

Nonlinear random perturbations of PDEs.

Gianmario Tessitore (Università di Milano-Bicocca)

Joint work with:

Sandra Cerrai (University of Maryland) Giuseppina Guatteri (Politecnico di Milano)

Motivation - Finite dimensional case

Freidlin and Koralov ($PTRF\ 2010$) have considered the following quasi-linear parabolic problem

$$\begin{cases}
\partial_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \sum_{i,j=1}^d a_{i,j}(x, u_{\epsilon}(t,x)) \, \partial_{ij} u_{\epsilon}(t,x) + \sum_{i=1}^d b_i(x) \, \partial_i u_{\epsilon}(t,x), \\
u_{\epsilon}(0,x) = g(x), \quad x \in \mathbb{R}^d,
\end{cases}$$
(1)

Motivation - Finite dimensional case

Freidlin and Koralov ($PTRF\ 2010$) have considered the following quasi-linear parabolic problem

$$\begin{cases}
\partial_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \sum_{i,j=1}^d a_{i,j}(x, u_{\epsilon}(t,x)) \, \partial_{ij} u_{\epsilon}(t,x) + \sum_{i=1}^d b_i(x) \, \partial_i u_{\epsilon}(t,x), \\
u_{\epsilon}(0,x) = g(x), \quad x \in \mathbb{R}^d,
\end{cases}$$
(1)

together with the randomly perturbed system where (B_t) is a d-dimensional Brownian motion and $a_{ij}(x,r) = (\sigma \sigma^*)_{ij}(x,r)$.

$$\begin{cases}
dX_{\epsilon}^{t,x}(s) = b(X_{\epsilon}^{t,x}(s)) ds + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), \mathbf{u}_{\epsilon}(\mathbf{t} - \mathbf{s}, X_{\epsilon}^{t,x}(\mathbf{s}))) dB_{\mathbf{s}}, \\
X_{\epsilon}^{t,x}(0) = x,
\end{cases} \tag{2}$$

Freidlin and Koralov (*PTRF 2010*) have considered the following quasi-linear parabolic problem

$$\begin{cases}
\partial_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \sum_{i,j=1}^d a_{i,j}(x, u_{\epsilon}(t,x)) \, \partial_{ij} u_{\epsilon}(t,x) + \sum_{i=1}^d b_i(x) \, \partial_i u_{\epsilon}(t,x), \\
u_{\epsilon}(0,x) = g(x), \quad x \in \mathbb{R}^d,
\end{cases} \tag{1}$$

together with the randomly perturbed system where (B_t) is a d-dimensional Brownian motion and $a_{ij}(x,r) = (\sigma \sigma^*)_{ij}(x,r)$.

$$\begin{cases}
dX_{\epsilon}^{t,x}(s) = b(X_{\epsilon}^{t,x}(s)) ds + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) dB_{s}, \\
X_{\epsilon}^{t,x}(0) = x,
\end{cases}$$
(2)

The PDE (1) and the SDE (2) are related by the relation:

$$u_{\epsilon}(r,x) = \mathbb{E}g(X_{\epsilon}^{r,x}(r)), \quad r \geq 0$$

The classical theory of (finite dimensional) parabolic, quasi-linear, PDEs guarantees that equation (2) admits a unique classical solution u_{ϵ} .

Motivation - Finite Dimensional Case

In their framework, Freidlin and Koralov complete a comprehensive program:

- Prove the Large Deviation Principle for the trajectories of $X_{\epsilon}^{t,x}$ and characterize the action functional.
- lacksquare Study the exit problem for $(X^{t,x}_\epsilon)$ from a fixed domain $D\subset \mathbb{R}^n$.
- Investigate the asymptotic behavior $\lim_{\epsilon \to 0} u_{\epsilon}(\lambda/\epsilon) := c(\lambda)$.

