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Motivation - Finite dimensional case

Freidlin and Koralov (PTRF 2010) have considered the following quasi-linear
parabolic problem

Deuc(t,x) = 5 01 ai0x, uc(t.x)) Ogue(t, x) + S0y bi(x) Opue(t, x),

u.(0,x) = g(x), x€ R,

(1)
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Motivation - Finite dimensional case

Freidlin and Koralov (PTRF 2010) have considered the following quasi-linear
parabolic problem

Deuc(t,x) = 5 01 ai0x, uc(t.x)) Ogue(t, x) + S0y bi(x) Opue(t, x),

u.(0,x) = g(x), x€ R,

(1)

together with the randomly perturbed system where (B;) is a d-dimensional
Brownian motion and a;(x, r) = (c0*);i(x, r).

dX(s) = b(X*(5)) ds + Ve o (XEX(s), ue(t — 5. X7 (s))) dB,

(@)
X(0) = x,
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Motivation - Finite dimensional case

Freidlin and Koralov (PTRF 2010) have considered the following quasi-linear
parabolic problem

Deuc(t,x) = 5 01 ai0x, uc(t.x)) Ogue(t, x) + S0y bi(x) Opue(t, x),

(1)
u.(0,x) = g(x), x€ R,
together with the randomly perturbed system where (B;) is a d-dimensional
Brownian motion and a;(x, r) = (c0*);i(x, r).
dX2*(s) = b(XE¥(s)) ds + /e a(X2*(s), ue(t — 5, X*(s))) dBs,
)

X£%(0) = x,

The PDE (1) and the SDE (2) are related by the relation:
ue(r,x) = Eg(X>*(r)), r=0

The classical theory of (finite dimensional) parabolic, quasi-linear, PDEs
guarantees that equation (2) admits a unique classical solution ..
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Motivation - Finite Dimensional Case

In their framework, Freidlin and Koralov complete a comprehensive program:

m Prove the Large Deviation Principle for the trajectories of X5 and
characterize the action functional.

m Study the exit problem for (X!**) from a fixed domain D C R".

m Investigate the asymptotic behavior lim._, uc.(A/€) := c(A).
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Motivation - Finite Dimensional Case

In their framework, Freidlin and Koralov complete a comprehensive program:

m Prove the Large Deviation Principle for the trajectories of X5 and
characterize the action functional.

m Study the exit problem for (X!**) from a fixed domain D C R".
m Investigate the asymptotic behavior lim._, uc.(A/€) := c(A).
Our objective is to start a similar program in the infinite-dimensional case (when

equation (1) is a SPDE).

DIFFICULTY: Unlike the finite-dimensional case, the current literature
lacks a general Hilbert space theory for quasi-linear equations.
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Motivation - Finite Dimensional Case "%““

In their framework, Freidlin and Koralov complete a comprehensive program:

m Prove the Large Deviation Principle for the trajectories of X5 and
characterize the action functional.

m Study the exit problem for (X!**) from a fixed domain D C R".
m Investigate the asymptotic behavior lim._, uc.(A/€) := c(A).
Our objective is to start a similar program in the infinite-dimensional case (when

equation (1) is a SPDE).

DIFFICULTY: Unlike the finite-dimensional case, the current literature
lacks a general Hilbert space theory for quasi-linear equations.

Two (divergent) considerations:

B The asymptotic behavior as € — 0 of the SDE (2) can be studied
independently of the PDE (1).

B The PDE (1) is of independent interest.
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Infinite Dimensional Case - Setting of the Problem

We consider the randomly perturbed partial differential equation defined on a
separable Hilbert space H, where € is a small parameter.

dXi¥(s) = [AXE*(s) + b(XE*(s))] dt + Vea(XEX(s), ue(t — s, XI¥(s))) dW,

€

Xt%(0) = x € H,
3)

where u. satisfies (at least formally) the quasi-linear equations, t > 0
Diuc(t,x) = 5Tr [0 (x, uc(t,x))D2uc(t, x)] + (Ax + b(x), Duc(t,x)) 1,

u(0,x) = g(x), xe€ H.
(4)

and it holds
ue(s,x) = Eg(X>*(t))
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Infinite Dimensional Case - Assumptions

dX?*(s) = [AXEX(s) + b(XE(s))] dt + \/ea(XE*(s), uc(t — 5, XE(s))) dWs,

Xt%(0) = x € H,
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Infinite Dimensional Case - Assumptions

dXE*(s) = [AXEX(s) + b(XEX(s))] dt + Ve a(XEX(s), uc(t — s, XEX(s))) dWs,
Xt%(0) = x € H,

