Multidimensional BSDEs with rough drifts

Jiahao Liang Shanjian Tang

Fudan University

19 June, 2024

at the conference A Backward Stochastic Excursion with Ying Hu on the Occation of his 60th Birthday, June 17-19, 2024, Université de Rennes, Rennes, France

Outline

- Forwards
- 2 Rough BSDEs and related results
- $lue{4}$ Case for g linear

Outline

- Forwards
- 2 Rough BSDEs and related results
- lack4 Case for g linear

Forwards

Two Anniversaries of 60 Years

- 1. On January 27, China and France decided to establish their diplomatic relationship.
- 2. On April 10, Ying Hu was born in Jiangsu Province, China.

Last year saw two anniversaries of 50 years forand?

Happy Birthday Ying!

Outline

- Forwards
- 2 Rough BSDEs and related results
- lack4 Case for g linear

Rough BSDEs

A rough BSDE reads

$$Y_{t} = \xi + \int_{t}^{T} f_{r}\left(Y_{r}, Z_{r}\right) dr + \int_{t}^{T} g_{r}\left(Y_{r}\right) d\mathbf{X}_{r} - \int_{t}^{T} Z_{r} dW_{r}, \quad t \in \left[0, T\right].$$

- unknown pair of processes $(Y,Z): \Omega \times [0,T] \to \mathbb{R}^k \times \mathbb{R}^{k \times d}$
- terminal value ξ : an \mathbb{R}^k -valued random variable
- ullet coefficients f and g: progressively measurable vector fields
- W: a standard Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$
- $\mathbf{X} = (X, \mathbb{X})$: an \mathbb{R}^e -valued p-rough path, $p \in [2, 3)$

\mathbb{R}^e -valued p-rough path $\mathbf{X} = (X, \mathbb{X})$

The space of continuous paths of finite p-variation is denoted by $C^{p\text{-}var}\left([0,T],V\right)$.

Definition

For $p \in [2,3)$, we call $\mathbf{X} = (X,\mathbb{X})$ a two-step p-rough path with values in \mathbb{R}^e , denoted by $\mathbf{X} \in \mathscr{C}^{p\text{-}var}\left([0,T],\mathbb{R}^e\right)$, if the following are satisfied

- (i) $X \in C^{p\text{-}var}([0,T],\mathbb{R}^e);$
- (ii) $\mathbb{X}:\Delta \to \mathbb{R}^e\otimes \mathbb{R}^e$ is continuous and $|\mathbb{X}|_{\frac{p}{2}-var}$ is finite;
- (iii) X satisfies Chen's relation

$$\delta \mathbb{X}_{s,u,t} = \delta X_{s,u} \otimes \delta X_{u,t}, \quad \forall (s,u,t) \in \Delta_2.$$
 (1)

Liang and Tang (Fudan)

Existing results

- Diehl & Friz (AP, 2012): well-posedness of rough BSDEs for k=1 with a flow transformation.
- Crisan, Diehl, Friz & Oberhauser (AAP, 2013): well-posedness of rough SDEs with the same flow transformation.
- Diehl, Oberhauser & Riedel (SPA, 2015): well-posedness of rough SDEs with a joint lift of $(W(\omega), \mathbf{X})$.
- Friz, Hocquet & Lê (2021): well-posedness of rough SDEs with a fixed-point argument.

Outline

- Forwards
- 2 Rough BSDEs and related results
- $oldsymbol{4}$ Case for g linear

Case for g deterministic and time-invariant

Consider the **rough BSDE** with deterministic and time-invariant coefficient g:

$$Y_{t} = \xi + \int_{t}^{T} f_{r}(Y_{r}, Z_{r}) dr + \int_{t}^{T} g(Y_{r}) d\mathbf{X}_{r} - \int_{t}^{T} Z_{r} dW_{r}.$$
 (2)

