Optimal switching problems with an infinite set of modes: an approach by randomization

M.-A. Morlais (LMM - IRA, Le Mans Université - France)
j.w.w. M. Fuhrman (University Degli Studi di Milano, Milano, Italy)

A Backward stochastic excursion with Ying Hu in honor of his 60th birthday

17 -> 19 June 2024

Outline of the talk

I- Preliminaries \& motivations

- The Optimal Switching problem (OSP): primal formulation.
- Motivation for the "randomization" (dual) approach.
- The dual formulation.

II- The two main results
(i) equality between the two value functions;
(ii) new BSDE characterization.
(iii) Comments \& ideas of proof.

III- Conclusion \& perspectives

Motivations

I. 1 Primal optimal switching problem and value function On a standard prob. space $(\Omega, \mathbb{F}, \mathbb{P})$, let

- W: standard d-dim. Brownian Motion, W \mathbb{F}-adapted. usually: $\mathbb{F}=\mathcal{F}^{W} \vee \mathcal{N}$.
- T fixed finite horizon; A set of modes (possibly infinite).
- $\forall\left(x_{0}, e\right) \in \mathbb{R}^{n} \times A$, let X^{e} (path dependent) proc. s.t.

$$
\forall t \in[0, T], \quad X_{t}^{e}=x_{0}+\int_{0}^{t}\left(b^{e}\left(s, X^{e}\right) d s+\sigma^{e}\left(s, X^{e}\right) d W_{s}\right),
$$

Motivations

I. 1 Primal optimal switching problem and value function On a standard prob. space $(\Omega, \mathbb{F}, \mathbb{P})$, let

- W: standard d-dim. Brownian Motion, $W \mathbb{F}$-adapted. usually: $\mathbb{F}=\mathcal{F}^{W} \vee \mathcal{N}$.
- T fixed finite horizon; A set of modes (possibly infinite).
- $\forall\left(x_{0}, e\right) \in \mathbb{R}^{n} \times \boldsymbol{A}$, let X^{e} (path dependent) proc. s.t.

$$
\forall t \in[0, T], \quad X_{t}^{e}=x_{0}+\int_{0}^{t}\left(b^{e}\left(s, X^{e}\right) d s+\sigma^{e}\left(s, X^{e}\right) d W_{s}\right),
$$

Let $\left(f^{e}\right)_{e},\left(g^{e}\right)_{e}$ and $\left(c_{e, e^{\prime}}\right)_{\left(e, e^{\prime}\right.}$: 3 families of (possib. random) real-valued data
(i) $f^{e}(s, X$.): instant. profit (when system in mode e)
(ii) $g^{e}(X)$: payoff at time T when syst. in mode e,
(iii) $c_{e, e^{\prime}}(s, X)$: nonnegative penalty costs at time s.

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

1. Let $\alpha=\left(\tau^{n}, \xi^{n}\right)_{n \geq 1}$ a management strategy s.t. (i) τ^{n} increas. seq. of \mathbb{R}^{+}valued \mathbb{F}-stopping times; (ii) for each n, ξ^{n} both A-valued and $\mathcal{F}_{\tau_{n}}^{W}$-meas.

Motivations \& preliminaries

I. 1 Primal optimal switching problem and value function

1. Let $\alpha=\left(\tau^{n}, \xi^{n}\right)_{n \geq 1}$ a management strategy s.t.
(i) τ^{n} increas. seq. of \mathbb{R}^{+}valued \mathbb{F}-stopping times;
(ii) for each n, ξ^{n} both A-valued and $\mathcal{F}_{\tau_{n}}^{W}$-meas.
2. To α, we associate the state proc. a as follows

$$
a_{s}=\xi^{1} \mathbf{1}_{s<\tau_{1}}+\sum_{n \geq 1} \xi^{n+1} \mathbf{1}_{\tau^{n} \leq s<\tau_{n+1}} \mathbf{1}_{\tau^{n}<T}
$$

a: piecewise constant proc. A-valued
By abuse, one may replace α by a.