Here

m A: D(A) C H— H is the generator of a strongly continuous,
Hilbert-Schmidt, semigroup (S(t)) with:

[1S(t)|l o(Hy < ce™ ™ for some 0 <y < 1/2and all t € [0,1]
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Infinite Dimensional Case - Assumptions

dXE*(s) = [AXEX(s) + b(XEX(s))] dt + Ve a(XEX(s), uc(t — s, XEX(s))) dWs,
Xt%(0) = x € H,

Here

m A: D(A) C H— H is the generator of a strongly continuous,
Hilbert-Schmidt, semigroup (S(t)) with:

[1S(t)|l o(Hy < ce™ ™ for some 0 <y < 1/2and all t € [0,1]

m b: H — H is some non-linear Lipschitz mapping.
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Infinite Dimensional Case - Assumptions

dXE*(s) = [AXEX(s) + b(XEX(s))] dt + Ve a(XEX(s), uc(t — s, XEX(s))) dWs,
Xt%(0) = x € H,

Here

m A: D(A) C H— H is the generator of a strongly continuous,
Hilbert-Schmidt, semigroup (S(t)) with:

[1S(t)|l o(Hy < ce™ ™ for some 0 <y < 1/2and all t € [0,1]

m b: H — H is some non-linear Lipschitz mapping.

m o: HxR — L(H, H) is some non-linear mapping, Lipchitz in both variables.
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m A: D(A) C H— H is the generator of a strongly continuous,
Hilbert-Schmidt, semigroup (S(t)) with:

[1S(t)|l o(Hy < ce™ ™ for some 0 <y < 1/2and all t € [0,1]

m b: H — H is some non-linear Lipschitz mapping.
m o: HxR — L(H, H) is some non-linear mapping, Lipchitz in both variables.

m (W;), t >0, is a cylindrical Wiener process in an Hilbert space H.
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Infinite Dimensional Case - Assumptions

dXE*(s) = [AXEX(s) + b(XEX(s))] dt + Ve a(XEX(s), uc(t — s, XEX(s))) dWs,
Xt%(0) = x € H,

Here

m A: D(A) C H— H is the generator of a strongly continuous,
Hilbert-Schmidt, semigroup (S(t)) with:

[1S(t)|l o(Hy < ce™ ™ for some 0 <y < 1/2and all t € [0,1]

m b: H — H is some non-linear Lipschitz mapping.
m o: HxR — L(H, H) is some non-linear mapping, Lipchitz in both variables.
m (W;), t >0, is a cylindrical Wiener process in an Hilbert space H.

m g: H — H is some non-linear Lipchitz mapping.
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The “final value reformulation”

Notice that if
vi(s,x) := u(t —s,x), se€[0,t]

then the above equations rewrite:
D.vl(s,x) — 5Tr [ao’*(x7 vﬁt(s,x))vaet(s,x)] + (Ax + b(x), Dv}(s,x))y =0,

vi(t,x) =g(x), x¢€ H.

dX?*(s) = [AXE*(s) + b(XEX(s))] dt + Ve (XEX(s), vi(s, XE*(s))) dWs,
Xt%(0) = x € H,

and it holds
V(s x) = Eg(X75*(t — 5))

thus by markovianity

vi(s, X (s) = B (g(XE(0)| 72
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The FBSDE equation

The equations for X5 can be rewritten in a closed form as:
dX*(s) = [AXE¥(s) + b((X:*(s))] ds+
Ve (XE(s),E (X)) 7)) dws, 5)

XEX(0) =x € H,
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The FBSDE equation ™

The equations for X5 can be rewritten in a closed form as:
dX*(s) = [AXE¥(s) + b((X:*(s))] ds+
Ve (XE(s),E (X)) 7)) dws, (5)
XEX(0) =x € H,

