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Optimal control of large particle systems (1)

We consider the optimal control of large particle systems of the form

min
(αN,i )i=1,...,N

E

[∫ T

t0
(

1
N

N∑
i=1

L(X N,i
t , αN,i

t ) + F(mN
XN

t
))dt + G(mN

XN
T

)

]
,

where, for i = 1, . . . ,N,

X N,i
t = xN,i

0 +

∫ T

t0
αN,i

t dt +
√

2(Bi
t − Bi

t0 ) +
√

2a0(B0
t − B0

t0
),

mN
XN

t
=

1
N

N∑
i=1

δ
XN,i

t

and
N is the (large) number of particles,
X N,i

t ∈ Rd is the position of a particle at time t ,

αN,i
t ∈ Rd is the control for particle i ∈ {1, . . . ,N} at time t ,

(Bi )i∈N is a family of d−dimension independent Brownian motions
T > 0 is the terminal time horizon,
(t0, xN

0 ) = (t0, (xN,i
0 )i=1,...,N ) ∈ [0,T ]× (Rd )N is the initial position of the particles,

L : Rd × Rd → R is a kinetic cost,
F ,G : P1(Rd )→ R are interaction costs,
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Optimal control of large particle systems (2)

Let VN be the value function of the problem:

VN (t0, xN
0 ) := min

(αN,i )i=1,...,N

E

[∫ T

t0
(

1
N

N∑
i=1

L(X N,i
t , αN,i

t ) + F(mN
XN

t
))dt + G(mN

XN
T

)

]
,

where, for i = 1, . . . ,N,

X N,i
t = xN,i

0 +

∫ T

t0
αN,i

t dt +
√

2(Bi
t − Bi

t0 ) +
√

2a0(B0
t − B0

t0
),

we want to understand

The behavior of VN as N → +∞,

and the behavior of the optimal trajectories,

... in a quantitative way.
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The expected limit problem

Following Lacker (’17) and Djete et al. (’22) the limit problem as N → +∞ is expected to be an
optimal control problem of a McKean-Vlasov equation

U(t0,m0) = inf
α

E[

∫ T

t0

(
L(Xt , αt ) + F(L(Xt |FB0

t ))
)

+ G(L(XT |FB0

T ))]

where FB0
= (FB0

t )0≤t≤T denotes the filtration generated by B0, and

Xt = X̄t0 +

∫ t

t0
αs(Xs)ds +

√
2(Bt − Bt0 ) +

√
2a0(B0

t − B0
t0

).

Here B is another Brownian motion, X̄t0 is a random initial condition with law m0 and B0, B and
X̄t0 are independent.
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A few references

Early references: Huang-Caines-Malhamé (’03), Lasry-Lions (’07), Andersson-Djehiche (’10) for max. principle,

Carmona-Delarue-Lachapelle (’13) for comparison MFG/MFC, Laurière-Pironneau (’14) for dyn. program.,...

Analysis of mean field control (MFC) problems:
I Deterministic setting: Fornasier-Solombrino (’14), Fornasier-Lisini-Orrieri-Savaré (’17), Cesaroni-Cirant

(’21), Burger-Pinnau-Totzeck-Tse (’21), Bonnet-Frankowska (’21), Cavagnari-Lisini-Orrieri-Savaré (’22)...

I Stochastic setting: Buckdahn-Li-Ma (’17) for pbs with partial observations, Lacker (’17), Barrasso-Touzi
(’22) for exit-time pbs, Djete-Possamaï-Tan (’22) for dyn. prog. with common noise,...

Analysis of the mean field limit: Kolokoltsov (’12) in finite state, Lacker (’17), Cecchin (’21) in finite state,

Gangbo-Mayorga-Swiech (’21) for pbs without idyo. noise, Germain-Pham-Warin (’21) for rate in the smooth case,

Talbi-Touzi-Zhang (’21) for exit-time pbs, Djete-Possamaï-Tan (’22) with common noise, Djete (’22) extended MFC...