Motivation - Finite Dimensional Case

In their framework, Freidlin and Koralov complete a comprehensive program:

- Prove the Large Deviation Principle for the trajectories of $X_{\epsilon}^{t,x}$ and characterize the action functional.
- lacksquare Study the exit problem for $(X^{t,x}_\epsilon)$ from a fixed domain $D\subset \mathbb{R}^n$.
- Investigate the asymptotic behavior $\lim_{\epsilon \to 0} u_{\epsilon}(\lambda/\epsilon) := c(\lambda)$.

Our objective is to start a similar program in the infinite-dimensional case (when equation (1) is a SPDE).

DIFFICULTY: Unlike the finite-dimensional case, the current literature lacks a general Hilbert space theory for quasi-linear equations.

Motivation - Finite Dimensional Case

In their framework, Freidlin and Koralov complete a comprehensive program:

- Prove the Large Deviation Principle for the trajectories of $X_{\epsilon}^{t,x}$ and characterize the action functional.
- lacksquare Study the exit problem for $(X^{t,x}_\epsilon)$ from a fixed domain $D\subset \mathbb{R}^n$.
- Investigate the asymptotic behavior $\lim_{\epsilon \to 0} u_{\epsilon}(\lambda/\epsilon) := c(\lambda)$.

Our objective is to start a similar program in the infinite-dimensional case (when equation (1) is a SPDE).

DIFFICULTY: Unlike the finite-dimensional case, the current literature lacks a general Hilbert space theory for quasi-linear equations.

Two (divergent) considerations:

- The asymptotic behavior as $\epsilon \to 0$ of the SDE (2) can be studied independently of the PDE (1).
- The PDE (1) is of independent interest.

We consider the randomly perturbed partial differential equation defined on a separable **Hilbert space** H, where ϵ is a small parameter.

$$\begin{cases}
dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), \mathbf{u}_{\epsilon}(\mathbf{t} - \mathbf{s}, X_{\epsilon}^{t,x}(\mathbf{s}))) dW_{\mathbf{s}}, \\
X_{\epsilon}^{t,x}(0) = x \in H,
\end{cases}$$
(3)

where u_{ϵ} satisfies (at least formally) the quasi-linear equations, $t \geq 0$

$$\begin{cases}
D_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^*(x, u_{\epsilon}(t,x)) D_x^2 u_{\epsilon}(t,x) \right] + \langle Ax + b(x), Du_{\epsilon}(t,x) \rangle_H, \\
u_{\epsilon}(0,x) = g(x), \quad x \in H.
\end{cases}$$
(4)

and it holds

$$u_{\epsilon}(s,x) = \mathbb{E}g(X_{\epsilon}^{t,x}(t))$$

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) \, dW_s, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) \, dW_s, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

■ $A: D(A) \subset H \to H$ is the generator of a strongly continuous, Hilbert-Schmidt, semigroup (S(t)) with:

$$||S(t)||_{\mathcal{L}_2(H)} \leq ce^{-\gamma t}$$
 for some $0 < \gamma < 1/2$ and all $t \in [0,1]$

.

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) \, dW_s, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

■ $A: D(A) \subset H \to H$ is the generator of a strongly continuous, Hilbert-Schmidt, semigroup (S(t)) with:

$$\|S(t)\|_{\mathcal{L}_2(H)} \leq c e^{-\gamma t} \quad \text{for some } 0 < \gamma < 1/2 \text{ and all } t \in [0,1]$$

.

■ $b: H \rightarrow H$ is some non-linear Lipschitz mapping.

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) \, dW_s, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

■ $A: D(A) \subset H \to H$ is the generator of a strongly continuous, Hilbert-Schmidt, semigroup (S(t)) with:

$$\|S(t)\|_{\mathcal{L}_2(H)} \leq c e^{-\gamma t} \quad \text{for some } 0 < \gamma < 1/2 \text{ and all } t \in [0,1]$$

- .
- $b: H \rightarrow H$ is some non-linear Lipschitz mapping.
- $\sigma: H \times \mathbb{R} \to \mathcal{L}(H, H)$ is some non-linear mapping, Lipchitz in both variables.