Motivations \& preliminaries

I. 1 Primal value function: Admissible set \mathcal{A} a $=\left(\tau^{n}, \xi^{n}\right)$ is said admissible i.e. a in \mathcal{A}_{t} if
$\mathbf{H}_{1}\left(\tau^{n}(\cdot), \xi^{n}(\cdot)\right)_{n}-\mathbb{R}^{+} \times \boldsymbol{A}$-valued \mathbb{F}-adapt. s. t.
$\tau_{n}(\omega) \rightarrow+\infty$ and $\tau^{n}<\tau^{n+1}, \mathbb{P}$-a.s and $\tau_{0}=t$.
a is in $\mathcal{A}_{t}^{e} \subset \mathcal{A}_{t}$ if $\xi_{0}=e\left(\right.$ at $\left.t=\tau_{0}\right)$. simultaneous switchings prohibited, i.e.

$$
\forall\left(a_{1}, a_{2}, a_{2}\right) \in A^{3}, \quad c_{a_{1}, a_{2}}(t, x)+c_{a_{2}, a_{3}}(t, x)>c_{a_{1}, a_{3}}(t, x)
$$

Motivations \& preliminaries

I. 1 Primal value function: Admissible set \mathcal{A} a $=\left(\tau^{n}, \xi^{n}\right)$ is said admissible i.e. a in \mathcal{A}_{t} if
$\mathbf{H}_{1}\left(\tau^{n}(\cdot), \xi^{n}(\cdot)\right)_{n}-\mathbb{R}^{+} \times A$-valued \mathbb{F}-adapt. s. t.
$\tau_{n}(\omega) \rightarrow+\infty$ and $\tau^{n}<\tau^{n+1}, \mathbb{P}$-a.s and $\tau_{0}=t$.
a is in $\mathcal{A}_{t}^{e} \subset \mathcal{A}_{t}$ if $\xi_{0}=e\left(\right.$ at $\left.t=\tau_{0}\right)$.
simultaneous switchings prohibited, i.e.

$$
\forall\left(a_{1}, a_{2}, a_{2}\right) \in A^{3}, \quad c_{a_{1}, a_{2}}(t, x)+c_{a_{2}, a_{3}}(t, x)>c_{a_{1}, a_{3}}(t, x)
$$

$\mathbf{H}_{2} \mathbf{H}_{1}$ implies: $N_{T}^{a}(\omega)=\operatorname{Card}\left\{\tau^{n}(\omega), \tau^{n}<T\right\}<+\infty, \mathbb{P}$-a.s
\mathbf{H}_{3} Impose $\tau^{n} \neq T$: no switching at terminal time. In finite case, equivalent to:

$$
\forall(i, j) \in A \times A, \quad g^{i}(x)>g^{j}(x)-c_{i, j}(T, x) .
$$

Motivations \& preliminaries

I.1. Primal optimal switching problem (OSP) and value function

1. For a in \mathcal{A}, X^{α} (or X^{a}) the controlled proc. s.t.

$$
d X^{a}=b^{a}\left(s, X^{a}\right) d s+\sigma^{a}\left(s, X^{a}\right) d W_{s}
$$

with $b^{a}(s, x)=b^{\xi_{0}}(s, x) \mathbf{1}_{s<\tau^{1}}+\sum_{n \geq 1} b^{\xi^{n}}(s, x) \mathbf{1}_{\tau^{n} \leq s<\tau^{n+1}}$.
Similar definition for $\sigma^{a}(s, x)$.
Remark: b and σ path-dependent $\Rightarrow X^{a}$ no more Markovian (PDE approach not available).

Motivations \& preliminaries

I.1. Primal OSP: Technical assumptions (1)

- Mathematical assumptions:
- A: Borel set (example: any subspace of \mathbb{R}^{d});
- Both $\left(b^{e}, \sigma^{e}\right)_{e},\left(f^{e}, g^{e}\right),\left(c_{e, e^{\prime}}\right)_{e, e^{\prime}}$ may be path-dependent;
- Let \mathbb{C}^{n} : set of continuous paths $(s \mapsto x(s))_{s \in[0, T]}$

Topology on $\mathbb{C}^{n}:|x|_{*}=\sup _{s \in[0, T]}|x(s)|$

- Measurability
$(t, \omega, e) \mapsto b^{e}(t, x(\omega), \omega), \sigma^{e}(t, \omega, x(\omega), e)$ are
$\operatorname{Prog}\left(\mathbb{C}^{n}\right) \otimes \mathcal{B}(A)$ meas.; (similar for $\left.f^{e}, g^{e}, c_{e, e^{\prime}}\right)$
$\operatorname{Prog}\left(\mathbb{C}^{n}\right): \sigma$-algebra of prog. measurable maps on
$[0, T] \times \Omega$.