Analysis of the HJ eq.: Lasry-Lions (’08) and Gangbo-Nguyen-Tudorascu (’08) for first order pbs, C.-Quincampoix
(’08) for pbs arising in diff. games, Feng-Katsoulakis (’09) for controlled gradient flows, Ambrosio-Feng (’14) for first order
pbs, ...
and more recently Burzoni-Ignazio-Reppen-Soner (’20), Jimenez-Marigonda-Quincampoix (’20, ’23), Wu-Zhang (’20),
Gangbo-Mayorga-Swiech (’21), Conforti-Kraaij-Tonon (’21), Cosso-Gozzi-Kharroubi-Pham-Rosestolato (’21),
Badreddine-Frankowska (’22), Cecchin-Delarue (’22), Bayraktar-Ekren-Zhang (’23), Bertucci (’23), Cheung-Tai-Qiu (’23),
Daudin-Seeger (’23), Mayorga-Swiech (’23), Talbi-Touzi-Zhang (’23), Conforti-Kraaij-Tamanini-Tonon (’24),
Cox-Kallblad-Larsson-Svaluto-Ferro (’24), Daudin-Jackson-Seeger (’24), Soner-Yan (’24), ...
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Heuristic arguments (when a0 = 0)

The value function VN of the N−particle system is a classical solution to the
Hamilton-Jacobi equation in RdN


−∂tVN (t , x)−

N∑
j=1

∆x jVN (t , x) +
1
N

N∑
j=1

H(x j ,NDx jVN (t , x)) = F(mN
x )

in (0,T )× (Rd )N

VN (T , x) = G(mN
x ) in (Rd )N

where H(x , p) = sup
a∈Rd

−p.a− L(x , a).

The value function U of the limit problem is expected to satisfy the Hamilton-Jacobi
equation in P1(Rd )
−∂tU(t ,m)−

∫
Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

H(y ,DmU(t ,m, y))m(dy) = F(m)

in (0,T )× P1(Rd )

U(T ,m) = G(m) in P1(Rd )

However U is not smooth in general and has to be understood in terms of “viscosity
solutions”.
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Heuristic arguments (when a0 = 0) — continued

Assume U is smooth. Then setting UN (t , x) := U(t ,mN
x ), we have

DxiU
N (t , x) =

1
N

DmU(t ,mN
x , xi ), etc...

and therefore UN satisfies
−∂tUN (t , x)−

N∑
j=1

∆x jUN (t , x) +
1
N

N∑
j=1

H(x j ,NDx jUN (t , x))

= F(mN
x ) + EN (t , x) in (0,T )× (Rd )N

UN (T , x) = G(mN
x ) in (Rd )N

where EN (t , x) = −
1

N2

N∑
j=1

tr(DmmU(t ,mN
x , xi , xi )) = O(1/N).

By comparison we could conclude that

|UN − VN | ≤ C/N.

Unfortunately, argument not correct in general since U is not smooth.
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Outline

1 A convergence rate

2 The region of strong regularity

3 Improved convergence rate
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The value functions

VN is the value function for the N−particle system:

VN (t0, xN
0 ) := min

(αN,i )i=1,...,N

E

[∫ T

t0
(

1
N

N∑
i=1

L(X N,i
t , αN,i

t ) + F(mN
XN

t
))dt + G(mN

XN
T

)

]
,

where, for i = 1, . . . ,N,

X N,i
t = xN,i

0 +

∫ T

t0
αN,i

t dt +
√

2(Bi
t − Bi

t0 ) +
√

2a0(B0
t − B0

t0
).

Definition of the value function U for the limit system: Given
(t0,m0) ∈ [0,T ]× P2(Rd ), we define a control rule R ∈ A(t0,m0) to be a tuple
R = (Ω,F ,F,P,W ,m, α), where

1 (Ω,F ,F = (Ft )0≤t≤T ,P) is a filtered probability space supporting the d-dimensional
Brownian motion W

2 α = (αt )t0≤t≤T is a F-progressively measurable taking values in L∞(Rd ;Rd ) and
such that α is uniformly bounded,

3 m satisfies the stochastic McKean-Vlasov equation

dmt (x) = [(1 + a0)∆mt (x)− div(mtαt (x))] dt +
√

2a0Dmt (x) · dWt , mt0 = m0.