The well posedness of the above equation for small € can be easily established:

Theorem

Fix T > 0 there exists €(T) > 0 such that for all t < T and e < €(T) there exists
a unique solution (X!*)(s)sco,g) with continuous trajectories. Moreover

IE(szt[uo IXEX(s)P) < C(T)(1 + [x%)

E( sup |X5(s) — X2 (s)]?) < C(T)|x — x|
s€[0,t]
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The FBSDE equation D

The equations for X!** can be rewritten in a closed form as:
dXe(s) = [AXE(s) + b((Xo*(s))] ds+
Ve (XE(s),E (X)) 7)) dws, (5)
XEX(0) =x € H,

The well posedness of the above equation for small € can be easily established:

Theorem
Fix T > 0 there exists €(T) > 0 such that for all t < T and e < €(T) there exists
a unique solution (X!*)(s)sco,g) with continuous trajectories. Moreover

IE(szt[uo IXEX(s)P) < C(T)(1 + [x%)

E( sup |X5(s) — X2 (s)]?) < C(T)|x — x|
s€[0,t]

Remark: if A is dissipative then € > 0 can be chosen independently on T
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Asymptotic behaviour when ¢ — 0

When e — 0 the laws of (X5*) converge to the Dirac measure centerd in in Z*
where
d

~ZX(s) = AZ(s) + b(ZX(s): ZX(0) =x

The events ' C C([0, t]; H) that do not contain Z* describe a deviant behavior.
We want to know how deviant a particular event I' such that Z* ¢ [ is, more

precisely we want to compute the exponential rate at which £(X5*)(T) goes to
zero.
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Asymptotic behaviour when ¢ — 0 D

When e — 0 the laws of (X5*) converge to the Dirac measure centerd in in Z*
where

%ZX(S) = AZX(s) + b(Z*(s));  ZX(0) = x

The events ' C C([0, t]; H) that do not contain Z* describe a deviant behavior.
We want to know how deviant a particular event I' such that Z* ¢ [ is, more

precisely we want to compute the exponential rate at which £(X5*)(T) goes to
zero.

A family of probability measures {}e~0 on a Polish space E satisfies a large
deviation principle, with speed 1/e and action functional / : E — [0, +o0] if

m for every A C E open liminf elog u.(A) > — inf I(x),
e—0 x€A

m for every C C E closed limsupelog p(C) < — infC 1(x).
S

e—0

m for every s > 0, the set {/(x) < s} is compact in E,
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Large Deviation Principle (LDP) >4

Theorem (S. Cerrai, G. Guatteri, G.T.)

Assume that (S(t)) is an analytic semigroup then the family {L(X ™) }ee (0,)
satisfies a LDP in C([0, t]; H) governed by the action functional

1 2 ‘ 2 . _ ytx
) = 06 { [ IRy : 1) = X2(6), s e 0.1}

where f ranges over continuous function [0, t] — H with f(0) = x
and X;’X is the unique mild solution of problem

(X)) = AX(5) + BXE(5)) + 0 (X(5), (24 Ot = ) ()
X;*(0) =x € H,
We recall that for every y € H, (Z7) verifies:

S
Z7(s) = eSAy+/ es=Ap(Z(r)) dr.
0
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-

Sketch of the proof >
I EEEEEEEEEEEEm————_———,

By general results, [A. Budhiraja, P. Dupuis, V. Maroulas, Ann. Probab. 2008]
a LDP with rate function /; ,(f) =  inf {fot lo(s)I3ds : = X;vx}, holds

when the conditions below are verified
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Sketch of the proof

By general results, [A. Budhiraja, P. Dupuis V. Maroulas, Ann. Probab. 2008]
a LDP with rate function /; ,(f) =  inf {fo lo(s)I3ds : = X;’X}, holds
when the conditions below are verified

m for every t, R > 0, the level sets {/; . < R} are compact in C([0, t]; H).

m For every M > 0 denote by A; y the set of progressively measurable
processes ¢ such that [|¢||20,6H) < M, P —ass..