Motivations \& preliminaries

I.1. Primal OSP: Technical assumptions (2)
(i)) Continuity of data w.r.t (x, e)

- For every t in $[0, T]$,
$(x, e) \mapsto b_{t}(x, e) \sigma_{t}(x, e), f_{t}(x, e), g(x, e)$ are continuous on
$\mathbb{C}^{n} \times A\left(x, e, e^{\prime}\right) \mapsto c_{t}\left(x, e, e^{\prime}\right)$ is continuous on $\mathbb{C}^{n} \times A \times A$.
- Regularity \& growth assumpt (wrt x):
$\exists K>0$ s.t. $\forall\left(t, x, x^{\prime}, e, e^{\prime}\right) \in[0, T] \times \mathbb{C}^{n} \times \mathbb{C}^{n} \times A \times A$,
(ii) $\left|b_{t}(x, e)-b_{t}\left(x^{\prime}, e\right)\right|+\left|\sigma_{t}(x, e)-\sigma_{t}\left(x^{\prime}, e\right)\right| \leq K\left|x-x^{\prime}\right|_{t_{*}}$ Similar for other data.
(iii) $|b(t, 0, e)|+|\sigma(t, 0, e)| \leq K$;

Motivations \& preliminaries

I.1. Primal OSP: Technical assumptions (3)

- Growth assumpt wrt x (cont')
$\exists r, K>0$ s.t. $\forall\left(t, x, x^{\prime}, e, e^{\prime}\right) \in[0, T] \times \mathbb{C}^{n} \times \mathbb{C}^{n} \times A \times A$,
(iii) $\mid f\left(t, x, e\left|+|g(x, e)|+\left|c\left(t, x, e, e^{\prime}\right)\right| \leq K\left(1+|x|_{t *}^{r}\right)\right.\right.$.

Comment: Thanks to those assumptions, one gets
(a) Strong estim. of the moments of proc. X^{e}
(Cosso-Confortola-Fuhrman '18);
(b) Estimate for the value functional

Motivations \& preliminaries

I. 1 Primal control problem: the value function

1. Fixing e in A, let \mathcal{V}^{e} be the primal value function s.t.

$$
\begin{gathered}
\mathcal{V}^{e}=\sup _{\alpha \in \mathcal{A}^{e}}(J(\alpha)), \text { where } \\
J(\alpha)=\mathbb{E}\left(g^{a}(X .)+\int_{0}^{T} f^{a_{s}}\left(s, X^{a}\right) d s-\sum_{\substack{n \geq \geq \\
\tau_{n}<T}} c_{\xi_{n-1}, \xi_{n}}\left(\tau^{n}, X_{\tau^{n}}^{a}\right)\right)
\end{gathered}
$$

Motivations \& preliminaries

I. 1 OSP with finite set of modes- BSDE characterization Under appropriate assumptions on data (f^{e}, g^{e}, $\left(c_{e, e^{\prime}}\right)$ with $e, e^{\prime} \in \mathcal{J}=\{1, \cdots, m\}$
there exists a solution $\left(Y^{e}, Z^{e}, K^{e}\right)_{e \in \mathcal{J}}$ to the BSDE system

$$
\left\{\begin{aligned}
& Y_{t}^{e}= g^{e}\left(X_{T}\right)+\int_{t}^{T} f_{s}^{e}\left(X_{s}\right) d s+K_{T}^{e}-K_{t}^{e} \\
&-\int_{t}^{T} Z_{s}^{e} d W_{s}, \\
& Y_{s}^{e} \geq \max _{\left\{e^{\prime} \in \mathcal{J} \backslash\{e\}\right\}}\left(Y_{s}^{e^{\prime}}-c_{e, e^{\prime}}\left(s, X_{s}\right)\right) \text { and } \\
& \int_{0}^{T}\left(Y_{s}^{e}-\max _{\left\{e^{\prime} \in \mathcal{J} \backslash\{e\}\right\}}\left(Y_{s}^{e^{\prime}}-c_{e, e^{\prime}}\left(s, X_{s}\right)\right)\right) d K_{s}^{e}=0
\end{aligned}\right.
$$

s.t. $Y_{0}^{e}=\mathcal{V}^{e}$.