We define

U(t0,m0) := inf
R∈A(t0,m0)

EP
[ ∫ T

t0

( ∫
Rd

L(x , αt (x))mt (dx) + F(mt ))dt + G(mT )
]
.
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Standing assumptions

The maps H : Rd × Rd → R, F : P1(Rd )→ R and G : P1(Rd )→ R satisfy

H is of class C2 and strictly convex. In addition we assume that there exists a constant
C > 0 such that

C−1|p|2 − C ≤ H(x , p) ≤ C(|p|2 + 1) ∀(x , p) ∈ Rd × Rd ,

|Dx H(x , p)| ≤ C(|p|+ 1) ∀(x , p) ∈ Rd × Rd

and that, for any R > 0, there exists CR > 0 such that

|D2
xx H(x , p)|+ |D2

xpH(x , p)| ≤ CR ∀(x , p) ∈ Rd × Rd , |p| ≤ R.

The map F : P1(Rd )→ R is of class C2 with F , DmF , D2
ymF and D2

mmF uniformly
bounded. The map G : P1(Rd )→ R is of class C4 with all derivatives (in m and then in the
additional variables) up to order 4 uniformly bounded.

−→ Note that F and G are not assumed to be convex and thus U is not smooth in general. (cf.

Briani-C. (’18), Bardi-Fischer (’19))
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Main result on the convergence rate

Theorem (C.-Daudin-Jackson-Souganidis)

Under our standing assumptions, there exists β ∈ (0, 1] (depending only on d) and C > 0
(depending on the data) such that, for any (t , x) ∈ [0,T ]× (Rd )N ,∣∣∣VN (t , x)− U(t ,mN

x )
∣∣∣ ≤ CN−β(1 + M2(mN

x )).

The proof relies on
(uniform in N) regularity estimates for VN

and concentration inequalities

Result recently improved by Daudin-Delarue-Jackson (’23), who shows that the optimal rate
(without common noise and in the torus) is β = 1/2.
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Idea of proof (1): regularity estimates

Lemma

Under our standing assumptions, there exists a constant C > 0 such that,

for any N ≥ 1,
‖VN‖∞ + N sup

j
‖Dx jVN‖∞ + ‖∂tVN‖∞ ≤ C.

(Semiconcavity) for any ξ = (ξi ) ∈ (Rd )N and ξ0 ∈ R,

N∑
i,j=1

D2
x i x jVN (t , x)ξi ·ξj +2

N∑
i=1

D2
x i tV

N (t , x) ·ξiξ0 +D2
ttV

N (t , x)(ξ0)2 ≤
C
N

N∑
i=1

|ξi |2 +C(ξ0)2.

Remark: The limit value function U is Lipschitz continuous in [0,T ]× P1(Rd ) and semiconcave
in a suitable sense.
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Idea of proof (2): The easy inequality

Let

V̂N (t ,m) :=

∫
(Rd )N

VN (t , x)
N∏

j=1

m(dx j ) ∀(t ,m) ∈ [0,T ]× P1(Rd ).

Lemma

The map V̂N is smooth and satisfies the inequality
−∂t V̂N (t ,m)−

∫
Rd

div(DmV̂N (t ,m, y))m(dy) +

∫
Rd

H(y ,DmV̂N (t ,m, y))m(dy) ≤ F̂(m)

in (0,T )× P1(Rd )

V̂N (T ,m) = Ĝ(m) in P1(Rd )

where F̂N (m) :=

∫
(Rd )N

F(mN
x )

N∏
j=1

m(dx j ) and ĜN (m) :=

∫
(Rd )N

G(mN
x )

N∏
j=1

m(dx j ).

Hence, the exists constants C, β > 0 such that, for any (t , x0) ∈ [0,T ]× (Rd )N ,

VN (t ,mN
x0

) ≤ U(t ,mN
x0

) + C(1 + M2(mN
x0

))N−β ,
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Idea of proof (3): The difficult inequality

Proposition

There exists a constant β ∈ (0, 1] (depending on dimension only) and a constant C > 0
(depending on the data) such that, for any N ≥ 1 and any (t , x) ∈ [0,T ]× (Rd )N , it holds:

U(t ,mN
x )− VN (t , x) ≤ CN−β(1 +

1
N

N∑
i=1

|x i |2).

Proof by penalization: we consider, for θ, λ ∈ (0, 1),

MN := max
(t,x),(s,y)∈[0,T ]×(Rd )N

es(U(s,mN
y )−VN (t , x))−

1
2θN

N∑
i=1

|x i−y i |2−
1
2θ
|s−t |2−

λ

2N

N∑
i=1

|y i |2.

