Projections of semimartingales and BSDEs Monique Jeanblanc

Rennes, A Backward Stochastic Excursion with Ying HU. JUNE 18, 2024

In this talk we will study projections of semi-martingales on various filtrations and give applications to some BSDEs.

A (special) **semimartingale** is a process X which admits a decomposition as X = M + A where M is a (local) martingale and A a (predictable) process with bounded variation.

Let $\mathbb{F} \subset \mathbb{G}$ be two nested filtrations (i.e. $\mathcal{F}_t \subset \mathcal{G}_t$, $\forall t \geq 0$). The \mathbb{F} -(optional) projection of a \mathbb{G} -martingale $X^{\mathbb{G}}$ on \mathbb{F} i.e., $X_t^{\mathbb{F}} = {}^oX_t^{\mathbb{G}} = \mathbb{E}(X_t^{\mathbb{G}}|\mathcal{F}_t), t \geq 0$ is an \mathbb{F} -martingale. The projection of a bounded variation process is not, in general a bounded variation process.

A simple case

The first step is to recall a well known lemma.

For any (bounded) process ϑ , let \mathbb{F} be a filtration and define $\vartheta_s^{\mathbb{F}} = \mathbb{E}[\vartheta_s | \mathcal{F}_s]$. Then,

$$M_t := \mathbb{E}[\int_0^t \vartheta_u du | \mathcal{F}_t] - \int_0^t \mathbb{E}[\vartheta_u | \mathcal{F}_u] du = \mathbb{E}[\int_0^t \vartheta_u du | \mathcal{F}_t] - \int_0^t \vartheta_u^{\mathbb{F}} du$$

is an F-martingale.

$$\begin{aligned} \forall s < t, \quad \mathbb{E}[M_t | \mathcal{F}_s] &= \quad \mathbb{E}\left[\mathbb{E}[\int_0^t \vartheta_u du | \mathcal{F}_t] - \int_0^t \mathbb{E}[\vartheta_u | \mathcal{F}_u] du | \mathcal{F}_s\right] \\ &= \quad \mathbb{E}[\int_0^t \vartheta_u du | \mathcal{F}_s] - \mathbb{E}\left[\int_0^s \mathbb{E}[\vartheta_u | \mathcal{F}_u] du + \int_s^t \mathbb{E}[\vartheta_u | \mathcal{F}_u] du | \mathcal{F}_s\right] \\ &= \mathbb{E}[\int_0^s \vartheta_u du | \mathcal{F}_s] \quad + \quad \mathbb{E}[\int_s^t \vartheta_u du | \mathcal{F}_s] - \int_0^s \mathbb{E}[\vartheta_u | \mathcal{F}_u] du - \mathbb{E}\left[\int_s^t \mathbb{E}[\vartheta_u | \mathcal{F}_u] du | \mathcal{F}_s\right] \\ &= \quad M_s + \mathbb{E}[\int_s^t \vartheta_u du | \mathcal{F}_s] - \int_s^t \mathbb{E}[\vartheta_u | \mathcal{F}_s] du = M_s.\end{aligned}$$

Let $\mathbb{F} \subset \mathbb{G}$ be two nested filtrations, ϑ be a \mathbb{G} -adapted integrable process and M be the \mathbb{F} -martingale

$$M_t = \mathbb{E}[\int_0^t \vartheta_s ds | \mathcal{F}_t] - \int_0^t \vartheta_s^{\mathbb{F}} ds.$$

The goal is to identify M in terms of the process ϑ and one (or more) specific \mathbb{F} -martingales which satisfy **predictable representation property** (PRP) on \mathbb{F} .

We recall that PRP is satisfied in a filtration \mathbb{H} if there exists an \mathbb{H} -martingale (may be multidimensional) Y such that any \mathbb{H} martingale X can be written as $X_t = X_0 + \int_0^t \varphi_s dY_s$ for a predictable process φ . Basic examples are Brownian filtration and filtration generated by a marked point process.

Assume that \mathbb{F} is a Brownian filtration generated by W. In that case, predictable representation property (PRP) yields that there exists an \mathbb{F} -predictable process ψ such that $M_t = \int_0^t \psi_s dW_s$.