We call $(Y,Z)\in\mathbb{S}^{\infty}\times BMO$ a **solution** to (2) if there exist $X^{n}\in C^{\infty}\left(\left[0,T\right],\mathbb{R}^{e}\right)$ and $(Y^{n},Z^{n})\in\mathbb{S}^{\infty}\times BMO$ for $n=1,2,\cdots$, such that (Y^{n},Z^{n}) is a solution to BSDE

$$Y_{t}^{n} = \xi + \int_{t}^{T} \left(f_{r} \left(Y_{r}^{n}, Z_{r}^{n} \right) + g \left(Y_{r}^{n} \right) \dot{X}_{r}^{n} \right) dr - \int_{t}^{T} Z_{r}^{n} dW_{r},$$

and

$$\lim_{n \to \infty} (\rho_{p\text{-}var} (\mathbf{X}^n, \mathbf{X}) + ||Y^n - Y||_{\infty} + ||Z^n - Z||_{BMO}) = 0.$$

◆ロト ◆団ト ◆差ト ◆差ト 差 めなべ

- X is a geometric p-rough path.
- $\xi \in L^{\infty}(\Omega, \mathcal{F}_T; \mathbb{R}^k)$.
- \bullet There exist $L \geq 0$ and measurable adapted processes

$$\lambda, \mu: \Omega \times [0,T] \to [0,\infty) \text{ such that } \left\| \int_0^T \left(\lambda_r + \mu_r^2 \right) dr \right\|_\infty < \infty,$$

$$|f_t(y,z)| + |\partial_y f_t(y,z)| \le \lambda_t + L \left(|y|^2 + |z|^2 \right),$$

$$|\partial_z f_t(y,z)| \le \mu_t + L \left(|y| + |z| \right).$$

• $g \in Lip^{\gamma}\left(\mathbb{R}^k, \mathcal{L}\left(\mathbb{R}^e, \mathbb{R}^k\right)\right)$ for $\gamma > p+2$.

- X is a geometric p-rough path.
- $\xi \in L^{\infty}(\Omega, \mathcal{F}_T; \mathbb{R}^k)$.
- \bullet There exist $L \geq 0$ and measurable adapted processes

$$\lambda,\mu:\Omega\times[0,T]\overset{-}{\to}[0,\infty) \text{ such that } \left\|\int_0^T\left(\lambda_r+\mu_r^2\right)dr\right\|_\infty<\infty,$$

$$|f_t\left(y,z\right)|+|\partial_yf_t\left(y,z\right)|\leq \lambda_t+L\left(|y|^2+|z|^2\right),$$

$$|\partial_zf_t\left(y,z\right)|\leq \mu_t+L\left(|y|+|z|\right).$$

• $g \in Lip^{\gamma}\left(\mathbb{R}^k, \mathcal{L}\left(\mathbb{R}^e, \mathbb{R}^k\right)\right)$ for $\gamma > p+2$.

Theorem (Liang-Tang'23+)

For $\|\xi\|_{\infty}$, $\left\|\int_0^T \left(\lambda_r + \mu_r^2\right) dr\right\|_{\infty}$ and $|\mathbf{X}|_{p\text{-}var}$ sufficiently small, the rough BSDE (2) has a unique solution (Y, Z) satisfying

$$||Y||_{\infty} + ||Z||_{BMO} \lesssim ||\xi||_{\infty} + \left\| \int_{0}^{T} (\lambda_{r} + \mu_{r}^{2}) dr \right\|_{\infty} + |\mathbf{X}|_{p\text{-}var}.$$

Flow transformation

Define

• $\phi: [0,T] \times \mathbb{R}^k \to \mathbb{R}^k$ be the solution flow to RDE

$$\phi_t(y) = y + \int_t^T g(\phi_r(y)) d\mathbf{X}_r,$$

and $\psi_t(\cdot)$ be the inverse of $\phi_t(\cdot)$,

- $\bullet \ \ \tilde{Y}:=\psi \left(Y\right) \ \mathrm{and} \ \ \tilde{Z}:=D\psi \left(Y\right) Z \mathrm{,}$
- $\tilde{f}:\Omega \times [0,T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^k$ by

$$\tilde{f}_{t}\left(\tilde{y},\tilde{z}\right):=\left(D\phi_{t}\left(\tilde{y}\right)\right)^{-1}\left(f_{t}\left(\phi_{t}\left(\tilde{y}\right),D\phi_{t}\left(\tilde{y}\right)\tilde{z}\right)+\frac{1}{2}D^{2}\phi_{t}\left(\tilde{y}\right)\tilde{z}^{2}\right),$$