By combining Lipschitz and semiconcavity estimates and concentration inequalities we show
that, for a suitable choice of θ, λ,

MN ≤ CN−β .
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Outline

1 A convergence rate

2 The region of strong regularity

3 Improved convergence rate

Pierre Cardaliaguet Mean-Field Control June 2024 16 / 27



Our aim is to study the behavior of optimal trajectories of VN and prove a (quantitative)
propagation of chaos property.

For this we assume from now on that there is no common noise: a0 = 0. Then the value
function of the limit problem is given by

U(t0,m0) := inf

{∫ T

t0
(

∫
Rd

L(x , α(t , x))m(t , dx) + F(m(t)))dt + G(m(T ))

}

where the infimum is taken over the pairs (m, α) ∈ C0([t0,T ],P1(Rd ))× L0([t0,T ]× Rd ;Rd )

such that
∫ T

t0

∫
Rd |α(t , x)|2m(t , dx)dt < +∞ and (m, α) satisfies in the sense of distributions

∂t m −∆m + div(mα) = 0 in (t0,T )× Rd , m(0) = m0 in Rd .

The analysis is split into two parts:

Regularity properties of the function U ,

Propagation of chaos.
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Regularity of U

Theorem (C.-Souganidis)

The map U is globally Lipschitz continuous on [0,T ]× P1(Rd ) and there exists an open and
dense subset O of [0,T )× P2(Rd ) on which U is of class C1. Moreover U satisfies in a classical
sense in O the Hamilton-Jacobi equation:

−∂tU(t ,m)−
∫
Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

H(y ,DmU(t ,m, y))m(dy) = F(m).

(Compare with Cosso and al. (’21) and Cecchin-Delarue (’22))

The region of strong regularity O is defined as follows:

O :=

{
(t0,m0) ∈ [0,T )× P2(Rd ),

there exists a unique minimizer for U(t0,m0)
and this minimizer is stable

}
.
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Proof (1): Stability of a minimizer

Proposition (Lasry-Lions)

Let (m, α) be a minimizer for U(t0,m0). There exists a unique multiplier u : [t0,T ]× Rd → R of
class C1,2 such that α = −DpH(x ,Du) and the pair (u,m) satisfies


−∂t u −∆u + H(x ,Du) = F (x ,m(t)) in (t0,T )× Rd

∂t m −∆m − div(Hp(x ,Du)m) = 0 in (t0,T )× Rd

m(t0) = m0, u(T , x) = G(x ,m(T )) in Rd

where F (x ,m) =
δF
δm

(m, x), G(x ,m) =
δG
δm

(m, x).

We say that (m, α) is stable if (z, µ) = (0, 0) is the only solution to the linearized system


−∂t z −∆z + Hp(x ,Du) · Dz =

δF
δm

(x ,m(t))(µ(t)) in (t0,T )× Rd

∂tµ−∆µ− div(Hp(x ,Du)µ)− div(Hpp(x ,Du)Dzm) = 0 in (t0,T )× Rd

µ(t0) = 0, z(T , x) =
δG
δm

(x ,m(T ))(µ(T )) in Rd
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Proof (2): Key property of stable solutions

Proposition

1 Assume that there is a unique minimizer (m, α) for U(t0,m0) and that this minimizer is
stable. Then there exists a neighborhood O′ of {(t ,m(t)), t ∈ [t0,T ]} such that, for any
(t1,m1) ∈ O′, there is a unique minimizer for U(t1,m1) and this minimizer is stable.

2 If (m, α) is a minimizer for U(t0,m0), then for any t1 ∈ (t0,T ) there is a unique minimizer
for U(t1,m(t1)) and this minimizer is stable.

Reminiscent from similar results in finite dimensional control theory.

The proof uses on a Lions-Malgrange (’60) type argument, generalized by
Cannarsa-Tessitore (’94) to forward-backward systems.

Similar result obtained by Briani-C. (’18) in the torus.
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Proof (3): Regularity of U

Proposition

The map U is of class C1 in O with DmU(t0,m0, ·) = Du(t0, ·) for any (t0,m0) ∈ O, where u is
the multiplier associated to the unique minimizer (m, α) for U(t0,m0).