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) \, dW_{s}, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

■ $A: D(A) \subset H \to H$ is the generator of a strongly continuous, Hilbert-Schmidt, semigroup (S(t)) with:

$$\|S(t)\|_{\mathcal{L}_2(H)} \leq c e^{-\gamma t} \quad \text{for some } 0 < \gamma < 1/2 \text{ and all } t \in [0,1]$$

- .
- $b: H \rightarrow H$ is some non-linear Lipschitz mapping.
- lacksquare $\sigma: H imes \mathbb{R} o \mathcal{L}(H,H)$ is some non-linear mapping, Lipchitz in both variables.
- (W_t) , $t \ge 0$, is a cylindrical Wiener process in an Hilbert space H.

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), u_{\epsilon}(t-s, X_{\epsilon}^{t,x}(s))) \, dW_s, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

■ $A: D(A) \subset H \to H$ is the generator of a strongly continuous, Hilbert-Schmidt, semigroup (S(t)) with:

$$\|S(t)\|_{\mathcal{L}_2(H)} \leq c e^{-\gamma t} \quad \text{for some } 0 < \gamma < 1/2 \text{ and all } t \in [0,1]$$

- .
- $b: H \rightarrow H$ is some non-linear Lipschitz mapping.
- lacksquare $\sigma: H imes \mathbb{R} o \mathcal{L}(H,H)$ is some non-linear mapping, Lipchitz in both variables.
- (W_t) , $t \ge 0$, is a cylindrical Wiener process in an Hilbert space H.
- \blacksquare $g: H \rightarrow H$ is some non-linear Lipchitz mapping.

Notice that if

$$v_{\epsilon}^t(s,x) := u_{\epsilon}(t-s,x), \quad s \in [0,t]$$

then the above equations rewrite:

$$\begin{cases} D_t v_{\epsilon}^t(s,x) - \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^{\star}(x, v_{\epsilon}^t(s,x)) D_x^2 v_{\epsilon}^t(s,x) \right] + \langle Ax + b(x), D v_{\epsilon}^t(s,x) \rangle_H = 0, \\ v_{\epsilon}^t(t,x) = g(x), \quad x \in H. \end{cases}$$

$$\begin{cases} dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b(X_{\epsilon}^{t,x}(s))] \ dt + \sqrt{\epsilon} \, \sigma(X_{\epsilon}^{t,x}(s), v_{\epsilon}^{t}(s, X_{\epsilon}^{t,x}(s))) \ dW_{s}, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

and it holds

$$v_{\epsilon}^{t}(s,x) = \mathbb{E}g(X_{\epsilon}^{t-s,x}(t-s))$$

thus by markovianity

$$v_{\epsilon}^{t}(s, X_{\epsilon}^{t, x}(s)) = \mathbb{E}\left(g(X_{\epsilon}^{t, x}(t) \middle| \mathcal{F}_{s}^{W})\right)$$

The FBSDE equation

The equations for $X_{\epsilon}^{t,x}$ can be rewritten in a closed form as:

$$\begin{cases}
dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b((X_{\epsilon}^{t,x}(s))] ds + \\
\sqrt{\epsilon} \, \sigma \left(X_{\epsilon}^{t,x}(s), \mathbb{E} \left(g(X_{\epsilon}^{t,x})(t) \middle| \mathcal{F}_{s}^{W} \right) \right) dW_{s}, \\
X_{\epsilon}^{t,x}(0) = x \in H,
\end{cases} (5)$$

The FBSDE equation

The equations for $X_{\epsilon}^{t,x}$ can be rewritten in a closed form as:

$$\begin{cases}
dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b((X_{\epsilon}^{t,x}(s))] ds + \\
\sqrt{\epsilon} \, \sigma\left(X_{\epsilon}^{t,x}(s), \mathbb{E}\left(g(X_{\epsilon}^{t,x})(t)\middle|\mathcal{F}_{s}^{W}\right)\right) dW_{s}, \\
X_{\epsilon}^{t,x}(0) = x \in H,
\end{cases} (5)$$