For any $\mathbb F\text{-adapted}$ bounded process φ one has

$$\mathbb{E}[\int_0^t \vartheta_s ds \int_0^t \varphi_s dW_s] = \mathbb{E}[\mathbb{E}[\int_0^t \vartheta_s ds | \mathcal{F}_t] \int_0^t \varphi_s dW_s]$$
$$= \mathbb{E}[\int_0^t \vartheta_s^{\mathbb{F}} ds \int_0^t \varphi_s dW_s] + \mathbb{E}[M_t \int_0^t \varphi_s dW_s]$$

hence,

$$\mathbb{E}\left[\int_{0}^{t} \vartheta_{s} ds \int_{0}^{t} \varphi_{s} dW_{s}\right] - \mathbb{E}\left[\int_{0}^{t} \vartheta_{s}^{\mathbb{F}} ds \int_{0}^{t} \varphi_{s} dW_{s}\right]$$
$$= \mathbb{E}\left[M_{t} \int_{0}^{t} \varphi_{s} dW_{s}\right] = \mathbb{E}\left[\int_{0}^{t} \psi_{s} \varphi_{s} ds\right]$$

To proceed, we need to apply integration by parts applied to the product of \mathbb{G} -processes $\int_0^t \vartheta_s ds$ and $\int_0^t \varphi_s dW_s$ (if $\int_0^t \varphi_s dW_s$ is a \mathbb{G} -semimartingale!)

$$\mathbb{E}[\int_0^t \vartheta_s ds \, \int_0^t \varphi_s dW_s] = \mathbb{E}[\int_0^t \vartheta_s \left(\int_0^s \varphi_u dW_u\right) \, ds] + \mathbb{E}[\int_0^t \varphi_s \, \left(\int_0^s \vartheta_u du\right) \, dW_s]$$

We now assume that there exists a \mathbb{G} -(predictable)process $a^{\mathbb{G}}$ such that W is a \mathbb{G} -semimartingale with decomposition

$$W_t = W_t^{\mathbb{G}} + \int_0^t a_s^{\mathbb{G}} ds$$

where $W^{\mathbb{G}}$ is a \mathbb{G} -Brownian motion, then $\int_0^t \varphi_s dW_s$ is a \mathbb{G} -semimartingale and

$$\begin{split} \mathbb{E}[\int_{0}^{t} \varphi_{s} \left(\int_{0}^{s} \vartheta_{u} du \right) dW_{s}] &= \mathbb{E}[\int_{0}^{t} \varphi_{s} \left(a_{s}^{\mathbb{G}} \int_{0}^{s} \vartheta_{u} du \right) ds] + \mathbb{E}[\int_{0}^{t} \varphi_{s} \left(\int_{0}^{s} \vartheta_{u} du \right) dW_{s}^{\mathbb{G}}] \\ &= \mathbb{E}[\int_{0}^{t} \varphi_{s} \left(a_{s}^{\mathbb{G}} \int_{0}^{s} \vartheta_{u} du \right) ds] \,. \end{split}$$

We have (by conditioning)

$$\mathbb{E}[\int_0^t \vartheta_s \left(\int_0^s \varphi_u dW_u\right) \, ds] = \mathbb{E}[\int_0^t \vartheta_s^{\mathbb{F}} \left(\int_0^s \varphi_u dW_u\right) \, ds] \, .$$

Then

$$\mathbb{E}[\int_0^t \vartheta_s ds \, \int_0^t \varphi_s dW_s] = \mathbb{E}[\int_0^t \vartheta_s^{\mathbb{F}} \left(\int_0^s \varphi_u dW_u\right) \, ds] + \mathbb{E}[\int_0^t \varphi_s a_s^{\mathbb{G}} \, \left(\int_0^s \vartheta_u du\right) \, ds]$$

With the same kind of computation

$$\begin{split} \mathbb{E}[\int_{0}^{t} \vartheta_{s}^{\mathbb{F}} ds \, \int_{0}^{t} \varphi_{s} dW_{s}] &= \mathbb{E}[\int_{0}^{t} \vartheta_{s}^{\mathbb{F}} \left(\int_{0}^{s} \varphi_{u} dW_{u}\right) \, ds] + \mathbb{E}[\int_{0}^{t} \varphi_{s} \left(\int_{0}^{s} \vartheta_{u}^{\mathbb{F}} du\right) \, dW_{s}] \\ &= \mathbb{E}[\int_{0}^{t} \vartheta_{s}^{\mathbb{F}} \left(\int_{0}^{s} \varphi_{u} dW_{u}\right) \, ds] \end{split}$$

and from

$$\mathbb{E}[\int_0^t \vartheta_s ds \int_0^t \varphi_s dW_s] = \mathbb{E}[\int_0^t \vartheta_s^{\mathbb{F}} \left(\int_0^s \varphi_u dW_u\right) ds] + \mathbb{E}[\int_0^t \varphi_s a_s^{\mathbb{G}} \left(\int_0^s \vartheta_u du\right) ds]$$

we get

$$\mathbb{E}[\int_0^t \psi_s \varphi_s ds] = \mathbb{E}[\int_0^t \varphi_s \, a_s^{\mathbb{G}} \left(\int_0^s \vartheta_u du\right) ds]$$

and this being true for any φ , this yields

$$\psi_s = \mathbb{E}[a_s^{\mathbb{G}} \int_0^s \vartheta_u du | \mathcal{F}_s].$$

As a check, if θ is \mathbb{F} -adapted, then $\psi_t = \mathbb{E}[a_t^{\mathbb{G}} | \mathcal{F}_t] \int_0^t \vartheta_u du = 0$ since $\mathbb{E}[a_t^{\mathbb{G}} | \mathcal{F}_t] = 0, \forall s \ge 0.$

Note that this can be easily extended to the case where \mathbb{F} admits a martingale (may be multi-dimensional or having jumps) which enjoys PRP.