Motivations \& preliminaries

A (non exhaustive) review of the literature
(1) OSP with finite set of modes:
(i) Using PDE approaches: Ishii-Koike '91, Yong-Zhou '99, Ludkowski '05, Carmona-Ludkovski '07-08, ...
(ii) Using BSDE and analyt. tools: Hamadène-Jeanblanc '02, Djehiche-Hamadene-Popier '08, Hamadène Zhang '10, Hu-Tang '10, Chassagneux-Elie -Kharroubi '11; Elie-Kharroubi '10, '14 ...
(iii) Standard OSP with refinements: infinite horizon, Levy driven case (forward diff), partial information, non positive costs (Lundstrom-Olofsson, R. Martyr, B. El Asri) ..

Motivations \& preliminaries

A (non exhaustive) review of the literature
(1) OSP with finite set of modes:
(i) Using PDE approaches: Ishii-Koike '91, Yong-Zhou '99, Ludkowski '05, Carmona-Ludkovski '07-08, ...
(ii) Using BSDE and analyt. tools: Hamadène-Jeanblanc '02, Djehiche-Hamadene-Popier '08, Hamadène Zhang '10, Hu-Tang '10, Chassagneux-Elie -Kharroubi '11; Elie-Kharroubi '10, '14 ...
(iii) Standard OSP with refinements: infinite horizon, Levy driven case (forward diff), partial information, non positive costs (Lundstrom-Olofsson, R. Martyr, B. El Asri) ..
(2) Connection between "finite" OSP \& constrained BSDE:
(a) Ma-Pham-Kharroubi '10 (Markovian setting)
(b) Elie-Kharroubi ('14) (Non Markovian case)

Preliminaries to our result: comments

I.3. Why choosing the "randomization" method ?

1. when A infinite, the (a priori infinite) system of RBSDEs does not seem well posed (at least to us...)
2. BSDE charact. of primal OSP: many ingredients use the finiteness of A.

Preliminaries to our result: comments

I.3. Why choosing the "randomization" method ?

1. when A infinite, the (a priori infinite) system of RBSDEs does not seem well posed (at least to us...)
2. BSDE charact. of primal OSP: many ingredients use the finiteness of A.
3. Randomization allows to tackle general cases: path-dependency, degenerate diffusions, case of an infinite set of modes.
4. Another motivation: in the case of finite OSP, connection already proved by Elie \& Kharroubi.

Motivations \& preliminaries

I. 2 Randomized set-up \& dual formulation

1. On $\left(\Omega^{\prime}, \mathbb{F}^{\prime}, \mathbb{P}^{\prime}\right) \mu=\left(\sigma^{m}, \zeta^{m}\right)_{m}$: Poisson random meas. s.t.
(i) the marks $\left(\sigma^{m}, \zeta^{m}\right)_{m}$ are $\mathbb{R}^{+} \times A$-valued;
(ii) μ indep. of W with $\bar{\mu}(d e, d s)=\lambda(d e) d s$ and
λ intensity meas. with full support on A and $\lambda(\mathbf{A})<+\infty$.

Motivations \& preliminaries

I. 2 Randomized set-up \& dual formulation

1. On $\left(\Omega^{\prime}, \mathbb{F}^{\prime}, \mathbb{P}^{\prime}\right) \mu=\left(\sigma^{m}, \zeta^{m}\right)_{m}$: Poisson random meas. s.t.
(i) the marks $\left(\sigma^{m}, \zeta^{m}\right)_{m}$ are $\mathbb{R}^{+} \times A$-valued;
(ii) μ indep. of W with $\bar{\mu}(d e, d s)=\lambda(d e) d s$ and
λ intensity meas. with full support on A and $\lambda(\mathbf{A})<+\infty$.
2. The randomized dual set up $:=(\hat{\Omega}, \hat{\mathbb{P}}, \hat{\mathcal{F}}, \hat{W}, \hat{\mu})$:
(2.i) Let $\hat{\Omega}:=\Omega \times \Omega^{\prime}, \hat{\mathbb{P}}=\mathbb{P} \otimes \mathbb{P}^{\prime}$ and $\hat{\mathcal{F}}=\mathbb{F}^{W, \mu}$, with

$$
\mathbb{F}^{W, \mu}:=\left(\mathbb{F}^{W} \vee \mathbb{F}^{\mu}\right) \vee \mathcal{N}
$$

(2.ii) $\hat{W}\left(\omega, \omega^{\prime}\right)=W(\omega)$ remains a $\mathbb{F}^{W, \mu}$ - Brownian motion; $\hat{\mu}:=\left(\hat{\sigma}^{m}, \hat{\zeta}^{m}\right)_{m}$ Poisson r.m. with $\mathbb{F}^{W, \mu}$-prog. meas random marks and same determ. compensator $\hat{\mu}$.

