohomology;

My personal (long-term) motivation

Computing (some) moduli spaces of *p*-adic Galois representations.

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma
- 2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- Isogeny computation
- The original scheme
- 3 Applying differential precision
 - Applying the lemma
 - A more subtle approach

Table of contents

p-adic precision: direct approach and differential precision
Direct analysis

- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [\![0, p-1]\!]$, $k \in \mathbb{Z}$ and p a prime number. While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\sum_{i=l}^{d-1} a_i p^i + O(p^d)$, with $l \in \mathbb{Z}$.

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [\![0, p-1]\!]$, $k \in \mathbb{Z}$ and p a prime number. While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\underbrace{\sum_{i=l}^{d-1} a_i p^i + O(p^d)}_{i=l}$, with $l \in \mathbb{Z}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [[0, p-1]]$, $k \in \mathbb{Z}$ and p a prime number. While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\underbrace{\sum_{i=l}^{d-1} a_i p^i + O(p^d)}_{i=l}$, with $l \in \mathbb{Z}$.

Definition

The order, or the absolute precision of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition of the precision

Finite-precision *p*-adics

Elements of \mathbb{Q}_p can be written $\sum_{i=k}^{+\infty} a_i p^i$, with $a_i \in [[0, p-1]]$, $k \in \mathbb{Z}$ and p a prime number. While working with a computer, we usually only can consider the beginning of this power serie expansion: we only consider elements of the following form $\underbrace{\sum_{i=l}^{d-1} a_i p^i + O(p^d)}_{i=l}$, with $l \in \mathbb{Z}$.

Definition

The order, or the absolute precision of $\sum_{i=k}^{d-1} a_i p^i + O(p^d)$ is d.

Example

The order of
$$3 * 7^{-1} + 4 * 7^0 + 5 * 7^1 + 6 * 7^2 + O(7^3)$$
 is 3.

p 進精度 ____p-adic precision: direct approach and differential precision ____Direct analysis

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

p 進精度 ____p-adic precision: direct approach and differential precision ____Direct analysis

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of ${\bf Round\text{-}off\ error}$:

$$(1+5*10^{-2}) + (2+6*10^{-2}) = 3+1*10^{-1} + 1*10^{-2}$$

That is to say, if a and b are known up to precision 10^{-n} , then a + b is known up to $10^{(-n+1)}$.

p-adic precion vs real precision

The quintessential idea of the step-by-step analysis is the following :

Proposition (*p*-adic errors don't add)

Indeed,

$$(a + O(p^{k})) + (b + O(p^{k})) = a + b + O(p^{k}).$$

That is to say, if a and b are known up to precision $O(p^k)$, then so is a + b.

Remark

It is quite the opposite to when dealing with real numbers, because of ${\bf Round\text{-}off\ error}$:

$$(1+5*10^{-2}) + (2+6*10^{-2}) = 3+1*10^{-1} + 1*10^{-2}$$

That is to say, if a and b are known up to precision 10^{-n} , then a + b is known up to $10^{(-n+1)}$.

p-adic precision: direct approach and differential precision Direct analysis

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0,k_1)})$$

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0,k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{\min(k_0 + v_p(x_1), k_1 + v_p(x_0))})$$

└─ *p*-adic precision: direct approach and differential precision └─ Direct analysis

Precision formulae

Proposition (addition)

$$(x_0 + O(p^{k_0})) + (x_1 + O(p^{k_1})) = x_0 + x_1 + O(p^{\min(k_0,k_1)})$$

Proposition (multiplication)

$$(x_0 + O(p^{k_0})) * (x_1 + O(p^{k_1})) = x_0 * x_1 + O(p^{\min(k_0 + v_p(x_1), k_1 + v_p(x_0))})$$

Proposition (division)