For all {@c}es0 C Arm and o € A i
if 9. — ¢ weakly in L2(0, t; H) in distribution
then X — X5 strongly in C([0, t]; H) in distribution

Where X5L*_ solves:
Pes

dX5re(s) = [AXX(s) + b((XE(s))] ds+
Veo (X5x(s), vi(s. XEX(5))) dWs + o (X5 (5), vi(s. X5 (5))) pe(s)ds,
X5x(0) =x € H,

and vl(s,x) = Eg(X!~**(t — s))
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The controlled SPDE

We will concentrate on the second condition.
It is worth noticing that the controlled SPDE

dX2x (s) = [AX:;:E(S) + b((X;vje(s))] ds+

Ve (X5e(s) vi(s, Xg2(s))) dWs + o (XEX(5), vi(s Xg7ie(5)) eels)ds,
X5 (0)=x € H,

can be rewritten as

dX5* (s) = [AX:;EX,E(S) + b((X;vjE(s))] ds+
Ve (X (s), B (g(XEx (1)

]-"SW)) dWs,
Xt4(0) = x € H,

1 S
here WS := W, + — d
where W; 5+\/E/O<p(r)r
and IP€ is the probability under which (W*¢) is a Wiener process.
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Sketch of the proof

We have to prove that for all {¢c}eso with [oc]i2(0,61) < M, P-aus.
if oc = @ weakly in L?(0, t; H) in distribution then X% — X%* strongly in
C([0, t]; H) in distribution.
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Sketch of the proof

We have to prove that for all {¢c}eso with [oc]i2(0,61) < M, P-aus.

if oc = @ weakly in L?(0, t; H) in distribution then X% — X%* strongly in
C([0, t]; H) in distribution.

We proceed as follows:

m Use Skorohod’s Theorem to pass from convergence in law to P-a.s. (weak)
convergence ¢, — ¢ in L2(0, t; H)
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Sketch of the proof

We have to prove that for all {¢c}eso with [oc]i2(0,61) < M, P-aus.

if o — ¢ weakly in L2(0, t; H) in distribution then X5Xe — XX strongly in
C([0, t]; H) in distribution.

We proceed as follows:

m Use Skorohod’s Theorem to pass from convergence in law to P-a.s. (weak)
convergence ¢, — ¢ in L2(0, t; H)

m Prove that vi(s,x) = Eg(X!™**(t — s)) is lipschitz in x uniformly with
respect to s € [0,t] and € <€
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Sketch of the proof

We have to prove that for all {¢c}eso with [oc]i2(0,61) < M, P-aus.

if o — ¢ weakly in L2(0, t; H) in distribution then X5Xe — XX strongly in
C([0, t]; H) in distribution.

We proceed as follows:

m Use Skorohod’s Theorem to pass from convergence in law to P-a.s. (weak)
convergence ¢, — ¢ in L2(0, t; H)

m Prove that vi(s,x) = Eg(X!™**(t — s)) is lipschitz in x uniformly with
respect to s € [0,t] and € <€

m prove that for some § >0, a >0
X5 = X5 N co o,0:D((—a)2)) < e — @lliz(0,e:m)

where C([0, t]; D((—A)®)) is the space of 6-Holder continuous functions
with values in D((—A)%)
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Sketch of the proof

We have to prove that for all {¢c}eso with [oc]i2(0,61) < M, P-aus.

if o — ¢ weakly in L2(0, t; H) in distribution then X5Xe — XX strongly in
C([0, t]; H) in distribution.

We proceed as follows:

m Use Skorohod’s Theorem to pass from convergence in law to P-a.s. (weak)
convergence ¢, — ¢ in L2(0, t; H)

m Prove that vi(s,x) = Eg(X!™**(t — s)) is lipschitz in x uniformly with
respect to s € [0,t] and € <€

m prove that for some § >0, a >0
X5 = X5 N co o,0:D((—a)2)) < e — @lliz(0,e:m)

where C([0, t]; D((—A)®)) is the space of 6-Holder continuous functions
with values in D((—A)%)

= exploit the compact embedding C%([0, t]; D((—A)%)) — C([0, t]; H) to
obtain strong convergence of XJ*. — X5 in C([0, t]; H).