Quadratic BSDEs

Then the rough BSDE (2) is transformed into the BSDE:

$$\tilde{Y}_t = \xi + \int_t^T \tilde{f}_r \left(\tilde{Y}_r, \tilde{Z}_r \right) dr - \int_t^T \tilde{Z}_r dW_r, \quad t \in [0, T].$$

By Assumptions, we get estimates on \tilde{f} :

$$\left| \tilde{f}_{t} \left(\tilde{y}, \tilde{z} \right) \right| + \left| \partial_{\tilde{y}} \tilde{f}_{t} \left(\tilde{y}, \tilde{z} \right) \right| \lesssim \lambda_{t} + \mu_{t}^{2} + \left| \mathbf{X} \right|_{p-var} + \left| \tilde{y} \right|^{2} + \left| \tilde{z} \right|^{2},$$

$$\left| \partial_{\tilde{z}} \tilde{f}_{t} \left(\tilde{y}, \tilde{z} \right) \right| \lesssim \mu_{t} + \left| \mathbf{X} \right|_{p-var} + \left| \tilde{y} \right| + \left| \tilde{z} \right|.$$

Tevzadze (SPA, 2008): multidimensional quadratic BSDEs are well-posed for small terminal value.

Outline

- Forwards
- 2 Rough BSDEs and related results
- $lacktriang{f 4}$ Case for g linear

Some notations of space

For $q \in [1, \infty)$ and $m \in [1, \infty]$ define

- $\Delta := \{(s,t) : 0 \le s \le t \le T\}$,
- $C_{2}^{q\text{-}var}L_{m}\left(\left[0,T\right],\Omega;V\right)$ as the space of measurable adapted processes $A:\Omega\times\Delta\to V$ such that $A\in C\left(\Delta,L^{m}\left(\Omega;V\right)\right)$ and

$$||A||_{m,q\text{-}var} := \sup_{\pi \in \mathcal{P}([0,T])} \left(\sum_{[u,v] \in \pi} ||A_{u,v}||_m^q \right)^{\frac{1}{q}} < \infty,$$

• $C^{q\text{-}var}L_m\left(\left[0,T\right],\Omega;V\right)$ as the space of measurable adapted processes $Y:\Omega\times\left[0,T\right]\to V$ such that $Y\in C\left(\left[0,T\right],L^m\left(\Omega;V\right)\right)$ and $\left\|\delta Y\right\|_{m,q\text{-}var}<\infty$, where $\delta Y_{s,t}:=Y_t-Y_s$, endowed with the norm

$$||Y||_{C^{q\text{-}var}L_m} := ||Y_T||_m + ||\delta Y||_{m,q\text{-}var}.$$

Stochastic controlled rough paths

We call (Y,Y') an L^m -integrable V-valued stochastic controlled rough path, denoted by $(Y,Y')\in \mathbf{D}_X^{(p,p)\text{-}var}L_m\left(\left[0,T\right],\Omega;V\right)$, if

- $Y \in C^{p\text{-}var}L_m\left(\left[0,T\right],\Omega;V\right)$,
- $Y' \in C^{p\text{-}var}L_m\left(\left[0,T\right],\Omega;\mathcal{L}\left(\mathbb{R}^e,V\right)\right)$,
- $\mathbb{E}.R^Y \in C_2^{(p/2)\text{-}var}L_m\left(\left[0,T\right],\Omega;V\right)$, where $R_{s,t}^Y:=\delta Y_{s,t}-Y_s'\delta X_{s,t}$.