In par

$$\frac{xp^{a} + O(p^{b})}{yp^{c} + O(p^{d})} = x * y^{-1}p^{a-c} + O(p^{min(d+a-2c,b-c)})$$

ticular,
$$\frac{1}{p^{c}y + O(p^{d})} = y^{-1}p^{-c} + O(p^{d-2c})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

-p-adic precision: direct approach and differential precision

Application in linear algebra

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{array}{ll} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{array}$$

- p-adic precision: direct approach and differential precision

Application in linear algebra

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{array}{ll} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \\ 2p^6 + O(p^{10}) & 2p + O(p^{10}) & 2p + p^5 + O(p^{10}) \end{array}$$

Direct expansion

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Application in linear algebra

A little warm-up on computing determinants : expansion

An example of determinant computation

$$\begin{array}{c|c} p^5 + O(p^{10}) & \hline 1 + O(p^{10}) \\ O(p^{10}) & 1 + O(p^{10}) \\ \hline 2p^6 + O(p^{10}) \\ \end{array} \begin{array}{c} 1 + O(p^{10}) \\ 2p + O(p^{10}) \\ \end{array} \begin{array}{c} 1 + p^3 + O(p^{10}) \\ \hline 1 + O(p^{10}) \\ 2p + P^5 + O(p^{10}) \\ \end{array}$$

Direct expansion

If we expand directly using the expression of the determinant in terms of the coefficients, we get:

$$-2p^9 + O(p^{10}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

because of $1 \times 1 \times O(p^{10})$.

- *p*-adic precision: direct approach and differential precision

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$egin{array}{lll} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \ O(p^{10}) & O(p^{10}) & -2p^4 + p^5 + O(p^{10}) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- *p*-adic precision: direct approach and differential precision

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$egin{array}{lll} p^5 + O(p^{10}) & 1 + O(p^{10}) & 1 + p^3 + O(p^{10}) \ O(p^{10}) & 1 + O(p^{10}) & 1 + O(p^{10}) \ O(p^{10}) & O(p^{10}) & -2p^4 + p^5 + O(p^{10}) \end{array}$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- *p*-adic precision: direct approach and differential precision

A little warm-up on computing determinants : row-echelon form computation

An example of determinant computation

$$\begin{array}{c|c} p^5 + O(p^{10}) & 1 + O(p^{10}) \\ \hline O(p^{10}) & 1 + O(p^{10}) \\ \hline O(p^{10}) & O(p^{10}) \\ \hline O(p^{10}) & O(p^{10}) \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 1 + p^3 + O(p^{10}) \\ \hline 1 + O(p^{10}) \\ \hline 1 + O(p^{10}) \\ \hline 0 + p^5 + O(p^{10}) \\ \hline \end{array} \\ \end{array}$$

Row-echelon form computation

If we compute approximate row-echelon form, we still get:

$$-2p^9 + O(p^{10}),$$

because of $1 \times 1 \times O(p^{10})$.

_____p-adic precision: direct approach and differential precision

Application in linear algebra

A little warm-up on computing determinants : SNF

An example of determinant computation

$$\begin{array}{ccc} 1+O(p^{10}) & O(p^{10}) & O(p^{10}) \\ O(p^{10}) & p^3+O(p^{10}) & O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^6+p^7+O(p^{10}) \end{array}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

- p-adic precision: direct approach and differential precision

Application in linear algebra

A little warm-up on computing determinants : SNF

An example of determinant computation

$$\begin{array}{cccc} 1+O(p^{10}) & O(p^{10}) & O(p^{10}) \\ O(p^{10}) & p^3+O(p^{10}) & O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^6+p^7+O(p^{10}) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

p-adic precision: direct approach and differential precision

Application in linear algebra

A little warm-up on computing determinants : SNF

An example of determinant computation

$$\begin{array}{c|ccc} 1+O(p^{10}) & O(p^{10}) & O(p^{10}) \\ \hline O(p^{10}) & p^3+O(p^{10}) & O(p^{10}) \\ O(p^{10}) & O(p^{10}) & -2p^6+p^7+O(p^{10}) \\ \hline \end{array}$$

Smith Normal Form (SNF) computation

If we compute approximate SNF, we now get:

$$-2p^9 + p^{10} + O(p^{13}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

because of $1 \times p^3 \times O(p^{10}) = O(p^{13})$.

