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Motivation - Finite dimensional case

Freidlin and Koralov (PTRF 2010) have considered the following quasi-linear
parabolic problem ∂tuε(t, x) = ε

2
∑d

i,j=1 ai,j(x , uε(t, x)) ∂ijuε(t, x) +
∑d

i=1 bi(x) ∂iuε(t, x),

uε(0, x) = g(x), x ∈ Rd ,
(1)

together with the randomly perturbed system where (Bt) is a d-dimensional
Brownian motion and aij(x , r) = (σσ?)ij(x , r). dX t,x

ε (s) = b(X t,x
ε (s)) ds +

√
ε σ(X t,x

ε (s), uε(t − s,X t,x
ε (s))) dBs ,

X t,x
ε (0) = x ,

(2)

The PDE (1) and the SDE (2) are related by the relation:

uε(r , x) = Eg(X r,x
ε (r)), r ≥ 0

The classical theory of (finite dimensional) parabolic, quasi-linear, PDEs
guarantees that equation (2) admits a unique classical solution uε.
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Motivation - Finite Dimensional Case

In their framework, Freidlin and Koralov complete a comprehensive program:

Prove the Large Deviation Principle for the trajectories of X t,x
ε and

characterize the action functional.

Study the exit problem for (X t,x
ε ) from a fixed domain D ⊂ Rn.

Investigate the asymptotic behavior limε→0 uε(λ/ε) := c(λ).

Our objective is to start a similar program in the infinite-dimensional case (when
equation (1) is a SPDE).

DIFFICULTY: Unlike the finite-dimensional case, the current literature
lacks a general Hilbert space theory for quasi-linear equations.

Two (divergent) considerations:

� The asymptotic behavior as ε→ 0 of the SDE (2) can be studied
independently of the PDE (1).

� The PDE (1) is of independent interest.
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Infinite Dimensional Case - Setting of the Problem

We consider the randomly perturbed partial differential equation defined on a
separable Hilbert space H, where ε is a small parameter.dX t,x

ε (s) = [AX t,x
ε (s) + b(X t,x

ε (s))] dt +
√
ε σ(X t,x

ε (s), uε(t − s,X t,x
ε (s))) dWs ,

X t,x
ε (0) = x ∈ H,

(3)

where uε satisfies (at least formally) the quasi-linear equations, t ≥ 0 Dtuε(t, x) = ε
2 Tr

[
σσ?(x , uε(t, x))D2

x uε(t, x)
]
+ 〈Ax + b(x),Duε(t, x)〉H ,

uε(0, x) = g(x), x ∈ H.
(4)

and it holds
uε(s, x) = Eg(X t,x

ε (t))
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Infinite Dimensional Case - Assumptions

dX t,x
ε (s) = [AX t,x

ε (s) + b(X t,x
ε (s))] dt +

√
ε σ(X t,x

ε (s), uε(t − s,X t,x
ε (s))) dWs ,

X t,x
ε (0) = x ∈ H,

Here

A : D(A) ⊂ H → H is the generator of a strongly continuous,
Hilbert-Schmidt, semigroup (S(t)) with:

‖S(t)‖L2(H) ≤ ce−γt for some 0 < γ < 1/2 and all t ∈ [0, 1]

.

b : H → H is some non-linear Lipschitz mapping.

σ : H ×R → L(H,H) is some non-linear mapping, Lipchitz in both variables.

(Wt), t ≥ 0, is a cylindrical Wiener process in an Hilbert space H.

g : H → H is some non-linear Lipchitz mapping.
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The “final value reformulation”

Notice that if
v t
ε (s, x) := uε(t − s, x), s ∈ [0, t]

then the above equations rewrite: Dtv t
ε (s, x)− ε

2 Tr
[
σσ?(x , v t

ε (s, x))D2
x v t

ε (s, x)
]
+ 〈Ax + b(x),Dv t

ε (s, x)〉H = 0,

v t
ε (t, x) = g(x), x ∈ H.

dX t,x
ε (s) = [AX t,x

ε (s) + b(X t,x
ε (s))] dt +

√
ε σ(X t,x

ε (s), v t
ε (s,X t,x

ε (s))) dWs ,

X t,x
ε (0) = x ∈ H,

and it holds
v t
ε (s, x) = Eg(X t−s,x

ε (t − s))
thus by markovianity

v t
ε (s,X t,x

ε (s) = E
(

g(X t,x
ε (t)

∣∣∣FW
s

)
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The FBSDE equation

The equations for X t,x
ε can be rewritten in a closed form as:

dX t,x
ε (s) = [AX t,x

ε (s) + b((X t,x
ε (s))] ds+

√
ε σ

(
X t,x
ε (s),E

(
g(X t,x

ε )(t)
∣∣∣FW

s

))
dWs ,

X t,x
ε (0) = x ∈ H,

(5)