The proof is completed. O
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Part Il The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables
Deuc(t,x) = 5Tr [0 (x, ue(t, x)) D2uc(t, x)] + (Ax + b(x), Duc(t,x)) 1,

u.(0,x) = g(x), xe€ H.
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Part Il The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables
Deuc(t,x) = 5Tr [0 (x, ue(t, x)) D2uc(t, x)] + (Ax + b(x), Duc(t,x)) 1,

u.(0,x) = g(x), xe€ H.

We are now interested into “classical” solutions. We will only able to consider the
case when there exist a bounded non-negative symmetric operator Q, a
continuous mapping f : H x R — £ (H) and § > 0 small enough such that

oc*o(x,r)=Q+df(x,r), xe€ H, reR.
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Part Il The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables

Diuc(t,x) = 5Tr [UU*(X, u(t, x))D?u(t, X)} + (Ax + b(x), Duc(t,x))H,

u.(0,x) = g(x), xe€ H.

We are now interested into “classical” solutions. We will only able to consider the
case when there exist a bounded non-negative symmetric operator Q, a
continuous mapping f : H x R — £ (H) and § > 0 small enough such that

oc*o(x,r)=Q+df(x,r), xe€ H, reR.
On A and @ we assume:

m The semigroup (S) generated by A is of negative type

t
m Forevery t >0, Q: := / S(r)QS*(r) dr is trace class (that is € L] (H)).
0
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Part Il The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables

Diuc(t,x) = 5Tr [UU*(X, u(t, x))D?u(t, X)} + (Ax + b(x), Duc(t,x))H,

u.(0,x) = g(x), xe€ H.

We are now interested into “classical” solutions. We will only able to consider the
case when there exist a bounded non-negative symmetric operator Q, a
continuous mapping f : H x R — £ (H) and § > 0 small enough such that

oc*o(x,r)=Q+df(x,r), xe€ H, reR.
On A and @ we assume:

m The semigroup (S) generated by A is of negative type
t
m Forevery t >0, Q: := / S(r)QS*(r) dr is trace class (that is € L] (H)).
0

m Forevery t >0 S(t)H C Qtl/zH.

A Backward Stochastic Excursion with Ying Hu - Centre Henry Lebesgue, 17-19 June 2024



Part Il The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables

Diuc(t,x) = 5Tr [UU*(X, u(t, x))D?u(t, X)} + (Ax + b(x), Duc(t,x))H,

u.(0,x) = g(x), xe€ H.

We are now interested into “classical” solutions. We will only able to consider the
case when there exist a bounded non-negative symmetric operator Q, a
continuous mapping f : H x R — £ (H) and § > 0 small enough such that

oc*o(x,r)=Q+df(x,r), xe€ H, reR.
On A and @ we assume:

m The semigroup (S) generated by A is of negative type
t
m Forevery t >0, Q: := / S(r)QS*(r) dr is trace class (that is € L] (H)).
0

m Forevery t >0 S(t)H C Qtl/zH.
m If we define A; = 0;1/25(t) there exists some A > 0 such that
||At||£(H) <c(tA 1)_1/26_)\’:, t>0.
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An example

Let H = L?(0), for some bounded interval O C R, and let {e;};cn be an
orthonormal basis of H contained in L*(0O).

m A is the realization of the Laplace operator with Dirichlet boundary
conditions in O

E Q=1
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An example

Let H = L?(0), for some bounded interval O C R, and let {e;};cn be an
orthonormal basis of H contained in L*(0O).

m A is the realization of the Laplace operator with Dirichlet boundary
conditions in O

E Q=1
o0
We fix non-negative numbers {\;};cn, and we assume that Z Ai |leill o0y < oo.
i=1

m Forevery x € H, r € R, and i € N, we define

[f(x, el () = fi(x(&), NAhiei(€),  §€ O,

for some nice smooth functions f; : R x R — R.
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The well-posedness result for the quasi-linear equation 14

BICOCCA

We rewrite the quasi-linear equation as a perturbation of Ornstein-Uhlenbeck
(e is now irrelevant since we have d small; we set ¢ = 1 and simplify notation)