- p-adic precision: direct approach and differential precision

Application in linear algebra

Summary: precision and *p*-adic computations

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Direct method for precision

p-adic precision: direct approach and differential precision

Application in linear algebra

Summary: precision and *p*-adic computations

Direct method for precision

• Has often been enough to get a first view of the problem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

p-adic precision: direct approach and differential precision

Application in linear algebra

Summary: precision and *p*-adic computations

Direct method for precision

- Has often been enough to get a first view of the problem.
- Depends heavily on the algorithm chosen for the computation

- p-adic precision: direct approach and differential precision

Application in linear algebra

Summary: precision and *p*-adic computations

Direct method for precision

- Has often been enough to get a first view of the problem.
- Depends heavily on the algorithm chosen for the computation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No idea on what is optimal.

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

- p-adic precision: direct approach and differential precision

L The main lemma

The Main lemma of *p*-adic differential precision

Lemma (CRV14)

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで
- p-adic precision: direct approach and differential precision

└─ The main lemma

The Main lemma of *p*-adic differential precision

Lemma (CRV14)

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective.

- p-adic precision: direct approach and differential precision

└─ The main lemma

The Main lemma of *p*-adic differential precision

Lemma (CRV14)

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

p-adic precision: direct approach and differential precision

└─ The main lemma

The Main lemma of *p*-adic differential precision

Lemma (CRV14)

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough,

$$f(x+B) = f(x) + f'(x) \cdot B.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

-p-adic precision: direct approach and differential precision

└─ The main lemma

-p-adic precision: direct approach and differential precision

└─ The main lemma

-p-adic precision: direct approach and differential precision

└─ The main lemma

- p-adic precision: direct approach and differential precision

└─ The main lemma

p-adic precision: direct approach and differential precision

└─ The main lemma

Geometrical meaning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- p-adic precision: direct approach and differential precision

L The main lemma

Lattices

- p-adic precision: direct approach and differential precision

L The main lemma

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough,

$$f(x+B) = f(x) + f'(x) \cdot B.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- p-adic precision: direct approach and differential precision

└─ The main lemma

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

 $f(x+H) = f(x) + f'(x) \cdot H.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

p-adic precision: direct approach and differential precision

└─ The main lemma

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H) = f(x) + f'(x) \cdot H.$$

Remark

This allows more models of precision, like

$$(x, y) = (1 + O(p^{10}), 1 + O(p)).$$

p-adic precision: direct approach and differential precision

└─ The main lemma

Lattices

Lemma

Let $f : \mathbb{Q}_p^n \to \mathbb{Q}_p^m$ be a (strictly) differentiable mapping. Let $x \in \mathbb{Q}_p^n$. We assume that f'(x) is surjective. Then for any ball B = B(0, r) small enough, for any open lattice $H \subset B$

$$f(x+H) = f(x) + f'(x) \cdot H.$$

Remark

This allows more models of precision, like

$$(x, y) = (1 + O(p^{10}), 1 + O(p)).$$

Remark

Our framework can be extended to (complete) ultrametric K-vector spaces (e.g. being $\mathbb{F}_{p}((X))^{n}$, $\mathbb{Q}((X))^{m}$, $\mathbb{R}((\varepsilon))^{s}$).

- p-adic precision: direct approach and differential precision

・ロト・日本・ビー・ ビー・ ひくぐ

L The main lemma

What is small enough ?

How can we determine when the lemma applies ?

p 進精度 上 p-adic precision: direct approach and differential precision 上 The main lemma

What is small enough ?