We call (Y,Y') a **controlled rough path** with values in $L^{m}\left(\Omega;V\right)$, denoted by $(Y,Y')\in\mathscr{D}_{X}^{(p,p)\text{-}var}L_{m}\left(\left[0,T\right],\Omega;V\right)$ if additionally

 $\bullet \ R^Y \in C_2^{(p/2)\text{-}var} L_m.$

Decomposition

Decomposition lemma (Friz-Hocquet-L'21⁺)

For any $(Y,Y')\in \mathbf{D}_X^{(p,p)\text{-}var}L_m$ with $m\in[2,\infty)$, there exists a unique pair of processes $\left(Y^M,Y^J\right)$ such that $Y^M\in C^{p\text{-}var}L_m$ is an L^m -integrable martingale with $Y_0^M=0$, $\left(Y^J,Y'\right)\in \mathscr{D}_X^{(p,p)\text{-}var}L_m$ and $Y=Y^M+Y^J$.

Decomposition

Decomposition lemma (Friz-Hocquet-L'21+)

For any $(Y,Y')\in \mathbf{D}_X^{(p,p)\text{-}var}L_m$ with $m\in[2,\infty)$, there exists a unique pair of processes $\left(Y^M,Y^J\right)$ such that $Y^M\in C^{p\text{-}var}L_m$ is an L^m -integrable martingale with $Y_0^M=0$, $\left(Y^J,Y'\right)\in \mathscr{D}_X^{(p,p)\text{-}var}L_m$ and $Y=Y^M+Y^J$.

For $K \ge 1$ define

$$\|(Y,Y')\|_{\mathbf{D}_{X}^{(p,p)-var}L_{m}}^{(K)} := \|Y_{T}\|_{m} + \|Y'_{T}\|_{m} + K \|\delta Y^{M}\|_{m,p-var} + \|\delta Y'\|_{m,p-var} + K \|R^{Y^{J}}\|_{m,(p/2)-var}$$

Sewing lemma

Let $A:\Omega\times\Delta\to V$ be a measurable adapted L^m -integrable process. Assume that there exist positive constants ε_i and controls w_i for $1\leq i\leq N$ such that

$$\left\|\delta A_{s,u,t}\right\|_{m} \leq \sum_{i=1}^{N} w_{i}\left(s,t\right)^{1+\varepsilon_{i}}$$

where $\delta A_{s,u,t}=A_{s,t}-A_{s,u}-A_{u,t}$. Then there exists a unique measurable adapted L^m -integrable process $\mathcal{A}:\Omega\times[0,T]\to V$ with $\mathcal{A}_0=0$ such that

$$\|\delta \mathcal{A}_{s,t} - A_{s,t}\|_{m} \lesssim \sum_{i=1}^{N} w_{i} (s,t)^{1+\varepsilon_{i}}.$$

Moreover, we have

$$\lim_{\pi \in \mathcal{P}([0,T]), |\pi| \to 0} \sup_{t \in [0,T]} \left\| \mathcal{A}_t - \sum_{[u,v] \in \pi, u \le t} A_{u,v \land t} \right\|_m = 0.$$

Stochastic sewing lemma

Let $A:\Omega\times\Delta\to V$ be a measurable adapted L^m -integrable process. Assume that there exist positive constants ε_i and controls w_i for $1\leq i\leq N$ such that

$$\left\|\delta A_{s,u,t}\right\|_{m} \leq \sum_{i=1}^{N} w_{i}\left(s,t\right)^{\frac{1}{2}+\varepsilon_{i}}, \quad \mathbb{E}_{s}\delta A_{s,u,t} = 0,$$

where $\delta A_{s,u,t}=A_{s,t}-A_{s,u}-A_{u,t}$. Then there exists a unique measurable adapted L^m -integrable process $\mathcal{A}:\Omega\times[0,T]\to V$ with $\mathcal{A}_0=0$ such that

$$\left\|\delta \mathcal{A}_{s,t} - A_{s,t}\right\|_{m} \lesssim \sum_{i=1}^{N} w_{i}\left(s,t\right)^{\frac{1}{2} + \varepsilon_{i}}, \quad \mathbb{E}_{s}\left[\delta \mathcal{A}_{s,t} - A_{s,t}\right] = 0.$$