Dsu(s,x) = Lu(s,x) + $Tr [f(x, u(s,x))D2u(s, x)| + (b(x), Du(s, x)),
U(O,X)Ig(X), x € H,
Lo(x) = Tr [QD2p(x)] 4 (Ax, Dxp(x))1 is the Ornstein-Uhlenbeck operator.
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The well-posedness result for the quasi-linear equation 14

BICOCCA

We rewrite the quasi-linear equation as a perturbation of Ornstein-Uhlenbeck
(e is now irrelevant since we have d small; we set ¢ = 1 and simplify notation)

Dsu(s,x) = Lu(s,x) + $Tr [f(x, u(s,x))D2u(s, x)| + (b(x), Du(s, x)),
U(O,X)Ig(X), x € H,
Lo(x) = Tr [QD2p(x)] 4 (Ax, Dxp(x))1 is the Ornstein-Uhlenbeck operator.

Strategy: treat the red terms on the right hand side as perturbations of L.
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The well-posedness result for the quasi-linear equation 14

We rewrite the quasi-linear equation as a perturbation of Ornstein-Uhlenbeck
(e is now irrelevant since we have d small; we set ¢ = 1 and simplify notation)

Dsu(s,x) = Lu(s,x) + $Tr [f(x, u(s,x))D2u(s, x)| + (b(x), Du(s, x)),
u(0,x) =g(x), x¢€ H,
Lo(x) = Tr [QD2p(x)] 4 (Ax, Dxp(x))1 is the Ornstein-Uhlenbeck operator.
Strategy: treat the red terms on the right hand side as perturbations of L.

Theorem (S. Cerrai, G. Guatteri, G.T., JFA 2024)

Fix% <n<1,0<9< "T_l let p = 1_2“9 and assume that g € C](H).
There exists § > 0 such that for every § < 5, t > 0 there exists a unique classical
solution u € C([0, t], H). Moreover denoting Holder norms by || - ||«-

sup. (1065, Y+ (5 A LY11Dsets, o + (s A1) [D2u(s, o) < s
se (0.t

for some constant cs > 0 independent of t.
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Main steps of the proof >

Step 1.
We write the quasi-linear PDE in mild form as

u(s,x) = Rsg(x) + g /OS Re_,Tr [F(u(r7 )D2u(r, )] (x)dr

s

+/0 Re_(b(-), Du(r, )) () dr.

where F(1)(x) = f(x,1(x)) and

R i= [ DS+ o). v € BulH)
is the Ornstein-Uhlenbeck semigroup.
Notice that if £(s, x) = [Rs®](x) then & is a classical solution of the linear PDE in

H:
{:sg(s,x) = L&(s,x)
g(O,X) = qu}(X)
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Smoothing properties of Ornstein-Uhlenbeck semigroups

By [Da Prato, Zabczyk 2002] we know that the operator Rs, s > 0 is smoothing.
For instance for every 0 < 3 < o there exist some ¢, g > 0 such that

_a=8
[Rsplla < cap(sA1)” 2 [lpllg, t>0.
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Smoothing properties of Ornstein-Uhlenbeck semigroups

By [Da Prato, Zabczyk 2002] we know that the operator Rs, s > 0 is smoothing.
For instance for every 0 < 3 < o there exist some ¢, g > 0 such that

_a=8
[Rsplla < cap(sAL)™ 2 flolls, £>0.

Moreover Rs, s > 0 maps C°(H) into C>°(H). In particular if we set

ls.0 .= (Ilello + €% [¢lo)

llo

where [¢]g is the §-Holder seminorm then il holds for every n € N and
0<0<p<1

n—(p—0)

ID"Rspllo < cnp,p(sAL)™ 7 e [lp

ls,p, s>0.
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Main steps of the proof

Step 2: We try to establish a contraction argument, we have to take into
account that:

= we deal with a second order nonlinear term Tr [F(u(r,-))D2u(r,-)] in our
function space we have to go up to second order differentiability.

m g is not smooth we have to cope with explosions of norms when s\ 0.