How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to

$$\sum_{k=2}^{+\infty} \frac{1}{k!} f^{(k)}(x) \cdot H^k \subset f'(x) \cdot H.$$

p 進精度 上 p-adic precision: direct approach and differential precision 上 The main lemma

What is small enough ?

How can we determine when the lemma applies ? When f is locally analytic, it essentially corresponds to

$$\sum_{k=2}^{+\infty} \frac{1}{k!} f^{(k)}(x) \cdot H^k \subset f'(x) \cdot H.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This can be determined with Newton-polygon techniques.

L The main lemma

Looking back to the case of the determinant

Differential of the determinant

It is well known:

 $\det'(M): dM \mapsto \operatorname{Tr}(\operatorname{Com}(M) \cdot dM).$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

└─ The main lemma

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

• Loss in precision: coefficient of Com(M) with smallest valuation.

└─ The main lemma

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Com(M) with smallest valuation.
- Corresponds to the products of the n-1-first invariant factors.

└─ The main lemma

Looking back to the case of the determinant

Differential of the determinant

It is well known:

$$\det'(M): dM \mapsto \mathsf{Tr}(\mathsf{Com}(M) \cdot dM).$$

Consequence on precision

- Loss in precision: coefficient of Com(M) with smallest valuation.
- Corresponds to the products of the n 1-first invariant factors.

Approximate SNF is optimal.

- p-adic precision: direct approach and differential precision

L The main lemma

Some differentiable operations

Some more examples

We can apply our method to:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- p-adic precision: direct approach and differential precision

L The main lemma

Some differentiable operations

Some more examples

We can apply our method to:

• On matrices: characteristic polynomial, LU factorization, inverse...

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

└─ The main lemma

Some differentiable operations

Some more examples

We can apply our method to:

• On matrices: characteristic polynomial, LU factorization, inverse...

• On $\mathbb{Q}_p[X]$: evaluation, interpolation, GCD, factorization...

└─ The main lemma

Some differentiable operations

Some more examples

We can apply our method to:

• On matrices: characteristic polynomial, LU factorization, inverse...

- On $\mathbb{Q}_p[X]$: evaluation, interpolation, GCD, factorization...
- On $\mathbb{Q}_p[X_1, \ldots, X_n]$: division, Gröbner bases.

└─ The main lemma

Some differentiable operations

Some more examples

We can apply our method to:

• On matrices: characteristic polynomial, LU factorization, inverse...

- On $\mathbb{Q}_p[X]$: evaluation, interpolation, GCD, factorization...
- On $\mathbb{Q}_p[X_1, \ldots, X_n]$: division, Gröbner bases.

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- Isogeny computation
- The original scheme
- 3 Applying differential precision
 - Applying the lemma
 - A more subtle approach

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

p-adic differential equations with separation of variables

Isogeny computation

Motivations for isogenies computaions

Point-counting algorithms

Use isogenies between an elliptic curve E and other curves: quotient by l-torsion, ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

p-adic differential equations with separation of variables

Isogeny computation

Motivations for isogenies computaions

Point-counting algorithms

Use isogenies between an elliptic curve E and other curves: quotient by l-torsion, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cryptosystems

De Feo-Jao-Plût (2011) have proposed cryptosystems based in the computation of isogenies.

p-adic differential equations with separation of variables

・ロト・日本・ビー・ ビー・ ひくぐ

└─ Isogeny computation

Toward computation

p-adic differential equations with separation of variables

Isogeny computation

Toward computation

Isogeny and Differential equations (cf Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E : y^2 = x^3 + Ax + B,$$

$$\tilde{E} : y^2 = x^3 + \tilde{A}x + \tilde{B}.$$

p-adic differential equations with separation of variables

Toward computation

Isogeny and Differential equations (*cf* Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E : y^2 = x^3 + Ax + B,$$

$$\tilde{E} : y^2 = x^3 + \tilde{A}x + \tilde{B}.$$

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y) = (U(x), yU'(x)),$$

p-adic differential equations with separation of variables \Box Isogeny computation

Toward computation

Isogeny and Differential equations (*cf* Schoof-Elkies-Atkin algorithm, Bostan-Morain-Salvy-Schost 08, Lercier-Sirvent 08, ...)