Moreover, we have

$$\lim_{\pi \in \mathcal{P}([0,T]), |\pi| \to 0} \sup_{t \in [0,T]} \left\| \mathcal{A}_t - \sum_{[u,v] \in \pi, u \le t} A_{u,v \land t} \right\|_m = 0.$$

p-rough stochastic integration

Let $(Y,Y')\in \mathbf{D}_X^{(p,p)\text{-}var}L_m\left([0,T],\Omega;\mathcal{L}\left(\mathbb{R}^e,\mathbb{R}^k\right)\right)$. Then there exists a unique measurable adapted L^m -integrable process $\int_0^\cdot Yd\mathbf{X}:\Omega\times[0,T]\to\mathbb{R}^k$ with the vanishing initial value such that

$$\lim_{\pi \in \mathcal{P}([0,T]), |\pi| \to 0} \sup_{t \in [0,T]} \left\| \int_0^t Y d\mathbf{X} - \sum_{[u,v] \in \pi, u \le t} \left(Y_u \delta X_{u,v \wedge t} + Y_u' \mathbb{X}_{u,v \wedge t} \right) \right\|_{m} = 0.$$

We call $\int_0^{\cdot} Y d\mathbf{X}$ the p-rough stochastic integral of (Y,Y') against \mathbf{X} . Moreover, $\left(\int_0^{\cdot} Y d\mathbf{X},Y\right) \in \mathscr{D}_X^{(p,p)\text{-}var} L_m\left(\left[0,T\right],\Omega;\mathbb{R}^k\right)$ and for any $K \geq 1$,

$$\left\| \left(\int_{0}^{\cdot} Y d\mathbf{X}, Y \right) \right\|_{\mathbf{D}_{X}^{(p,q)-var} L_{m}}^{(K)}$$

$$\leq \left\| Y_{T} \right\|_{m} + C \left\| \left(Y, Y' \right) \right\|_{\mathbf{D}_{X}^{(q,q')-var} L_{m}}^{(K)} \left(\frac{1}{K} + K \left| \mathbf{X} \right|_{p-var} \right).$$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬで

Proof ideas

- \bullet Define $A^M_{s,t}:=Y^M_s\delta X_{s,t}$ and $A^J_{s,t}:=Y^J_s\delta X_{s,t}+Y'_s\mathbb{X}_{s,t}.$
- Apply stochastic sewing lemma to A^M to obtain $\int_0^{\cdot} Y^M d\mathbf{X}$.
- Apply sewing lemma to A^J to obtain $\int_0^{\cdot} Y^J d\mathbf{X}$.
- Define $\int_0^{\cdot} Y d\mathbf{X} := \int_0^{\cdot} Y^M d\mathbf{X} + \int_0^{\cdot} Y^J d\mathbf{X}$.

Linear rough BSDEs

Consider the **BSDE** with a linear rough drift:

$$Y_{t} = \xi + \int_{t}^{T} f_{r}(Y_{r}, Z_{r}) dr + \int_{t}^{T} (G_{r}Y_{r} + H_{r}) d\mathbf{X}_{r} - \int_{t}^{T} Z_{r} dW_{r}.$$
 (3)

We call $(Y,Z) \in \mathbb{L}^2 \times \mathbb{L}^2$ a solution to (3) if

- $\int_0^T |f_r(Y_r, Z_r)| dr$ is finite a.s.,
- $\left(GY+H,\left(GY+H\right)'\right)\in\mathbf{D}_{X}^{\left(p,p\right)\text{-}var}L_{2}\left(\left[0,T\right],\Omega;\mathcal{L}\left(\mathbb{R}^{e},\mathbb{R}^{k}\right)\right)$, where $\left(GY+H\right)':=G\left(GY+H\right)+G'Y+H'$,
- $\bullet \ \ \text{for every} \ t \in [0,T] \text{,} \\$

$$Y_t = \xi + \int_t^T f_r(Y_r, Z_r) dr + \int_t^T (GY + H) d\mathbf{X} - \int_t^T Z_r dW_r \quad a.s.$$

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

Assumptions:

- $\xi \in L^2\left(\Omega, \mathcal{F}_T; \mathbb{R}^k\right)$ and $f\left(0, 0\right) \in \mathbb{L}^2\left(\left[0, T\right], \Omega; \mathbb{R}^k\right)$.
- ullet f is uniformly Lipschitz continuous in y and z.
- $(G, G') \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{\infty}\left(\left[0, T\right], \Omega; \mathcal{L}\left(\mathbb{R}^{k}, \mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{k}\right)\right)\right).$
- $(H, H') \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{2}\left(\left[0, T\right], \Omega; \mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{k}\right)\right)$.