Motivations \& preliminaries

I.2. The randomized set-up and dual formulation

1. Let I (resp. \hat{l}) the Poisson point proc. assoc. with μ (resp. $\hat{\mu}$) as follows

$$
\forall t \in[0, T], \quad I_{t}=\zeta^{0} \mathbf{1}_{t<\sigma^{1}}+\sum_{m \geq 1} \zeta^{m} \mathbf{1}_{\sigma^{m} \leq t<\sigma^{m+1}} .
$$

Note that $N_{T}^{\prime}:=\operatorname{Card}\left\{m \geq 1, \sigma_{m}\left(\omega^{\prime}\right)<T\right\}<\infty, \mathbb{P}^{\prime}$-a.s.
2. On randomized prob. space, ($\left(\hat{l}, X^{\hat{\imath}}\right)$ is a forward uncontrolled proc. with

$$
X_{t}^{\hat{l}}=x_{0}+\int_{0}^{t}\left(b^{\hat{s}_{s}}\left(s, X^{\hat{\imath}}\right) d s+\sigma^{\hat{s}_{s}}\left(s, X^{\hat{l}}\right) d W_{s}\right)
$$

Motivations \& preliminaries

I.2. The randomized set-up and dual formulation

$$
\kappa_{T}^{\hat{\nu}}=\mathcal{E}_{T}((\hat{\nu}-1) \star \tilde{\mu})=e^{-\int_{0}^{T} \int_{A}\left(\hat{\nu}_{s}(e)-1\right) \lambda(d e) d s} \prod_{\substack{m \geq 1 \\ \zeta_{m}<T}} \hat{\nu}_{\sigma}\left(\zeta^{m}\right)
$$

2. Let $\hat{\mathbb{P}}^{\hat{\nu}}$ with density $\kappa^{\hat{\nu}}$, i.e. $\frac{d \hat{\mathbb{P}}^{\hat{\nu}}}{d \hat{\mathbb{P}}}=\kappa^{\hat{\nu}}$
then, under $\hat{\mathbb{P}}^{\hat{\nu}}$,
(a) \hat{l} remains Poisson point proc.;
(b) its new compensated meas. $\hat{\nu}_{s}(e) \lambda(d e) d s$
3. Set of dual controls
$\mathcal{A}^{R}:=\{\hat{\nu}: \hat{\Omega} \times[0, T] \times A \mapsto] 0 ; \infty[$ meas. and essentially bounded $\}$

Motivations \& preliminaries

I. 2 The randomized set-up: dual formulation

1. Let $\mathcal{V}_{0}^{R}=\sup _{\hat{\nu} \in \mathcal{A}^{R}} \mathcal{J}^{\mathcal{R}}(\hat{\nu})$ be the dual value function with

$$
\begin{aligned}
J^{R}(\hat{\nu})= & \underbrace{\hat{\mathbb{E}}^{\hat{\nu}}\left(g\left(X^{\prime}, I_{T}\right)+\int_{t}^{T} f\left(s, X^{\prime}, I_{s}\right) d s\right)}_{=J_{1}^{\beta}(\hat{\nu})} \\
& \underbrace{-\hat{\mathbb{E}}^{\hat{\nu}}\left(\sum_{m \geq 1} c_{\zeta_{m-1}, \zeta_{m}}\left(\sigma^{m}, X_{\sigma^{m}}\right)\right)}_{=J_{2}^{\beta}(\hat{\nu})}
\end{aligned}
$$

$\hat{\mathbb{E}}^{\hat{\nu}}$ stands for expectation under meas. $\hat{\mathbb{P}}^{\hat{\nu}}$.

Main results

II. Theorem 1

Under all previous assumptions on the primal \& dual version of the OSP, one obtains

$$
\mathcal{V}_{0}=\mathcal{V}_{0}^{\mathcal{R}}=v_{0}(x, e)
$$

This common value function only depends on $X_{0}=x$ and initial mode e and not of the choice of the randomized set up: (i.e. neither on the construction of the extended dual set-up nor on the choice of intensity measure λ).