Let E and \tilde{E} be two elliptic curves over $\mathbb{Z}/p\mathbb{Z}$:

$$E : y^2 = x^3 + Ax + B,$$

$$\tilde{E} : y^2 = x^3 + \tilde{A}x + \tilde{B}.$$

Let us assume that there exists some normalized isogeny I between E and \tilde{E} . Then, for some rational fraction U,

$$I(x,y) = (U(x), yU'(x)),$$

Writing $U = \frac{1}{S(\frac{1}{\sqrt{x}})^2}$, we get :

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

-p-adic differential equations with separation of variables

Isogeny computation

Change of variable and the differential equation

The differential equation

Let S be such that

$$U=\frac{1}{S(\frac{1}{\sqrt{x}})^2}.$$

Then if $A, B, \tilde{A}, \tilde{B}$ are in \mathbb{Z}_p ,

 $S \in \mathbb{Z}_p[[t]]$

We have the following differential equation for S :

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
- p-adic differential equations with separation of variables

Isogeny computation

A *p*-adic computation of a solution

Computing the isogeny

Given *E* and \tilde{E} , the goal is to compute the isogeny *I* via the differential equation:

$$egin{cases} S(0) = 0, \ (Bx^6 + Ax^4 + 1)S'^2 = 1 + ilde{A}S^4 + ilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$.

p-adic differential equations with separation of variables

Isogeny computation

A *p*-adic computation of a solution

Computing the isogeny

Given *E* and \tilde{E} , the goal is to compute the isogeny *I* via the differential equation:

$$egin{cases} S(0) = 0, \ (Bx^6 + Ax^4 + 1)S'^2 = 1 + ilde{A}S^4 + ilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

p-adic differential equations with separation of variables

Isogeny computation

A *p*-adic computation of a solution

Computing the isogeny

Given *E* and \tilde{E} , the goal is to compute the isogeny *I* via the differential equation:

$$egin{cases} S(0) = 0, \ (Bx^6 + Ax^4 + 1)S'^2 = 1 + ilde{A}S^4 + ilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

1 Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .

p-adic differential equations with separation of variables

Isogeny computation

A *p*-adic computation of a solution

Computing the isogeny

Given *E* and \tilde{E} , the goal is to compute the isogeny *I* via the differential equation:

$$egin{cases} S(0) = 0, \ (Bx^6 + Ax^4 + 1)S'^2 = 1 + ilde{A}S^4 + ilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

- **1** Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .
- **2** Solve the differential equation in \mathbb{Z}_p .

p-adic differential equations with separation of variables

Isogeny computation

A *p*-adic computation of a solution

Computing the isogeny

Given *E* and \tilde{E} , the goal is to compute the isogeny *I* via the differential equation:

$$egin{cases} S(0) = 0, \ (Bx^6 + Ax^4 + 1)S'^2 = 1 + ilde{A}S^4 + ilde{B}S^6. \end{cases}$$

Going through \mathbb{Z}_p

Not easy to solve a differential equation in $\mathbb{Z}/p\mathbb{Z}$. Consequently:

- **1** Lift (consistently) from $\mathbb{Z}/p\mathbb{Z}$ to \mathbb{Z}_p .
- **2** Solve the differential equation in \mathbb{Z}_p .
- **3** Reduce mod p to get the solution in $\mathbb{Z}/p\mathbb{Z}$.