Assumptions:

- $\xi \in L^2\left(\Omega, \mathcal{F}_T; \mathbb{R}^k\right)$ and $f\left(0, 0\right) \in \mathbb{L}^2\left(\left[0, T\right], \Omega; \mathbb{R}^k\right)$.
- ullet f is uniformly Lipschitz continuous in y and z.
- $(G, G') \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{\infty}\left(\left[0, T\right], \Omega; \mathcal{L}\left(\mathbb{R}^{k}, \mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{k}\right)\right)\right).$
- $(H, H') \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{2}\left(\left[0, T\right], \Omega; \mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{k}\right)\right)$.

Theorem (Liang-Tang'23+)

Under the above Assumptions, the rough BSDE (3) has a unique solution.

Assumptions:

- $\xi \in L^2\left(\Omega, \mathcal{F}_T; \mathbb{R}^k\right)$ and $f\left(0, 0\right) \in \mathbb{L}^2\left(\left[0, T\right], \Omega; \mathbb{R}^k\right)$.
- ullet f is uniformly Lipschitz continuous in y and z.
- $(G, G') \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{\infty}\left(\left[0, T\right], \Omega; \mathcal{L}\left(\mathbb{R}^{k}, \mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{k}\right)\right)\right)$.
- $(H, H') \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{2}\left(\left[0, T\right], \Omega; \mathcal{L}\left(\mathbb{R}^{e}, \mathbb{R}^{k}\right)\right)$.

Theorem (Liang-Tang'23+)

Under the above Assumptions, the rough BSDE (3) has a unique solution.

Auxiliary results:

- $F \in \mathbb{L}^2 \Rightarrow \int_0^{\cdot} F_r dr \in C^{1-var} L_2 \Rightarrow \left(\int_0^{\cdot} F_r dr, 0\right) \in \mathscr{D}_X^{(p,p)-var} L_2.$
- M is a square-integrable martingale $\Rightarrow M \in C^{2\text{-}var}L_2$.
- $(Y,Y') \in \mathbf{D}_X^{(p,p)\text{-}var} L_2 \Rightarrow (GY,GY'+G'Y) \in \mathbf{D}_X^{(p,p)\text{-}var} L_2$.

Fixed point argument

Define

$$\mathbf{S} := \left\{ (Y, Y', Z) \in \mathbf{D}_{X}^{(p,p)\text{-}var} L_{2} \times \mathbb{L}^{2} : Y_{T} = \xi, Y'_{T} = G_{T}\xi + H_{T} \right\},$$

$$\left\| (Y, Y', Z) \right\|^{(K)} := \left\| (Y, Y') \right\|_{\mathbf{D}_{X}^{(p,p)\text{-}var} L_{2}}^{(K)} + K \left\| Z \right\|_{2}.$$

For any $(Y,Y',Z)\in \mathbf{S}$, $M:\Omega\times [0,T]\to \mathbb{R}^k$ defined by

$$M_t := \mathbb{E}_t \left[\xi + \int_0^T f_r (Y_r, Z_r) dr + \int_0^T (GY + H) d\mathbf{X} \right]$$

is a square-integrable martingale and there exists unique Φ^Z such that

$$M_t = M_0 + \int_0^t \Phi_r^Z dW_r.$$

Define $\Phi^{Y'} := GY + H$ and

$$\Phi^Y := \xi + \int_{\cdot}^T f_r\left(Y_r, Z_r\right) dr + \int_{\cdot}^T \left(GY + H\right) d\mathbf{X} - \int_{\cdot}^T \Phi_r^Z dW_r.$$

Thank you for your attention!

Ying,
Happy Birthday!
More Happiness, More Luckies and More Successes
in the future!