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The classical expected utility theory
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Classical expected utility: the backward utility maximization

The key ingredients are the choices of the trading horizon [0, T ],
and the investor’s utility uT (x) at the maturity T .

The objective is to maximize the expected utility of terminal wealth
over the admissible strategies:

u(x , t; T ) = ess sup
π∈AD [t,T ]

E[uT (Xπ
T )|Ft , Xt = x ]

If uT (x) is power, log or exponential, then the value process
u(x , t; T ) and its associated optimal strategy can be characterized in
terms of the solution to quadratic BSDE defined on a finite horizon.
See El Karoui and Rouge (2000, MF), Hu et al (2005, AOAP),
Mania and Schweizer (2005, AOAP), Morlais (2009, FS), . . . and
textbooks by Pham (2009, Chapter 6.6) and Touzi (2013, Chapter
11.3).
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Comments on classical expected utility

Once the investor’s utility is chosen at T , her risk preferences
cannot be revised. The problem is essentially a one-period problem
even though the underlying portfolio choices are formulated in
continuous time. See Musiela and Zariphopoulou (2003, preprint),
(2008, MPRF), (2009, QF), (2010, SIFIN).

The classical expected utility is also horizon biased: The investor will
have an in-built preference for the time horizon.
For example, suppose that power utility uT (x) = 1

δ
xδ, no trading

constraints Π = Rd , and constant market price of risk θt ≡ θ for
some constant θ. Then at any time τ , her value function is time
monotone:

U(x , τ ; T ) =
xδ

δ
e
− δ

2(1−δ)
|θ|2(T−τ ).

The investor will have an in-build preference over the time τ . In this
case, she will choose τ = T . See Henderson (2007, MAFE) and
Henderson and Hobson (2007, SPA).
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Forward performance process: the forward utility maximization

Forward performance process, dated back to 2003, was introduced
by Musiela and Zariphopoulou in a series of their papers. See MZ
(2008, MPRF), (2009, QF), (2010, SIFIN) · · ·

Definition

A forward performance process is an F-progressively measurable process
U(x , t) such that

for any t ≥ 0, the map x 7→ U(x , t) is strictly increasing and strictly
concave for x ∈ D;

Martingale optimality: for any admissible strategy π ∈ AD , and for
any 0 ≤ t ≤ s < ∞,

U(Xπ
t , t) ≥ E [U(Xπ

s , s)|Ft ] ,

and there exists an optimal strategy π∗ ∈ AD such that

U(Xπ∗

t , t) = E

[

U(Xπ∗

s , s)|Ft

]

.
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Comments on forward performance process

From its definition, a forward performance process depends on
market.

Input: investor’s initial risk preference+market; output: investor’s
forward performance process.

In a market with F being the Brownian filtration and all the market
coefficients are bounded and driven by a stochastic factor process,
forward performance processes can be characterized in terms of the
solutions of infinite horizon BSDE and ergodic BSDE. See Liang and
Zariphopoulou (2017, SIFIN).

In this talk, we consider a market with unbounded market
coefficients, and characterize forward performance processes using
infinite horizon quadratic BSDE and ergodic quadratic BSDE.
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The stochastic factor model

All the market coefficients depend on a d-dim stochastic factor
process V = (V 1, · · · , V d )tr :

dV i
t = ηi(Vt)dt +

d∑

j=1

κijdW
j
t .

The drift η(v) of the stochastic factor satisfies the dissipative
condition:

(η(v) − η(v̄ )) · (v − v̄) ≤ −Cη|v − v̄ |2

for a large enough dissipative constant Cη (large dissipative
condition).

The volatility matrix κ of the stochastic factor is constant with
|κ| = 1, and κκtr is positive definite.

The market price of risk θ(v) = σ(v)tr [σ(v)σ(v)tr ]−1b(v) is
uniformly bounded and Lipschitz continuous with Lipschitz constant
Cθ.
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Representation via SPDE

Suppose that U(x , t) admits the Itô’s decomposition:

dU(x , t) = F (x , t)dt + Z (x , t) · dWt

for some F-progressively measurable processes F (x , t) and Z (x , t),
and that all involved quantities have enough regularity.

Applying Itô-Ventzell formula to U(Xt(π), t) for any admissible π,
we obtain that, for a chosen volatility Z (x , t), the drift F (x , t) must
have a specific form:

F (x , t) = −
1

2
|x |2∂xxU(x , t)dist2

{

Π,−
∂xZ (x , t) + θ(Vt)∂xU(x , t)

x∂xxU(x , t)

}

+
|∂xZ (x , t) + θ(Vt)∂xU(x , t)|2

2∂xxU(x , t)
.