L The original scheme

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

└─ The original scheme

Change of equation

When
$$p \neq 2$$
, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p[[x]], g(0) = h(0) = 1$

└─ The original scheme

Change of equation

When
$$p \neq 2$$
, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p[[x]], g(0) = h(0) = 1$

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

└─ The original scheme

Change of equation

When
$$p \neq 2$$
, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p[[x]], g(0) = h(0) = 1$

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

└─ The original scheme

Change of equation

When
$$p \neq 2$$
, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p[[x]], g(0) = h(0) = 1$

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m) x^k = \frac{O(p^m)}{k+1} x^{k+1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

L The original scheme

Change of equation

When
$$p \neq 2$$
, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p[[x]], g(0) = h(0) = 1$

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m) x^k = \frac{O(p^m)}{k+1} x^{k+1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

One loses $O(\log N)$ digits at each step, for N the order of truncation.

└─ The original scheme

Change of equation

When
$$p \neq 2$$
, we can replace $y'^2 \times G = H(y)$ by $y' = g \times h(y)$ with $g, h \in \mathbb{Z}_p[[x]], g(0) = h(0) = 1$

Direct analysis

Newton scheme to solve $y' = g \times h(y)$:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right).$$

Remark

$$\int O(p^m) x^k = \frac{O(p^m)}{k+1} x^{k+1}.$$

One loses $O(\log N)$ digits at each step, for N the order of truncation. To compute y mod $x^{2^{N}+1}$, we need an initial precision of $O(N^2)$ digits.

・ロト・西・・田・・田・・日・

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma
- 2 *p*-adic differential equations with separation of variables

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

- Isogeny computation
- The original scheme
- 3 Applying differential precision
 - Applying the lemma
 - A more subtle approach

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

Differential and differential equation

Theorem

Let Φ : $(g,h) \mapsto y$ such that y(0) = 0 and y' = gh(y). Then,

$$\Phi'(g,h) \cdot (\delta g, \delta h) = h(y) \int \delta g + \frac{g \delta h(y)}{h(y)}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Differential and differential equation

Theorem

Let Φ : $(g,h) \mapsto y$ such that y(0) = 0 and y' = gh(y). Then,

$$\Phi'(g,h) \cdot (\delta g, \delta h) = h(y) \int \delta g + \frac{g \delta h(y)}{h(y)}.$$

Proposition

In our case, $p \neq 2$, $y, g, h \in \mathbb{Z}_p[\![x]\!]$, g(0) = h(0) = 1. If $\delta g = \delta h = O(p^k)$, then

Differential and differential equation

Theorem

Let Φ : $(g,h) \mapsto y$ such that y(0) = 0 and y' = gh(y). Then,

$$\Phi'(g,h)\cdot(\delta g,\delta h)=h(y)\int\delta g+rac{g\delta h(y)}{h(y)}.$$

Proposition

In our case, $p \neq 2$, $y, g, h \in \mathbb{Z}_p[\![x]\!]$, g(0) = h(0) = 1. If $\delta g = \delta h = O(p^k)$, then

$$\Phi'(y) \cdot (\delta g, \delta h) \mod x^{2^N+1} \in rac{O(p^k)}{p^N} \mathbb{Z}_p[\![x]\!].$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

First conclusion on the application of the lemma

Proposition

 $\Phi(g,h) \mod (p,t^{2^n})$ is determined by $g,h \mod (p^{1+\log_p 2^n},t^{2^n})$. In other words, we have a logarithmic loss in precision.

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach
- *p* = 2?

Different way of representing the *p*-adics

Another take on the computation

Different way of representing the *p*-adics

Another take on the computation

■ In the previous computation, we start with some given approximations of *g*, *h*, *u*₀ and try **to follow** the algorithm for the exact counterparts of *g*, *h*, *u*₀.

Different way of representing the *p*-adics

Another take on the computation

In the previous computation, we start with some given approximations of g, h, u₀ and try to follow the algorithm for the exact counterparts of g, h, u₀. This is somehow much stronger than our desire: computing a good approximate solution.