Main results

II. Theorem 2: BSDE characterization

The following BSDE (with constrained jumps)

$$
\left\{\begin{array}{c}
Y_{t}^{\mathcal{R}}=g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}-K_{t} \tag{1}\\
\quad-\int_{t}^{T} Z_{s} d W_{s}-\int_{(t, T]} \int_{A} U_{s}(e) \mu(d s d e), \\
U_{t}(e) \leq c_{t}\left(X, I_{t-}, e\right), \quad \text { (non-linear jump constraint) }
\end{array}\right.
$$

admits a minimal solution $Y^{\mathcal{R}}$ such that

$$
Y_{0}^{\mathcal{R}}=\mathcal{V}_{0}^{\mathcal{R}}
$$

Remark: (??) is a BSDE with constrained jumps.
(i) K non decreas. predic. proc s.t. K only càdlàg in general.
(ii) $Y_{t}^{\mathcal{R}}$ is $\mathcal{F}_{t}^{W, \mu}$-adapted.

Main results: comments

Connection with BSDE in the case of finite set of modes (Elie-Kharroubi '14)
Let \mathcal{J} set of modes and let $\left(Y^{e}\right)_{e \in \mathcal{J}}$ solving

$$
\left\{\begin{array}{l}
Y_{t}^{e}=g\left(e, X_{T}\right)+\int_{t}^{T} f_{s}^{e}\left(X_{s}\right) d s+K_{T}^{e}-K_{t}^{e} \\
\\
\quad-\int_{t}^{T} Z_{s}^{e} d W_{s} \tag{2}\\
Y_{s}^{e} \geq \max _{\{j \in \mathcal{J} \backslash\{ \}\}}\left(Y_{s}^{j}-c_{e, j}\left(s, X_{s}\right)\right) \text { and } \\
\int_{0}^{T}\left(Y_{s}^{e}-\max _{\{j \in \mathcal{J} \backslash\{e\}\}}\left(Y_{s}^{j}-c_{e, j}\left(s, X_{s}\right)\right) d K_{s}^{e}=0\right.
\end{array}\right.
$$

If both the dual BSDE (??) and BSDE system (??) have a solution then

$$
Y_{t}^{\mathcal{R}}=Y_{t}^{I_{t}} \text { and } U_{t}(e)=Y_{t}^{e}-Y_{t}^{l_{t}} .
$$

Main results: new BSDE characterization

The new BSDE representation
Let $Y^{\mathcal{R}}$ be the minimal solution of following BSDE

$$
\left\{\begin{array}{c}
Y_{t}=g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}-K_{t} \tag{3}\\
\quad-\int_{t}^{T} Z_{s} d W_{s}-\int_{(t, T]} \int_{A} U_{s}(e) \mu(d s d e) \\
U_{t}(e) \leq c_{t}\left(X, I_{t-}, e\right), \lambda(d e) d s d \mathbb{P}-\text { a.e }
\end{array}\right.
$$

Since one has

$$
Y_{0}^{\mathcal{R}}=\mathcal{V}_{0}^{\mathcal{R}}=\sup _{\nu \in \mathcal{A}^{\mathcal{R}}} J^{\mathcal{R}}(\nu)
$$

then, combining with first main result

$$
Y_{0}^{\mathcal{R}}=\mathcal{V}_{0}^{\mathcal{R}}=\mathcal{V}_{0}=\sup _{\alpha \in \mathcal{A}} \mathcal{J}(\alpha)
$$

Theorem 2: sketch of proof $(1 / 3)$

1. Existence by penalization: let $\left(Y^{n}, Z^{n}, U^{n}\right)$ solve

$$
\begin{aligned}
Y_{t}^{n} & =g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}^{n}-K_{t}^{n} \\
& -\int_{t}^{T} Z_{s}^{n} d W_{s}-\int_{t}^{T} \int_{A} U_{s}^{n}(a) \mu(d s d a)
\end{aligned}
$$

where $K_{t}^{n}=n \int_{0}^{t} \int_{A}\left(U_{s}^{n}(e)-c_{s}\left(X, I_{s-}, e\right)\right)^{+} \lambda(d e) d s$.