The well posedness of the above equation for small ϵ can be easily established:

Theorem

Fix T>0 there exists $\bar{\epsilon}(T)>0$ such that for all $t\leq T$ and $\epsilon\leq \bar{\epsilon}(T)$ there exists a unique solution $(X^{t,x}_{\epsilon})(s)_{s\in[0,t]})$ with continuous trajectories. Moreover

$$\mathbb{E}(\sup_{s\in[0,t]}|X_{\epsilon}^{t,x}(s)|^2)\leq C(T)(1+|x|^2)$$

$$\mathbb{E}(\sup_{s\in[0,t]}|X_{\epsilon}^{t,x}(s)-X_{\epsilon}^{t,x'}(s)|^2)\leq C(T)|x-x'|^2$$

The FBSDE equation

The equations for $X_{\epsilon}^{t,x}$ can be rewritten in a closed form as:

$$\begin{cases}
dX_{\epsilon}^{t,x}(s) = [AX_{\epsilon}^{t,x}(s) + b((X_{\epsilon}^{t,x}(s))] ds + \\
\sqrt{\epsilon} \, \sigma\left(X_{\epsilon}^{t,x}(s), \mathbb{E}\left(g(X_{\epsilon}^{t,x})(t)\middle|\mathcal{F}_{s}^{W}\right)\right) dW_{s}, \\
X_{\epsilon}^{t,x}(0) = x \in H,
\end{cases} (5)$$

The well posedness of the above equation for small ϵ can be easily established:

Theorem

Fix T>0 there exists $\bar{\epsilon}(T)>0$ such that for all $t\leq T$ and $\epsilon\leq \bar{\epsilon}(T)$ there exists a unique solution $(X^{t,x}_{\epsilon})(s)_{s\in[0,t]})$ with continuous trajectories. Moreover

$$\mathbb{E}(\sup_{s\in[0,t]}|X^{t,x}_{\epsilon}(s)|^2)\leq C(T)(1+|x|^2)$$

$$\mathbb{E}(\sup_{s\in[0,t]}|X_{\epsilon}^{t,x}(s)-X_{\epsilon}^{t,x'}(s)|^2)\leq C(T)|x-x'|^2$$

Remark: if A is dissipative then $\bar{\epsilon} > 0$ can be chosen independently on T

Asymptotic behaviour when $\epsilon \to 0$

When $\epsilon \to 0$ the laws of $(X^{t,x}_\epsilon)$ converge to the Dirac measure centerd in in Z^x where

$$\frac{d}{ds}Z^{\times}(s) = AZ^{\times}(s) + b(Z^{\times}(s)); \qquad Z_{\epsilon}^{\times}(0) = x$$

The events $\Gamma \subset C([0, t]; H)$ that do not contain Z^x describe a **deviant** behavior.

We want to know how deviant a particular event Γ such that $Z^x \notin \overline{\Gamma}$ is, more precisely we want to compute the exponential rate at which $\mathcal{L}(X^{t,x}_{\epsilon})(\Gamma)$ goes to zero.

Asymptotic behaviour when $\epsilon \to 0$

When $\epsilon \to 0$ the laws of $(X^{t,x}_\epsilon)$ converge to the Dirac measure centerd in in Z^x where

$$\frac{d}{ds}Z^{x}(s) = AZ^{x}(s) + b(Z^{x}(s)); \qquad Z_{\epsilon}^{x}(0) = x$$

The events $\Gamma \subset C([0, t]; H)$ that do not contain Z^x describe a **deviant** behavior.

We want to know how deviant a particular event Γ such that $Z^x \notin \overline{\Gamma}$ is, more precisely we want to compute the exponential rate at which $\mathcal{L}(X^{t,x}_{\epsilon})(\Gamma)$ goes to zero.