Relies on constructions developed in C.-Delarue-Lasry-Lions (’19) for mean field games.

In contrast with this paper, stability replaces the monotonicity condition.
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Main result on the propagation of chaos

Theorem (C.-Souganidis)

Fix (t0,m0) ∈ O. There exists a constant γ ∈ (0, 1) (depending on dimension only) and C > 0
(depending on (t0,m0)) such that, if (Z k ) is a sequence of independent r.v. with law m0 and
YN = (Y N,k ) is the optimal trajectories for VN (t0, (Z k )k=1,...,N ):

Y N,k
t = Z k −

∫ t

t0
Hp(Y k

s ,DVN (s,YN
s ))ds +

√
2(Bk

t − Bk
t0 ),

then

E

[
sup

t∈[t0,T ]
d1(mN

YN
t
,m(t))

]
≤ CN−γ ,

where (m, α) is optimal for U(t0,m0).

Following Sznitman, this implies the propagation of chaos for the (Y N,k ).

Pierre Cardaliaguet Mean-Field Control June 2024 22 / 27



Outline
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Improved convergence rate in the region of strong regularity

Recall that

VN is the value function for the N−particle problem,

U is the value function of the limit problem,

O is the set of region of strong regularity of U .

Theorem [C., Jackson, Mimikos, Souganidis]

Let p > 2. Then for each subset K of O which is compact in Pp(Rd ), there is a constant
C = C(K ) such that

|U(t ,mN
x )− VN (t , x)| ≤ C/N,

and (convergence of the optimal feedback)

|DmU(t ,mN
x , x

i )− NDx iVN (t , x)| ≤ C/N

for each i = 1, ...,N and (t , x) ∈ [0,T ]× (Rd )N such that (t ,mN
x ) ∈ K .

Remark: the global optimal rate is N−1/2 (Daudin-Delarue-Jackson (’23)).
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Sketch of proof of the improved convergence rate (1)

For (t0,m0) ∈ O, let Tr (t0,m0) be the set of radius r around the optimal trajectory for the
mean field control problem started from (t0,m0).
Using the regularity of U in O, we first check that

U(t ,mN
x )− VN (t , x)

≤ C/N + P
[
s 7→ (s,m

X(t,x)
s

) leaves Tr (t0,m0)
]
× sup

(s,mN
y )∈Tr (t0,m0)

(
U(s, yN )− VN (s,mN

y )
)
.

We derive from this that, for 0 < r1 � r2 � 1,

sup
(s,mN

y )∈Tr1 (t0,m0)

(
U(s,mN

y )− VN (s, y)
)

≤ C/N + CN−γ × sup
(s,mN

y )∈Tr2 (t0,m0)

(
U(s,mN

y )− VN (s, y)
)
,

where γ is independent of r1 and r2.
We apply the previous step to a sequence of radii r (1)

2 � r (1)
1 = r (2)

2 � r (2)
1 = r (3)

2 � ... to
see that

sup
(s,mN

y )∈T
r(k)
1

(t0,m0)

(
U(s, yN )− VN (s,mN

y )
)
≤ CN−(1∧kγ),

... which gives the convergence rate for VN for k large.

Pierre Cardaliaguet Mean-Field Control June 2024 25 / 27



Sketch of proof of the improved convergence rate (2)

To prove the convergence of the optimal feedback, we argue in a similar way, using a C2

regularity of U in O:

Theorem [C., Jackson, Mimikos, Souganidis]

The derivative DmmU exists and is continuous in O. Moreover, for each (t0,m0) ∈ O, there exist
δ,C > 0 such that for each t , m1,m2 with |t − t0| < δ, d2(m0,mi ) < δ, i = 1, 2, we have

sup
x,y∈Rd

|DmmU(t ,m1, x , y)− DmmU(t ,m2, x , y)| ≤ Cd1(m1,m2)
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Conclusion and open problems

Conclusion: in these presentation

we have discussed a converge rate for the value function and the optimal feedback,

and proved the propagation of chaos for optimal trajectories.

Open problems

generalization of the propagation of chaos and of the improved convergence rate to
problems with a common noise,

application to potential mean field game problems.

Thank you!
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