Theorem 2: sketch of proof $(1 / 3)$

1. Existence by penalization: let $\left(Y^{n}, Z^{n}, U^{n}\right)$ solve

$$
\begin{aligned}
Y_{t}^{n}= & g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+K_{T}^{n}-K_{t}^{n} \\
& -\int_{t}^{T} Z_{s}^{n} d W_{s}-\int_{t}^{T} \int_{A} U_{s}^{n}(a) \mu(d s d a)
\end{aligned}
$$

where $K_{t}^{n}=n \int_{0}^{t} \int_{A}\left(U_{s}^{n}(e)-c_{s}\left(X, I_{s-}, e\right)\right)^{+} \lambda(d e) d s$.
2.a Probab representation of Y^{n}

$$
\begin{aligned}
Y_{t}^{n}=\operatorname{ess} \sup _{\nu \in \mathcal{V}_{n}} \mathbb{E}^{\nu}(& g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s \\
& \left.-\sum_{l \geq 1} 1_{t<\sigma_{l}<T} C_{\sigma_{l}}\left(X, \eta_{I-1}, \eta_{l}\right) \mid \mathcal{F}_{t}^{W, \mu}\right)
\end{aligned}
$$

where $\mathcal{V}_{n}=\{\nu \in \mathcal{V}$, s.t. $\left.\left.\nu \in] 0 ; n\right]\right\}$.

Theorem 2: sketch of proof (2/3)

2.b For all ν in \mathcal{V}_{n}, \& taking $\mathbb{E}^{\nu}\left(\mid \mathcal{F}_{t}^{W, \mu}\right)$

$$
\begin{aligned}
Y_{t}^{n} & = \\
& \mathbb{E}^{\nu}\left(g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s-\sum_{\substack{l \geq 1 \\
t \leq \sigma_{l}<T}} c_{\sigma_{l}}\left(X, \eta_{I-1}, \eta_{I}\right) \mid \mathcal{F}_{t}^{W, \mu}\right) \\
& +\mathbb{E}^{\nu}(\underbrace{\int_{t}^{T} \int_{A}\left\{n\left(\hat{U}_{s}^{n}(a)\right)^{+}-\hat{U}_{s}^{n}(a) \nu_{s}(a)\right\} \lambda(d a) d s}_{\geq 0} \mid \mathcal{F}_{t}^{W, \mu})
\end{aligned}
$$

with $\hat{U}_{s}^{n}(a)=U_{s}^{n}(a)-c_{s}\left(X, I_{s-}, a\right) \& u s i n g n x^{+}-\nu x \geq 0$

Theorem 2: sketch of proof (2/3)

2.b For all ν in $\mathcal{V}_{n}, \&$ taking $\mathbb{E}^{\nu}\left(\mid \mathcal{F}_{t}^{W, \mu}\right)$

$$
\begin{aligned}
& Y_{t}^{n}= \\
& \mathbb{E}^{\nu}\left(g\left(X, I_{T}\right)+\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s-\sum_{\substack{l \geq 1 \\
t \leq \sigma_{l}<T}} c_{\sigma_{l}}\left(X, \eta_{I-1}, \eta_{I}\right) \mid \mathcal{F}_{t}^{W, \mu}\right) \\
& \quad+\mathbb{E}^{\nu}(\underbrace{\int_{t}^{T} \int_{A}\left\{n\left(\hat{U}_{s}^{n}(a)\right)^{+}-\hat{U}_{s}^{n}(a) \nu_{s}(a)\right\} \lambda(d a) d s}_{\geq 0} \mid \mathcal{F}_{t}^{W, \mu})
\end{aligned}
$$

with $\hat{U}_{s}^{n}(a)=U_{s}^{n}(a)-c_{s}\left(X, I_{s-}, a\right) \& u s i n g n x^{+}-\nu x \geq 0$
2.c Setting $\nu^{\epsilon, n}(a)=$
$n 1_{\left\{\hat{U}_{s}^{n}(a) \geq 0\right\}}+\varepsilon 1_{\left\{-1<\hat{U}_{s}^{n}(a)<0\right\}}-\varepsilon\left(\hat{U}_{s}^{n}(a)\right)^{-1} 1_{\left\{\hat{U}_{s}^{n}(a) \leq-1\right\}}$
then
$\left.\left.\nu^{\epsilon, n} \in\right] 0, n\right]$ and $\nu^{\varepsilon, n} \leq \varepsilon$ on $\left\{\hat{U}_{s}^{n}(a)<0\right\}$