The well posedness of the above equation for small ε can be easily established:

Theorem
Fix T > 0 there exists ε̄(T ) > 0 such that for all t ≤ T and ε ≤ ε̄(T ) there exists
a unique solution (X t,x

ε )(s)s∈[0,t]) with continuous trajectories. Moreover

E( sup
s∈[0,t]

|X t,x
ε (s)|2) ≤ C(T )(1 + |x |2)

E( sup
s∈[0,t]

|X t,x
ε (s)− X t,x ′

ε (s)|2) ≤ C(T )|x − x ′|2

Remark: if A is dissipative then ε̄ > 0 can be chosen independently on T
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Asymptotic behaviour when ε→ 0

When ε→ 0 the laws of (X t,x
ε ) converge to the Dirac measure centerd in in Z x

where

d
ds Z x(s) = AZ x(s) + b(Z x(s)); Z x

ε (0) = x

The events Γ ⊂ C([0, t];H) that do not contain Z x describe a deviant behavior.

We want to know how deviant a particular event Γ such that Z x /∈ Γ̄ is, more
precisely we want to compute the exponential rate at which L(X t,x

ε )(Γ) goes to
zero.

A family of probability measures {µε}ε>0 on a Polish space E satisfies a large
deviation principle, with speed 1/ε and action functional I : E → [0,+∞] if

for every A ⊂ E open lim inf
ε→0

ε logµε(A) ≥ − inf
x∈ A

I(x),

for every C ⊂ E closed lim sup
ε→0

ε logµε(C) ≤ − inf
x∈ C

I(x).

for every s ≥ 0, the set {I(x) ≤ s} is compact in E ,
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Large Deviation Principle (LDP)

Theorem (S. Cerrai, G. Guatteri, G.T.)
Assume that (S(t)) is an analytic semigroup then the family {L(X t,x

ε )}ε∈ (0,ε̄)
satisfies a LDP in C([0, t];H) governed by the action functional

It,x(f ) =
1
2 inf

{∫ t

0
‖ϕ(s)‖2

H ds : f (s) = X t,x
ϕ (s), s ∈ [0, t]

}
,

where f ranges over continuous function [0, t] → H with f (0) = x
and X t,x

ϕ is the unique mild solution of problem
(X t,x

ϕ (s))′ = AX t,x
ϕ (s) + b(X t,x

ϕ (s)) + σ
(

X t,x
ϕ (s), g(ZX t,x

ϕ (s)(t − s))
)
ϕ(s)

X t,x
ϕ (0) = x ∈ H,

We recall that for every y ∈ H, (Z y ) verifies:

Z y (s) = esAy +

∫ s

0
e(s−r)Ab(Z y (r)) dr .
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Sketch of the proof

By general results, [A. Budhiraja, P. Dupuis, V. Maroulas, Ann. Probab. 2008]
a LDP with rate function It,x(f ) = 1

2 inf
{∫ t

0 ‖ϕ(s)‖2
H ds : f = X t,x

ϕ

}
, holds

when the conditions below are verified

for every t,R > 0, the level sets {It,x ≤ R} are compact in C([0, t];H).
For every M > 0 denote by Λt,M the set of progressively measurable
processes ϕ such that ‖ϕ‖L2(0,t;H) ≤ M, P− a.s..
For all {ϕε}ε>0 ⊆ Λt,M and ϕ ∈ Λt,M :

if ϕε ⇀ ϕ weakly in L2(0, t;H) in distribution
then X t,x

ϕε,ε → X t,x
ϕ strongly in C([0, t];H) in distribution

Where X t,x
ϕε,ε solves:

dX t,x
ϕε,ε(s) =

[
AX t,x

ϕε,ε(s) + b((X t,x
ϕε,ε(s))

]
ds+

√
ε σ

(
X t,x
ϕε,ε(s), v

t
ε (s,X t,x

ϕε,ε(s))
)

dWs + σ
(
X t,x
ϕε,ε(s), v

t
ε (s,X t,x

ϕε,ε(s))
)
ϕε(s)ds,

X t,x
ϕε,ε(0) = x ∈ H,

and v t
ε (s, x) = Eg(X t−s,x

ε (t − s))
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The controlled SPDE

We will concentrate on the second condition.
It is worth noticing that the controlled SPDE

dX t,x
ϕε,ε(s) =

[
AX t,x

ϕε,ε(s) + b((X t,x
ϕε,ε(s))

]
ds+

√
ε σ

(
X t,x
ϕε,ε(s), v

t
ε (s,X t,x

ϕε,ε(s))
)

dWs + σ
(
X t,x
ϕε,ε(s), v

t
ε (s,X t,x

ϕε,ε(s))
)
ϕε(s)ds,

X t,x
ϕε,ε(0) = x ∈ H,

can be rewritten as
dX t,x

ϕε,ε(s) =
[
AX t,x

ϕε,ε(s) + b((X t,x
ϕε,ε(s))