A family of probability measures $\{\mu_{\epsilon}\}_{\epsilon>0}$ on a Polish space E satisfies a large deviation principle, with speed $1/\epsilon$ and action functional $I: E \to [0, +\infty]$ if

- for every $A \subset E$ open $\liminf_{\epsilon \to 0} \epsilon \log \mu_{\epsilon}(A) \ge -\inf_{x \in A} I(x)$,
- $\blacksquare \text{ for every } C \subset E \text{ closed } \limsup_{\epsilon \to 0} \epsilon \log \mu_{\epsilon}(C) \leq -\inf_{x \in C} I(x).$
- for every $s \ge 0$, the set $\{I(x) \le s\}$ is compact in E,

Large Deviation Principle (LDP)

Theorem (S. Cerrai, G. Guatteri, G.T.)

Assume that (S(t)) is an analytic semigroup then the family $\{\mathcal{L}(X_{\epsilon}^{t,x})\}_{\epsilon \in (0,\bar{\epsilon})}$ satisfies a LDP in C([0,t];H) governed by the action functional

$$I_{t,x}(f) = \frac{1}{2} \, \inf \left\{ \int_0^t \|\varphi(s)\|_H^2 \, ds \, : \, f(s) = X_\varphi^{t,x}(s), \, \, s \in \, [0,t] \right\},$$

where f ranges over continuous function $[0,t] \to H$ with f(0)=x and $X_{\varphi}^{t,x}$ is the unique mild solution of problem

$$\begin{cases} (X_{\varphi}^{t,x}(s))' = AX_{\varphi}^{t,x}(s) + b(X_{\varphi}^{t,x}(s)) + \sigma\left(X_{\varphi}^{t,x}(s), g(Z_{\varphi}^{t,x}(s)(t-s))\right) \varphi(s) \\ X_{\varphi}^{t,x}(0) = x \in H, \end{cases}$$

We recall that for every $y \in H$, (Z^y) verifies:

$$Z^{y}(s) = e^{sA}y + \int_{0}^{s} e^{(s-r)A}b(Z^{y}(r)) dr.$$

By general results, [A. Budhiraja, P. Dupuis, V. Maroulas, Ann. Probab. 2008] a LDP with rate function $I_{t,x}(f) = \frac{1}{2}\inf\left\{\int_0^t\|\varphi(s)\|_H^2\,ds: f = X_\varphi^{t,x}\right\}$, holds when the conditions below are verified

By general results, [A. Budhiraja, P. Dupuis, V. Maroulas, *Ann. Probab.* 2008] a LDP with rate function $I_{t,x}(f) = \frac{1}{2}\inf\left\{\int_0^t\|\varphi(s)\|_H^2\,ds: f = X_{\varphi}^{t,x}\right\}$, holds when the conditions below are verified

- for every t, R > 0, the level sets $\{I_{t,x} \leq R\}$ are compact in C([0, t]; H).
- For every M>0 denote by $\Lambda_{t,M}$ the set of progressively measurable processes φ such that $\|\varphi\|_{L^2(0,t;H)}\leq M$, $\mathbb{P}-a.s.$.

For all
$$\{\varphi_{\epsilon}\}_{\epsilon>0} \subseteq \Lambda_{t,M}$$
 and $\varphi \in \Lambda_{t,M}$:

if
$$\varphi_{\epsilon} \rightharpoonup \varphi$$
 weakly in $L^2(0,t;H)$ in distribution

then
$$X^{t, \times}_{\varphi_{\epsilon}, \epsilon} o X^{t, \times}_{\varphi}$$
 strongly in $C([0, t]; H)$ in distribution