Theorem 2: sketch of proof (3/3)

2.c $Y_{t}^{n} \leq \varepsilon(T-t) \lambda(A)+$

$$
\mathbb{E}^{\nu^{\varepsilon, n}}\left[\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+g\left(X, I_{T}\right)-\sum_{\substack{n \geq 1 \\ t \leq \sigma_{l}<T}} c_{\sigma_{n}}\left(X, \eta_{n-1}, \eta_{n}\right) \mid \mathcal{F}_{t}^{W, \mu}\right]
$$

Theorem 2: sketch of proof $(3 / 3)$

2.c $Y_{t}^{n} \leq \varepsilon(T-t) \lambda(A)+$

$$
\mathbb{E}^{\nu^{\varepsilon, n}}\left[\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+g\left(X, I_{T}\right)-\sum_{\substack{n \geq 1 \\ t \leq \sigma_{l}<T}} c_{\sigma_{n}}\left(X, \eta_{n-1}, \eta_{n}\right) \mid \mathcal{F}_{t}^{W, \mu}\right]
$$

3. By comparison (Royer '05), Y^{n} non decreasing, we set $Y=\lim \nearrow Y_{t}^{n}$.
4. (2.a) gives $\sup _{n} \mathbb{E}\left(\sup _{t}\left|Y_{t}^{n}\right|^{2}\right)<\infty \&$ standard BSDE estimates
$\exists C>0, \quad \forall n\left|Y^{n}\right|_{S^{2}}+\left|Z^{n}\right|_{L^{2}}+\left|U^{n}\right|_{L^{2}}+\left|K^{n}\right|_{S^{2}} \leq C$.

Theorem 2: sketch of proof (3/3)

2.c $Y_{t}^{n} \leq \varepsilon(T-t) \lambda(A)+$

$$
\mathbb{E}^{\nu^{\varepsilon, n}}\left[\int_{t}^{T} f_{s}\left(X, I_{s}\right) d s+g\left(X, I_{T}\right)-\sum_{\substack{n \geq 1 \\ t \leq \sigma_{l}<T}} c_{\sigma_{n}}\left(X, \eta_{n-1}, \eta_{n}\right) \mid \mathcal{F}_{t}^{W, \mu}\right]
$$

3. By comparison (Royer '05), Y^{n} non decreasing, we set $Y=\lim \nearrow Y_{t}^{n}$.
4. (2.a) gives $\sup _{n} \mathbb{E}\left(\sup _{t}\left|Y_{t}^{n}\right|^{2}\right)<\infty \&$ standard BSDE estimates
$\exists C>0, \quad \forall n\left|Y^{n}\right|_{S^{2}}+\left|Z^{n}\right|_{L^{2}}+\left|U^{n}\right|_{L^{2}}+\left|K^{n}\right|_{S^{2}} \leq C$.
5. An (extended) Peng's monotonic limit theorem
$\forall 1 \leq p<2, \quad\left|Y^{n}-Y\right|_{L^{p}}+\left|Z^{n}-Z\right|_{L^{p}}+\left|U^{n}-U\right|_{L^{p}} \rightarrow 0$, and
$K^{n}-K \xrightarrow{w} 0$ yielding existence.

Conclusion \& perspectives

1. Randomisation method extended to (non Markov.) OSP with infinite set of modes
2. Drawback: does not provide an optimal control (for primal problem).

Conclusion \& perspectives

1. Randomisation method extended to (non Markov.) OSP with infinite set of modes
2. Drawback: does not provide an optimal control (for primal problem).
3. Numerical study (in progress)
(i) BSDE with jump constraints one-dim.
(ii) Extension of Kharroubi-Langrené-Pham (2013)
4. Approximation of general OSP by OSP with finite set A : order of convergence, existence of ε-optimal strategies.

Conclusion \& perspectives

1. Randomisation method extended to (non Markov.) OSP with infinite set of modes
2. Drawback: does not provide an optimal control (for primal problem).
3. Numerical study (in progress)
(i) BSDE with jump constraints one-dim.
(ii) Extension of Kharroubi-Langrené-Pham (2013)
4. Approximation of general OSP by OSP with finite set A : order of convergence, existence of ε-optimal strategies.

Thanks for your attention \& happy birthday Ying.