Different way of representing the *p*-adics

Another take on the computation

- In the previous computation, we start with some given approximations of g, h, u₀ and try to follow the algorithm for the exact counterparts of g, h, u₀. This is somehow much stronger than our desire: computing a good approximate solution.
- Another way is then to modify the current g, h, u₀ at each step, in a consistent way, so as to keep on getting better approximate solutions.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Different way of representing the *p*-adics

Another take on the computation

- In the previous computation, we start with some given approximations of g, h, u₀ and try to follow the algorithm for the exact counterparts of g, h, u₀. This is somehow much stronger than our desire: computing a good approximate solution.
- Another way is then to modify the current g, h, u₀ at each step, in a consistent way, so as to keep on getting better approximate solutions.

• A third way here will be to work entirely in $\mathbb{Z}/p^{\kappa}\mathbb{Z}$.

Adaptative method

Adaptative differential tracking of precision

イロト イロト イミト イミト 一日 うらぐ

Adaptative method

Adaptative differential tracking of precision

Adaptative method

Adaptative differential tracking of precision

В

Adaptative method

Adaptative differential tracking of precision $x + O(p^N)$ $? + O(p^{N})$ x+x + Bf'(x)

 $f'(x) \cdot B$

Adaptative method

Adaptative method

Adaptative method

Adaptative differential tracking of precision

Adaptative method

Adaptative differential tracking of precision

Adaptative method

Adaptative method

Adaptative method

Adaptative method

Final take on the Newton scheme

We can prove that it is harmless to work in $\mathbb{Z}/p^k\mathbb{Z}$ for our computation.

Proposition

We can obtain the solution $\Phi(g, h) \mod (p, t^{n+1})$ knowing $g, h \mod (p^{\lfloor \log_p n \rfloor + 1}, t^{n+1})$ and applying the following iteration:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right),$$

Final take on the Newton scheme

We can prove that it is harmless to work in $\mathbb{Z}/p^k\mathbb{Z}$ for our computation.

Proposition

We can obtain the solution $\Phi(g, h) \mod (p, t^{n+1})$ knowing $g, h \mod (p^{\lfloor \log_p n \rfloor + 1}, t^{n+1})$ and applying the following iteration:

$$N_{g,h}(u) \leftarrow u - h(u) \int \left(\frac{u'}{h(u)} - g\right),$$

modulo $p^{\lfloor \log_p n \rfloor + 1}$ and growing order of truncation.

Timings

Figure: Timings in seconds, measured on a laptop, of our Algorithm run at precision λ_{old} (upper curve) and λ_{new} (lower curve) in order to compute an approximation modulo $(5, t^{4m+1})$ of some given *m*-isogenies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Speedup

Figure: Practical speedup obtained with the new precision analysis compared with the theoretical improvement (*m*-axis in logarithmic scale). (\blacksquare) is the ratio on precisions, (\bullet) is the actual speedup.

Table of contents

1 *p*-adic precision: direct approach and differential precision

- Direct analysis
- Application in linear algebra
- The main lemma

2 *p*-adic differential equations with separation of variables

- Isogeny computation
- The original scheme

3 Applying differential precision

- Applying the lemma
- A more subtle approach

うせん 川田 (山田) (山) (山)

p 進精度 Applying differential precision

Square roots?

What happens when p = 2?

p 進精度 Applying differential precision

Square roots?

What happens when p = 2? Square roots are very costly in \mathbb{Q}_2 .

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\dots(\frac{1}{2}-n+1)}{n!}x^n + o(x^n).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

p 進精度 Applying differential precision

Square roots?

What happens when p = 2? Square roots are very costly in \mathbb{Q}_2 .

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\dots(\frac{1}{2}-n+1)}{n!}x^n + o(x^n).$$

Parity

$$\int X^{2n} = \frac{1}{2n+1} X^{2n+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

p 進精度 Applying differential precision

Square roots?