Where $X_{\varphi_{\epsilon},\epsilon}^{t,x}$ solves:

$$\begin{cases} dX_{\varphi_{\epsilon},\epsilon}^{t,x}(s) = \left[AX_{\varphi_{\epsilon},\epsilon}^{t,x}(s) + b((X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right]ds + \\ \sqrt{\epsilon}\,\sigma\left(X_{\varphi_{\epsilon},\epsilon}^{t,x}(s), v_{\epsilon}^{t}(s, X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right)dW_{s} + \sigma\left(X_{\varphi_{\epsilon},\epsilon}^{t,x}(s), v_{\epsilon}^{t}(s, X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right)\varphi_{\epsilon}(s)ds, \\ X_{\varphi_{\epsilon},\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

and
$$v_{\epsilon}^{t}(s,x) = \mathbb{E}g(X_{\epsilon}^{t-s,x}(t-s))$$

We will concentrate on the second condition. It is worth noticing that the controlled SPDE

$$\begin{cases} dX_{\varphi_{\epsilon},\epsilon}^{t,x}(s) = \left[AX_{\varphi_{\epsilon},\epsilon}^{t,x}(s) + b((X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right]ds + \\ \sqrt{\epsilon}\,\sigma\left(X_{\varphi_{\epsilon},\epsilon}^{t,x}(s), v_{\epsilon}^{t}(s, X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right)dW_{s} + \sigma\left(X_{\varphi_{\epsilon},\epsilon}^{t,x}(s), v_{\epsilon}^{t}(s, X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right)\varphi_{\epsilon}(s)ds, \\ X_{\varphi_{\epsilon},\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

can be rewritten as

$$\begin{cases} dX_{\varphi_{\epsilon},\epsilon}^{t,x}(s) = \left[AX_{\varphi_{\epsilon},\epsilon}^{t,x}(s) + b((X_{\varphi_{\epsilon},\epsilon}^{t,x}(s))\right] ds + \\ \sqrt{\epsilon} \, \sigma\left(X_{\varphi_{\epsilon},\epsilon}^{t,x}(s), \, \mathbb{E}^{\mathbb{P}^{\epsilon}}\left(g(X_{\varphi_{\epsilon},\epsilon}^{t,x})(t) \middle| \mathcal{F}_{s}^{W}\right)\right) dW_{s}^{\epsilon}, \\ X_{\epsilon}^{t,x}(0) = x \in H, \end{cases}$$

where
$$W^\epsilon_s:=W_s+rac{1}{\sqrt{\epsilon}}\int_0^s \varphi(r)dr$$
 and \mathbb{P}^ϵ is the probability under which (W^ϵ) is a Wiener process.

We have to prove that for all $\{\varphi_{\epsilon}\}_{\epsilon>0}$ with $|\varphi_{\epsilon}|_{L^2(0,t;H)} \leq M$, \mathbb{P} -a.s. if $\varphi_{\epsilon} \rightharpoonup \varphi$ weakly in $L^2(0,t;H)$ in distribution then $X_{\varphi_{\epsilon},\epsilon}^{t,x} \to X_{\varphi}^{t,x}$ strongly in C([0,t];H) in distribution.

We have to prove that for all $\{\varphi_{\epsilon}\}_{\epsilon>0}$ with $|\varphi_{\epsilon}|_{L^2(0,t;H)} \leq M$, \mathbb{P} -a.s. if $\varphi_{\epsilon} \rightharpoonup \varphi$ weakly in $L^2(0,t;H)$ in distribution then $X_{\varphi_{\epsilon},\epsilon}^{t,x} \to X_{\varphi}^{t,x}$ strongly in C([0,t];H) in distribution.

We proceed as follows:

■ Use Skorohod's Theorem to pass from convergence in law to \mathbb{P} -a.s. (weak) convergence $\varphi_{\epsilon} \rightharpoonup \phi$ in $L^2(0,t;H)$

We have to prove that for all $\{\varphi_{\epsilon}\}_{\epsilon>0}$ with $|\varphi_{\epsilon}|_{L^2(0,t;H)} \leq M$, \mathbb{P} -a.s. if $\varphi_{\epsilon} \rightharpoonup \varphi$ weakly in $L^2(0,t;H)$ in distribution then $X_{\varphi_{\epsilon},\epsilon}^{t,x} \to X_{\varphi}^{t,x}$ strongly in C([0,t];H) in distribution.