]
ds+

√
ε σ

(
X t,x
ϕε,ε(s), E

Pε
(

g(X t,x
ϕε,ε)(t)

∣∣∣FW
s

))
dW ε

s ,

X t,x
ε (0) = x ∈ H,

where W ε
s := Ws +

1√
ε

∫ s

0
ϕ(r)dr

and Pε is the probability under which (W ε) is a Wiener process.
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Sketch of the proof

We have to prove that for all {ϕε}ε>0 with |ϕε|L2(0,t;H) ≤ M, P-a.s.
if ϕε ⇀ ϕ weakly in L2(0, t;H) in distribution then X t,x

ϕε,ε → X t,x
ϕ strongly in

C([0, t];H) in distribution.

We proceed as follows:

Use Skorohod’s Theorem to pass from convergence in law to P-a.s. (weak)
convergence ϕε ⇀ φ in L2(0, t;H)

Prove that v t
ε (s, x) = Eg(X t−s,x

ε (t − s)) is lipschitz in x uniformly with
respect to s ∈ [0, t] and ε ≤ ε̄

prove that for some δ > 0, α > 0

‖X t,x
ϕε

− X t,x
ϕ ‖Cδ([0,t];D((−A)α)) ≤ ‖ϕε − ϕ‖L2(0,t;H)

where Cδ([0, t];D((−A)α)) is the space of δ-Holder continuous functions
with values in D((−A)α)

exploit the compact embedding Cδ([0, t];D((−A)α)) ↪→ C([0, t];H) to
obtain strong convergence of X t,x

ϕε,ε → X t,x
ϕ in C([0, t];H).

The proof is completed.
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Part II The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables Dtuε(t, x) = ε
2 Tr

[
σσ?(x , uε(t, x))D2

x uε(t, x)
]
+ 〈Ax + b(x),Duε(t, x)〉H ,

uε(0, x) = g(x), x ∈ H.

We are now interested into “classical” solutions. We will only able to consider the
case when there exist a bounded non-negative symmetric operator Q, a
continuous mapping f : H × R → L+

1 (H) and δ > 0 small enough such that
σ?σ(x , r) = Q + δ f (x , r), x ∈ H, r ∈ R.

On A and Q we assume:
The semigroup (S) generated by A is of negative type

For every t ≥ 0, Qt :=

∫ t

0
S(r)QS?(r) dr is trace class (that is ∈ L+

1 (H)).

For every t > 0 S(t)H ⊂ Q1/2
t H.

If we define Λt := Q−1/2
t S(t) there exists some λ > 0 such that

‖Λt‖L(H) ≤ c (t ∧ 1)−1/2e−λt , t > 0.
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An example

Let H = L2(O), for some bounded interval O ⊂ R, and let {ei}i∈N be an
orthonormal basis of H contained in L∞(O).

A is the realization of the Laplace operator with Dirichlet boundary
conditions in O

Q = I.

We fix non-negative numbers {λi}i∈N, and we assume that
∞∑
i=1

λi ‖ei‖L∞(O) <∞.

For every x ∈ H, r ∈ R, and i ∈ N, we define

[f (x , r)ei ](ξ) = fi(x(ξ), r)λiei(ξ), ξ ∈ O,

for some nice smooth functions fi : R× R → R.
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The well-posedness result for the quasi-linear equation

We rewrite the quasi-linear equation as a perturbation of Ornstein-Uhlenbeck
(ε is now irrelevant since we have δ small; we set ε = 1 and simplify notation) Dsu(s, x) = Lu(s, x) + δ

2 Tr
[
f (x , u(s, x))D2

x u(s, x)
]
+ 〈b(x),Du(s, x)〉H ,

u(0, x) = g(x), x ∈ H,

Lϕ(x) = Tr
[
QD2

xϕ(x)
]
+ 〈Ax ,Dxϕ(x)〉H is the Ornstein-Uhlenbeck operator.

Strategy: treat the red terms on the right hand side as perturbations of L.

Theorem (S. Cerrai, G. Guatteri, G.T., JFA 2024)
Fix 1

2 < η < 1, 0 < ϑ < η−1
2 , let % = 1−η+ϑ

2 and assume that g ∈ Cη
b (H).