In general, solving the above fully nonlinear SPDE is a formidable
task. See however El Karoui and Mrad (2014, SIFIN) for an
equivalent formulation by using a duality and stochastic flow
approach.
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The case of zero volatility

If Z (x , t) = 0, the result is complete. See Musiela and
Zariphopoulou (SIFIN, 2010). The SPDE reduces to

dU(x , t) =
1

2
|θ(Vt)|

2 |Ux(x , t)|2

Uxx(x , t)
dt.

Then U(x , t) = u
(

x ,
∫ t

0
|θ(V )s |

2ds
)

where

ut(x , t) =
1

2

|ux(x , t)|2

uxx (x , t)
.

The solvability of the above PDE is closely related to the ill-posed
heat equation:

ht(x , t) +
1

2
hxx(x , t) = 0.

The key ingredient is the Widder’s theorem. See MZ (SIFIN, 2010).

No boundedness assumption on θ(v).
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Ergodic BSDE representation

Theorem (Liang and Zariphopoulou (2017, SIFIN))

Suppose θ(v) is bounded. The process U(x , t) = xδ

δ
e f (Vt ,t) = xδ

δ
eYt−λt is

a power forward performance process and satisfies

dU(x , t) = U(x , t)(−F (Vt , Zt) +
1

2
|Zt |

2)dt + U(x , t)Zt · dWt .

The optimal strategy is given by π∗
t = ProjΠ

Zt+θ(Vt)
(1−δ) , where (Y , Z , λ)

solves the ergodic BSDE with F :

dYt = (−F (Vt , Zt) + λ)dt + Zt · dWt

with

F (Vt , z) = −
1

2
δ(1−δ)dist2

{

Π,
z + θ(Vt)

1 − δ

}

+
1

2

δ

1 − δ
|z+θ(Vt)|

2+
1

2
|z|2.

Moreover, the above equation admits a unique Markovian solution in the

sense that Yt = y(Vt) for some function y(·) with linear growth, and

Zt = z(Vt) with |z(·)| ≤ Cv

Cη−Cv
.
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Connection with ergodic risk-sensitive optimisation

The Markovian solution λ is the long-term growth rate of power
utility maximisation problem:

λ = sup
π∈AD

lim sup
T→∞

1

T
ln EPπ

[
XT (π)δ

δ

]

.

Moreover, the optimal control process is given as π∗.

We need to first establish the ergodic risk-sensitive optimisation:

λ = sup
π∈AD

lim sup
T→∞

1

T
ln EPπ

(

e
∫

T

0
L(Vu,πu)du

)

,

where L(Vu , πu) = − 1
2δ(1 − δ)|πu |

2 + δθ(Vu) · πu , and the
probability measure Pπ is defined as

dPπ

dP
= E

(∫ ·

0

δπu · dWu

)

T

.
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Verification

Apply Itô’s formula to U(Xt(π), t) = (Xt (π))δ

δ
eYt−λt :

U(Xt(π), t) = U(X0, 0)A
π
t E(

∫
·

0

(Zu + δπu) · dWu)t

where

Aπ
t = exp

(∫ t

0

(

−F (u,Zu) −
1

2
δ(1 − δ)|πu −

Zu + θ(Vu)

1 − δ
|2
)

du

)

× exp

(∫ t

0

(
1

2

δ

1 − δ
|Zu + θ(Vu)|

2 +
1

2
|Zu |

2

)

du

)

.

Therefore,

(1) with the choice of F , Aπ
t ≤ 1, ↓, and Aπ∗

t = 1;

(2) E(

∫
·

0

(Zu + δπu) · dWu) is in Class (D);

(3) π∗

t = ProjΠ(
Zt + θ(Vt)

1 − δ
) ∈ AD .
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Ergodic BSDE

The driver of the ergodic BSDE satisfies

|F (v , z) − F (v̄ , z)| ≤ Cv (1 + |z|)|v − v̄ |;

|F (v , z) − F (v , z̄)| ≤ Cz(1 + |z| + |z̄|)|z − z̄ |;

|F (v , 0)| ≤ CF .

To ensure Z is bounded, we require the dissipative constant
Cη > Cv (large dissipative condition).

As a consequence, since π∗
t = ProjΠ

Zt+θ(Vt)
(1−δ) and θ(·) is bounded, if

we require
∫ ·

0
πu · dWu is BMO, the verification will work.
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Truncated ergodic BSDE

Define a truncation function:

q(z) =
min{|z|, Cv/(Cη − Cv )}

|z|
z1{z 6=0}.

Consider the truncated ergodic BSDE:

dYt = (−F (Vt , q(Zt)) + λ)dt + Zt · dWt .