Thus we chose to work with the space of smooth Hélder continuous functions in
H endowed with a slight modification of the norm:

sup([lu(s, )y + (s A 1)?IIDcu(s, Yo + (s A1) D2u(s, Yo ) = [l

p,0,t
s€ (0,t] 7P
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Main steps of the proof

Step 2: We try to establish a contraction argument, we have to take into
account that:

= we deal with a second order nonlinear term Tr [F(u(r,-))D2u(r,-)] in our
function space we have to go up to second order differentiability.

m g is not smooth we have to cope with explosions of norms when s\ 0.

Thus we chose to work with the space of smooth Hélder continuous functions in
H endowed with a slight modification of the norm:

sup([lu(s, )y + (s A 1)?IIDcu(s, Yo + (s A1) D2u(s, Yo ) = [l

p,0,t
s€ (0,t] 7P

We prove, exploiting smoothing estimates for (R), that if

MMul(s, x) == Rsg(x) + g /OS Re_,Tr [F(u(r7 -))Dfu(r, )] (x)dr

+/ Rs—r{b(-), Du(r,-))n(x) dr.
0
and if § and t are sufficiently small then ' is a contraction with respect to

norm |[-[, , .. Thus a unique local mild solution exists.
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Main steps of the proof
I EEEEEE——

Step 3: We show, again exploiting the smoothing of R, that any local mild
solution wu is in fact a classical solution. In particular,

m u(s,') € C3(H), for every s € (0, 1],
m QD2u(t,x) € L1(H) (is a trace-class operator),
m u(-,x) € CH0,+00) , for every x € D(A),
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Main steps of the proof

Step 3: We show, again exploiting the smoothing of R, that any local mild
solution wu is in fact a classical solution. In particular,

m u(s,') € C3(H), for every s € (0, 1],
m QD2u(t,x) € L1(H) (is a trace-class operator),
m u(-,x) € CH0,+00) , for every x € D(A),

Step 4: We show that local solution satisfies an a-priori bound, that is lies in a

ball with respect to the norm |[[ul, .-

Notice that the estimate if the C° part of the norm, that is the maximum
principle
[[u(s;)llo < ll&llo

comes form stochastic representation of the solution u.

We conclude global existence by a standard iterative process. O
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Previous Results

We remark that, even in the case in which f only depends on x, that is for
equation:

Diu(t,x) = Lu(t,x) + Tr [f(x)Dfu(t, x)] + (b(x), Du(t,x))H,

(6)

u(0,x) = g(x), x€ H,

existence of classical solutions is not a trivial result, see [Cannarsa, Da Prato
1996] or [Zambotti 1999].
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. v
Previous Results >

We remark that, even in the case in which f only depends on x, that is for
equation:

Diu(t,x) = Lu(t,x) + Tr [f(x)Dfu(t, x)] + (b(x), Du(t,x))H,

6
u(0,x) = g(x), xe€ H, ©

existence of classical solutions is not a trivial result, see [Cannarsa, Da Prato
1996] or [Zambotti 1999].

In particular, the regularity estimates for u, obtained in the above papers,
depending on the regularity of f, are not good enough (for us).
Namely we can not attack our PDE by a contraction argument following the
schema:

u—fou:=Ff—u

where the last map is indeed given by equation (6).

A Backward Stochastic Excursion with Ying Hu - Centre Henry Lebesgue, 17-19 June 2024



Some References

[4 A. Budhiraja, P. Dupuis, V. Maroulas, Annals of Probability 36 (2008), pp.
1390-1420.

[] M. Freidlin, L. Koralov, Probability Theory Related Fields 147, (2010), pp.
273-301.

@ P. Cannarsa, G. Da Prato, Advances in Differential Equations, (1996).

@ M. Freidlin, A. Wentzell, RANDOM PERTURBATIONS OF DYNAMICAL
SYSTEMS, third edition, Springer, Heidelberg, 2012.

(3 E. Pardoux, S. Tang, Probability Theory Related Fields 114, 1999, 123-150.

@ L. Zambotti, Stochastic Analysis and Applications, 17, 1999.

A Backward Stochastic Excursion with Ying Hu - Centre Henry Lebesgue, 17-19 June 2024



Thank You

and

Happy Birthday Ying!
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