Martingales

Let \mathbb{F} be a Brownian filtration generated by W and \mathbb{G} a bigger filtration $\mathbb{F} \subset \mathbb{G}$. Assume that

$$W_t = W_t^{\mathbb{G}} + \int_0^t a_s^{\mathbb{G}} ds$$

where $W^{\mathbb{G}}$ is a G-Brownian motion. Then, if the G-martingale $Y^{\mathbb{G}}$ admits the decomposition

$$Y_t^{\mathbb{G}} = Y_0^{\mathbb{G}} + \int_0^t y_s^{\mathbb{G}} dW_s^{\mathbb{G}}$$

where $Y_0^{\mathbb{G}}$ is a \mathcal{G}_0 -measurable r.v. one has

$$E[Y_t^{\mathbb{G}}|\mathcal{F}_t] = Y_0^{\mathbb{G}} + \int_0^t \psi_s dW_s \,.$$

Computing

$$\mathbb{E}[Y_t^{\mathbb{G}} \int_0^t \varphi_s dW_s]$$

using, as before integration by parts, one finds

$$\psi_s = \mathbb{E}[y_s^{\mathbb{G}} + a_s^{\mathbb{G}} Y_s^{\mathbb{G}} | \mathcal{F}_s].$$

Examples

These examples are known in enlargement of filtration theory.

• Initial enlargement

Let ζ be a random variable and consider $\mathbb{F}^{(\zeta)}$ the filtration $\mathcal{F}_t^{(\zeta)} = \mathcal{F}_t \vee \sigma(\zeta)$. Let η be the law of ζ . We say that ζ satisfies **Jacod's absolute continuity condition** if, for each $t \geq 0$, its conditional law is absolutely continuous with respect to its unconditional law, i.e.,

$$P_t(du) = p_t(u)\eta(du)$$

and p(u) is an \mathbb{F} -martingale satisfying

$$\mathbb{E}[f(\zeta)|\mathcal{F}_t] = \int_{\mathbb{R}} f(u)p_{t-}(u)\eta(du) \,.$$

Suppose that ζ satisfies Jacod's absolute continuity condition. Note that $p_t(\zeta) > 0$ and, in a Brownian filtration

$$dp_t(u) = \sigma_t(u)dW_t$$

hence, from results in enlargement of filtrations $a_t^{(\zeta)} = \frac{\sigma_t(\zeta)}{p_t(\zeta)}$. Furthermore, $W^{\mathbb{F}^{(\zeta)}}$ satisfies PRP.

Note that any $\mathcal{F}_t^{(\zeta)}$ random variable $Y_t^{\mathbb{F}^{(\zeta)}}$ can be written as $Y_t^{\mathbb{F}^{(\zeta)}} = Y_t^{\mathbb{F}}(\zeta)$ where $Y^{\mathbb{F}}(u)$ is \mathbb{F} -adapted.

Let $Y^{\mathbb{F}^{(\zeta)}}$ be the $\mathbb{F}^{(\zeta)}$ -martingale $Y_t^{\mathbb{F}^{(\zeta)}} = \int_0^t y_s^{\mathbb{F}}(\zeta) dW_s^{\mathbb{F}^{(\zeta)}}$, then its \mathbb{F} -optional projection is $Y_t = \int_0^t \psi_s dW_s$ with

$$\psi_s = \int_{\mathbb{R}} (y_s^{\mathbb{F}}(u) p_s(u) + \sigma_s(u) Y_s^{\mathbb{F}}(u)) \eta(du)$$

• Progressive enlargement

Let τ be a positive r.v. satisfying Jacod's condition and \mathbb{G} the progressive enlargement of \mathbb{F} with τ , i.e. the smallest filtration which contains \mathbb{F} and turns τ into a stopping time.

Then, any \mathbb{F} -martingale is a \mathbb{G} -semimartingale and there exists a pair of processes which enjoy PRP.