The truncated driver is Lipschitz continuous:

|F (v , q(z)) − F (v̄ , q(z))| ≤
CηCv

Cη − Cv

|v − v̄ |;

|F (v , q(z)) − F (v , q(z̄))| ≤ Cz

Cη + Cv

Cη − Cv

|z − z̄|.

If we can prove the truncated ergodic BSDE with F (·, q(·)) admits a
unique solution (Y , Z , λ) with |Zt | ≤

Cv

Cη−Cv
, then q(Zt) = Zt , and

therefore (Y , Z , λ) is also a solution to the original ergodic BSDE
with F (·, ·).
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Infinite horizon BSDE representation

Theorem (Liang and Zariphopoulou (2017, SIFIN))

Suppose that θ(v) is bounded. Then, the process

Uρ(x , t) = xδ

δ
e f (Vt ,

∫
t

0
Vsds) = xδ

δ
eY

ρ
t −

∫
t

0
ρY ρ

s ds is a power forward

performance process, and satisfies

dUρ(x , t) = Uρ(x , t)(−F (Vt , Z
ρ
t ) +

1

2
|Zρ

t |
2)dt + Uρ(x , t)(Zρ

t ) · dWt .

The optimal strategy is given by

π∗
t = ProjΠ

Z
ρ
t + θ(Vt)

(1 − δ)
,

where (Y ρ, Zρ) solves the infinite horizon BSDE with F :

dY
ρ
t = (−F (Vt , Z

ρ
t ) + ρY

ρ
t )dt + (Zρ

t ) · dWt .

Moreover, the above equation admits a unique Markovian solution in the

sense that Y
ρ
t = yρ(Vt) for some function yρ(·) bounded by K

ρ
, and

Z
ρ
t = zρ(Vt) with |zρ(·)| ≤ Cv

Cη−Cv
.
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The case of unbounded market coefficients
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Unbounded market price of risk

The market price of risk θ(v) satisfies only Lipschitz continuity with
Lipschitz constant Cθ.

Example:

Underlying stock:

dSt

St

= b(Vt)dt + σ(Vt)dW 1
t ,

so the market price of risk θ(Vt) = b(Vt)/σ(Vt) = CθVt .
Stochastic factor:

dVt = −CηVt + κ1dW 1
t + κ2dW 2

t .

The driver is

F (Vt , (z1, z2)
tr ) = −CθVtz1 −

1

2
C 2

θ |Vt |
2 +

1

2
|z2|

2,

where the trading constraint set Π = R × {0} with π1t = π̃tσ(Vt)
and π2t ≡ 0.
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Ergodic quadratic BSDE

Formally, it is expected that the ergodic BSDE representation still
holds. However, the ergodic quadratic BSDE inherently exhibit
quadratic growth.

The driver of the ergodic quadratic BSDE satisfies

|F (v , z) − F (v̄ , z)| ≤ (Cv + kv |z| +
αv

2
(|v | + |v̄ |))|v − v̄ |;

|F (v , z) − F (v , z̄)| ≤ (Cz + kz |v | +
αz

2
(|z| + |z̄|))|z − z̄|;

|F (v , 0)| ≤ CF + αv |v |
2.

When the market price of risk θ(v) is bounded, then αv = kz = 0. It
covers the ergodic BSDE studied in Liang and Zariphopoulou (2017,
SIFIN).
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Truncated ergodic quadratic BSDE

Define a truncation function ρM : a smooth modification of the
projection on the ball with radius M such that |ρM | ≤ M ,
|∇ρM | ≤ 1 and ρM(x) = x for |x | ≤ M − 1.

The truncated driver satisfies

|F (ρM(v), z) − F (ρM(v̄ ), z)| ≤ (Cv + αvM + kv |z|)|v − v̄ |;

|F (ρM(v), z) − F (ρM(v), z̄)| ≤ (Cz + kzM +
αz

2
(|z| + |z̄ |))|z − z̄ |;

|F (ρM(v), 0)| ≤ CF + αvM
2.

The corresponding truncated ergodic quadratic BSDE with
F (ρM (·, ·)) admits a unique solution (Y , Z , λ) with Z bounded:

|z(·)| ≤
Cv + αvM

Cη − Cv − αvM

which only holds for M ≤
Cη−Cv

αv
and will explode! So the previous

results do not apply.
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Enhanced Z estimations via De Giorgi type iteration
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Finite horizon quadratic BSDE

The key is to analyze the following finite horizon discounted
quadratic BSDE:

Yt =

∫ T

t

[F (ρM(Vs), Zs) − ρYs ]ds −

∫ T

t

Zs · dWs ,

coupled with
dVt = η(Vt)dt + κ · dWt .

Aim to obtain estimate |Zt | ≤ C (1 + |Vt |) where C is independent
of ρ, M , T .