What happens when p = 2? Square roots are very costly in \mathbb{Q}_2 .

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\dots(\frac{1}{2}-n+1)}{n!}x^n + o(x^n).$$

Parity

$$\int X^{2n} = \frac{1}{2n+1} X^{2n+1}$$

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

p 進精度 Applying differential precision

Square roots?

What happens when p = 2? Square roots are very costly in \mathbb{Q}_2 .

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\dots(\frac{1}{2}-n+1)}{n!}x^n + o(x^n).$$

Parity

$$\int X^{2n} = \frac{1}{2n+1} X^{2n+1}$$

$$(Bx^6 + Ax^4 + 1)S'^2 = 1 + \tilde{A}S^4 + \tilde{B}S^6.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

g, h are even, S is odd.

The differential

For $I(t)S'(t)^2 = h(S(t))$, the corresponding differential is:

p 進精度 Applying differential precision

The differential

For $I(t)S'(t)^2 = h(S(t))$, the corresponding differential is:

$$\delta S = S' \sqrt{I} \int_0^t \frac{1}{\sqrt{I}} \left(\frac{\delta h(S)}{2h(S)} - \frac{\delta I}{I} \right)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

p 進精度 Applying differential precision

The differential

For $I(t)S'(t)^2 = h(S(t))$, the corresponding differential is:

$$\delta S = S' \sqrt{l} \int_0^t \frac{1}{\sqrt{l}} \left(\frac{\delta h(S)}{2h(S)} - \frac{\delta l}{l} \right).$$

Inverse computation

The inverse of

$$\phi: \,\delta I \mapsto \sqrt{I} \int_0^t \frac{\delta I}{I\sqrt{I}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

p 進精度 Applying differential precision

The differential

For $I(t)S'(t)^2 = h(S(t))$, the corresponding differential is:

$$\delta S = S' \sqrt{l} \int_0^t \frac{1}{\sqrt{l}} \left(\frac{\delta h(S)}{2h(S)} - \frac{\delta l}{l} \right).$$

Inverse computation

The inverse of

$$\phi: \ \delta I \mapsto \sqrt{I} \int_0^t \frac{\delta I}{I\sqrt{I}}$$

is

$$\phi^{-1}: v \mapsto v'l - \frac{1}{2}vl'.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

p 進精度 Applying differential precision

On *p*-adic precision

On *p*-adic precision

Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Can stabilize and attain optimal precision, even though naïve computation lose too much precision.

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.
- Soon, a package for Sage to do optimal precision tracking (cf David's talk).

p 進精度 └──Applying differential precision └──p = 2?

To sum up

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.
- Soon, a package for Sage to do optimal precision tracking (cf David's talk).

On differential equations

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.
- Soon, a package for Sage to do optimal precision tracking (cf David's talk).

On differential equations

 Can attain optimal loss in precision for differential equations with separation of variables.

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.
- Soon, a package for Sage to do optimal precision tracking (cf David's talk).

On differential equations

 Can attain optimal loss in precision for differential equations with separation of variables.

• Future works: higher order and p = 2.

On *p*-adic precision

- Step-by-step analysis : as a first step. Can show differentiability and naïve loss in precision during the computation.
- Differential calculus : intrinsic and can handle both gain and loss.
- Can stabilize and attain optimal precision, even though naïve computation lose too much precision.
- Soon, a package for Sage to do optimal precision tracking (cf David's talk).

On differential equations

 Can attain optimal loss in precision for differential equations with separation of variables.

• Future works: higher order and p = 2.

References

Initial article

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON Tracking *p*-adic precision, ANTS XI, 2014.

Linear Algebra

■ XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON *p*-adic stability in linear algebra, ISSAC 2015.

Differential equations

 PIERRE LAIREZ AND TRISTAN VACCON On p-adic differential equations with separation of variables, ISSAC 2016.

Thank you for your attention