There exists δ̄ > 0 such that for every δ ≤ δ̄, t > 0 there exists a unique classical
solution u ∈ C([0, t],H). Moreover denoting Hölder norms by ‖ · ‖α.

sup
s∈ (0,t]

(
‖u(s, ·)‖η + (s ∧ 1)%‖Dxu(s, ·)‖ϑ + (s ∧ 1)%+ 1

2 ‖D2
x u(s, ·)‖ϑ

)
≤ cδ ‖g‖η,

for some constant cδ > 0 independent of t.
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Main steps of the proof

Step 1.
We write the quasi-linear PDE in mild form as

u(s, x) = Rsg(x) +
δ

2

∫ s

0
Rs−r Tr

[
F (u(r , ·))D2

x u(r , ·)
]
(x) dr

+

∫ s

0
Rs−r 〈b(·),Du(r , ·)〉H(x) dr .

where F (ψ)(x) = f (x , ψ(x)) and

Rsψ :=

∫
H
ψ(S(s)x + y)NQs (dy), ψ ∈ Bb(H)

is the Ornstein-Uhlenbeck semigroup.

Notice that if ξ(s, x) = [Rsψ](x) then ξ is a classical solution of the linear PDE in
H: {

d
ds ξ(s, x) = L ξ(s, x)
ξ(0, x) = ψ(x)
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Smoothing properties of Ornstein-Uhlenbeck semigroups

By [Da Prato, Zabczyk 2002] we know that the operator Rs , s > 0 is smoothing.
For instance for every 0 ≤ β ≤ α there exist some cα,β > 0 such that

‖Rsϕ‖α ≤ cα,β (s ∧ 1)−
α−β

2 ‖ϕ‖β , t > 0.

Moreover Rs , s > 0 maps C0(H) into C∞(H). In particular if we set

‖ϕ‖s,θ :=
(
‖ϕ‖0 + e−ωθs [ϕ]θ

)
where [ϕ]θ is the θ-Hölder seminorm then il holds for every n ∈ N and
0 ≤ θ ≤ ρ ≤ 1

‖DnRsϕ‖θ ≤ cn,θ,ρ (s ∧ 1)−
n−(ρ−θ)

2 e−λns‖ϕ‖s,ρ, s > 0.
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Main steps of the proof

Step 2: We try to establish a contraction argument, we have to take into
account that:

we deal with a second order nonlinear term Tr
[
F (u(r , ·))D2

x u(r , ·)
]

in our
function space we have to go up to second order differentiability.
g is not smooth we have to cope with explosions of norms when s ↘ 0.

Thus we chose to work with the space of smooth Hölder continuous functions in
H endowed with a slight modification of the norm:

sup
s∈ (0,t]

(
‖u(s, ·)‖η + (s ∧ 1)%‖Dxu(s, ·)‖ϑ + (s ∧ 1)%+ 1

2 ‖D2
x u(s, ·)‖ϑ

)
:= |||u|||η,ρ,θ,t

We prove, exploiting smoothing estimates for (R), that if

Γ[u](s, x) := Rsg(x) +
δ

2

∫ s

0
Rs−r Tr

[
F (u(r , ·))D2

x u(r , ·)
]
(x) dr

+

∫ s

0
Rs−r 〈b(·),Du(r , ·)〉H(x) dr .

and if δ and t are sufficiently small then Γ is a contraction with respect to
norm ||| · |||η,ρ,θ,t . Thus a unique local mild solution exists.
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(x) dr

+

∫ s

0
Rs−r 〈b(·),Du(r , ·)〉H(x) dr .

and if δ and t are sufficiently small then Γ is a contraction with respect to
norm ||| · |||η,ρ,θ,t . Thus a unique local mild solution exists.
A Backward Stochastic Excursion with Ying Hu - Centre Henry Lebesgue, 17-19 June 2024 17/21



Main steps of the proof

Step 3: We show, again exploiting the smoothing of Rs , that any local mild
solution u is in fact a classical solution. In particular,

u(s, ·) ∈ C2
b (H), for every s ∈ (0, t],

QD2
x u(t, x) ∈ L1(H) (is a trace-class operator),

u(·, x) ∈ C1(0,+∞) , for every x ∈ D(A),

Step 4: We show that local solution satisfies an a-priori bound, that is lies in a
ball with respect to the norm |||u|||η,ρ,θ,t .

Notice that the estimate if the C0 part of the norm, that is the maximum
principle

‖u(s, ·)‖0 ≤ ‖g‖0

comes form stochastic representation of the solution u.

We conclude global existence by a standard iterative process.
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Previous Results

We remark that, even in the case in which f only depends on x , that is for
equation: Dtu(t, x) = Lu(t, x) + Tr

[
f(x)D2

x u(t, x)
]
+ 〈b(x),Du(t, x)〉H ,

u(0, x) = g(x), x ∈ H,
(6)

existence of classical solutions is not a trivial result, see [Cannarsa, Da Prato
1996] or [Zambotti 1999].

In particular, the regularity estimates for u, obtained in the above papers,
depending on the regularity of f, are not good enough (for us).
Namely we can not attack our PDE by a contraction argument following the
schema:

u 7→ f ◦ u := f 7→ u

where the last map is indeed given by equation (6).
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Thank You

and

Happy Birthday Ying!
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