Two steps:

|Zt | ≤ CM,T

for CM,T independent of ρ.

|Zt | ≤ C +
αv

Cη − kv

|Vt |

for C independent of ρ, M, T .
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First step via variation

The fist step is standard by variation

∇Yt =

∫ T

t

[∇vF (ρM(Vs), Zs) · ∇Vs + ∇zF (ρM(Vs), Zs) · ∇Zs − ρ∇Ys ]ds

−

∫ T

t

∇Zs · dWs ,

and

∇Vt = 1 +

∫ T

t

∇η(Vs ) · ∇Vsds.

Use the representation

Zt = ∇Yt · (∇Vt)
−1 · κ

to obtain
|Zt | ≤ CM,T .
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Second step by De Giorgi type iteration

Basic idea: Aim to show that

|Zt | ≤ An + B|Vt |,

with A0 = CM,T , and An is defined iteratively as

An+1 = C + βAn

for β < 1, and B, C , β, independent of ρ, M , T , are to be
determined.

Then, the sequence {An} converges as a contraction function and
An → C/(1 − β), so that

|Zt | ≤
C

1 − β
+ B|Vt |.

In PDE literature, it is known as De Giorgi iteration technique, used
to prove Hölder’s regularity with measurable coefficients, maximum
principle for weak solutions...

In BSDE literature, this iteration technique was introduced by
Richou (2012, SPA).
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Second step by De Giorgi type iteration

Change the probability measure in the variation equation

∇Yt ·(∇Vt)
−1 = EQM

t

[∫ T

t

e−ρ(s−t)∇vF (ρM(Vs), Zs) · ∇Vs · (∇Vt)
−1ds

]

,

with dWs −∇zF (ρM(Vs), Zs)ds being BM under QM .

Suppose that |Zt | ≤ An + B|Vt | holds for n, then

|Zt | = |∇Yt · (∇Vt)
−1 · κ|

≤ EQM

t

[∫ T

t

e−ρ(s−t)(Cv + αv |Vs | + kv |Zs |)e
−Cη(s−t)ds

]

≤
Cv + kvAn

Cη

+ (αv + kvB)

∫ T

t

e−Cη(s−t)EQM

t [|Vs |
2]

1
2 ds (1)

? ≤ An+1 + B|Vt |.

Hence, the question boils down to estimate EQM

t [|Vs |
2], where

dVt = [η(Vt) + κ · ∇zF (ρM(Vt), Zt)]dt + κ · dW QM

t .
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Second step by De Giorgi type iteration

Define ǫ̃ := Cη − kz − αzB such that ǫ̃ > 0. Then, for any small
ǫ < ǫ̃

2 , suppose that |Zt | ≤ An + B|Vt | holds for n,

EQM

t [|Vs |
2] ≤ |Vt |

2 +
ǫ + |η(0)|2 + C 2

z

ǫ(ǫ̃ − 2ǫ)
+

α2
z

ǫ̃(ǫ̃ − 2ǫ)
|An|

2. (2)

Hence, (1)+(2) shows that |Zt | is bounded by

Cv

Cη

+
αv + kvB

Cη

√

ǫ + |η(0)|2 + C2
z

ǫ(ǫ̃ − 2ǫ)
︸ ︷︷ ︸

=:C

+

(

kv

Cη

+
αv + kvB

Cη

αz
√

ǫ̃(ǫ̃ − 2ǫ)

)

︸ ︷︷ ︸

=:β<1

An +
αv + kvB

Cη
︸ ︷︷ ︸

=:B

|Vt |

= (C + βAn) + B|Vt |

= An+1 + B|Vt |.

Three constraints: ǫ̃ > 0, β < 1, and αv +kv B
Cη

= B.
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Large dissipative condition

Large dissipative condition:

Cη > kv ∨ kz ;
(Cη − kv)

2(Cη − kz)

2Cη − kv

> αvαz .

Then, B = αv

Cη−kv
, and

|Zt | ≤
C

1 − β
+

αv

Cη − kv

|Vt |.

In the example, kv = kz = 2Cθ , αv = 2C 2
θ , αz = 1. So

Cη > 2Cθ;
(Cη − 2Cθ)

3

Cη − Cθ

> 4C 2
θ .

In particular, Cη = pCθ for p ≥ 5 satisfies the large dissipative condition.
Asset is more stable but offers lower risk-adjusted return.

When θ(v) is bounded, αv = kz = 0, then B = 0, C = Cv/Cη, and
β = kv/Cη . Hence,

|Zt | ≤
C

1 − β
=

Cv

Cη − kv

recovering the large dissipative condition in Liang and Zariphopoulou
(2017, SIFIN).
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Happy Birthday Professor Ying Hu!
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