Shrinkage of a BSDE

Let us consider the following BSDE, in the initially enlarged filtration $\mathbb G$

$$dX_t^{\mathbb{G}} = -f(t, X_t^{\mathbb{G}}, Z_t^{\mathbb{G}})dt + Z_t^{\mathbb{G}}dW_t^{\mathbb{G}}, \ X_T^{\mathbb{G}} = B$$

where $B \in \mathcal{G}_T$ is bounded, and $W^{\mathbb{G}}$ a \mathbb{G} -Brownian motion

$$W_t = W_t^{\mathbb{G}} + \int_0^t a_s^{\mathbb{G}} ds$$

and f(s, x, z) is \mathbb{F} -adapted. Due to the PRP of $W^{\mathbb{G}}$ this BSDE admits a solution under the usual Lip. conditions on f. Recall that $Z_t^{\mathbb{G}} = Z_t^{\mathbb{F}}(\zeta)$ where $Z^{\mathbb{F}}(u)$ is \mathbb{F} -adapted.

Let $X_t = \mathbb{E}[X_t^{\mathbb{G}} | \mathcal{F}_t]$ and $Y_t^{\mathbb{G}} = \int_0^t Z_s^{\mathbb{G}} dW_s^{\mathbb{G}} = Y_t^{\mathbb{F}}(\zeta)$. One has $\mathbb{E}[Y_t^{\mathbb{G}} | \mathcal{F}_t] = \int_0^t \kappa_s dW_s$

where

$$\kappa_s = \mathbb{E}[Z_s^{\mathbb{G}} + a_s^{\mathbb{G}} Y_s^{\mathbb{G}} | \mathcal{F}_s].$$

Under Jacod's hypothesis, writing the density in absolute continuity assumption as

$$dp_t(u) = \sigma_t(u)dW_t$$

we know that $a_t^{\mathbb{G}} = \frac{\sigma_t(\zeta)}{p_t(\zeta)}$ and

$$\mathbb{E}\left[\int_0^t Z_s^{\mathbb{G}} dW_s^{\mathbb{G}} | \mathcal{F}_t\right) = \int_0^t \left(\int_{\mathbb{R}} \left(Z_s^{\mathbb{F}}(u) p_s(u) + Y_s^{\mathbb{F}}(u) \sigma_s(u)\right) \eta(du)\right) dW_s \,.$$

So that, setting $X_t = \mathbb{E}[X_t^{\mathbb{G}} | \mathcal{F}_t]$, and

$$f_t^{\mathbb{F}} = \mathbb{E}[f(t, X_t^{\mathbb{G}}, Z_t^{\mathbb{G}}) | \mathcal{F}_t] = \int_{\mathbb{R}} f(t, X_t^{\mathbb{F}}(u), Z_t^{\mathbb{F}}(u)) p_t(u) \eta(du)$$

we obtain

$$dX_t = f_t^{\mathbb{F}} dt + \int_{\mathbb{R}} \left(Z_t^{\mathbb{F}}(u) p_t(u) + \sigma_t(u) Y_t^{\mathbb{F}}(u) \right) \eta(du) \, dW_t + \int_{\mathbb{R}} \sigma_t(u) \int_0^t f(s, X_s^{\mathbb{F}}(u), Z_s^{\mathbb{F}}(u)) p_s(u) ds \, \eta(du)) \, dW_t \, .$$

In the particular case where $f(s, x, z) = \alpha_s + \beta_s x$, where α and β are \mathbb{F} -adapted

$$dX_t = -(\alpha_t + \beta_t X_t)dt + Z_t dW_t, \quad X_T = \mathbb{E}[B|\mathcal{F}_T]$$

with

$$Z_t = \int_{\mathbb{R}} \sigma_t(u) \int_0^t f_s^{\mathbb{F}} ds \ \eta(du) + \int_{\mathbb{R}} \left(Z_s(u) + \sigma_s(u) Y_s(u) \right) p_s(u) \eta(du)$$

Thank you for your attention

References

- [1] Anna Aksamit and Monique Jeanblanc Enlargement of filtration with finance in view, Springer, 2017.
- [2] Claudia Ceci, Alessandra Cretarola, and Francesco Russo BDSEs Under Partial information and Financial Applications, SPA 124, 2628 2643,2014
- [3] Pavel V. Gapeev, Monique Jeanblanc and Dongli Wu, Projections of martingales in enlargements of Brownian filtrations under Jacod's equivalence hypothesis, Electronic Journal of Probability, 2021, 26, 1-24,
- [4] Tomasz R. Bielecki, Jacek Jakubowski, Monique Jeanblanc and Mariusz Niewęgłowski, Semimartingales and shrinkage of filtration, Annals of Applied Probability, 2021, 31, 3, 1376-1402.
- [5] Anne Eyraud-Loisel, Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps Stochastic processes and their Applications, 2005, 115, 11, 1745–1763