We proceed as follows:

- Use Skorohod's Theorem to pass from convergence in law to \mathbb{P} -a.s. (weak) convergence $\varphi_{\epsilon} \rightharpoonup \phi$ in $L^2(0,t;H)$
- Prove that $v_{\epsilon}^t(s,x) = \mathbb{E}g(X_{\epsilon}^{t-s,x}(t-s))$ is lipschitz in x uniformly with respect to $s \in [0,t]$ and $\epsilon \leq \bar{\epsilon}$

We have to prove that for all $\{\varphi_\epsilon\}_{\epsilon>0}$ with $|\varphi_\epsilon|_{L^2(0,t;H)} \leq M$, \mathbb{P} -a.s. if $\varphi_\epsilon \rightharpoonup \varphi$ weakly in $L^2(0,t;H)$ in distribution then $X^{t,x}_{\varphi_\epsilon,\epsilon} \to X^{t,x}_{\varphi}$ strongly in C([0,t];H) in distribution.

We proceed as follows:

- Use Skorohod's Theorem to pass from convergence in law to \mathbb{P} -a.s. (weak) convergence $\varphi_{\epsilon} \rightharpoonup \phi$ in $L^2(0,t;H)$
- Prove that $v_{\epsilon}^t(s,x) = \mathbb{E}g(X_{\epsilon}^{t-s,x}(t-s))$ is lipschitz in x uniformly with respect to $s \in [0,t]$ and $\epsilon \leq \bar{\epsilon}$
- \blacksquare prove that for some $\delta>$ 0, $\alpha>$ 0

$$\|X_{\varphi_{\epsilon}}^{t,x} - X_{\varphi}^{t,x}\|_{C^{\delta}([0,t];\mathcal{D}((-A)^{\alpha}))} \leq \|\varphi_{\epsilon} - \varphi\|_{L^{2}(0,t;H)}$$

where $C^{\delta}([0,t];\mathcal{D}((-A)^{\alpha}))$ is the space of δ -Holder continuous functions with values in $\mathcal{D}((-A)^{\alpha})$

We have to prove that for all $\{\varphi_{\epsilon}\}_{\epsilon>0}$ with $|\varphi_{\epsilon}|_{L^2(0,t;H)} \leq M$, \mathbb{P} -a.s. if $\varphi_{\epsilon} \rightharpoonup \varphi$ weakly in $L^2(0,t;H)$ in distribution then $X_{\varphi_{\epsilon},\epsilon}^{t,x} \to X_{\varphi}^{t,x}$ strongly in C([0,t];H) in distribution.

We proceed as follows:

- Use Skorohod's Theorem to pass from convergence in law to \mathbb{P} -a.s. (weak) convergence $\varphi_{\epsilon} \rightharpoonup \phi$ in $L^2(0,t;H)$
- Prove that $v_{\epsilon}^t(s,x) = \mathbb{E}g(X_{\epsilon}^{t-s,x}(t-s))$ is lipschitz in x uniformly with respect to $s \in [0,t]$ and $\epsilon \leq \bar{\epsilon}$
- lacksquare prove that for some $\delta > 0$, $\alpha > 0$

$$\|X_{\varphi_{\epsilon}}^{t,x} - X_{\varphi}^{t,x}\|_{C^{\delta}([0,t];\mathcal{D}((-A)^{\alpha}))} \le \|\varphi_{\epsilon} - \varphi\|_{L^{2}(0,t;H)}$$

where $C^{\delta}([0,t];\mathcal{D}((-A)^{\alpha}))$ is the space of δ -Holder continuous functions with values in $\mathcal{D}((-A)^{\alpha})$

■ exploit the compact embedding $C^{\delta}([0,t]; \mathcal{D}((-A)^{\alpha})) \hookrightarrow C([0,t]; H)$ to obtain strong convergence of $X^{t,x}_{\varphi_{c},\epsilon} \to X^{t,x}_{\varphi}$ in C([0,t]; H).

The proof is completed.

Part II The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables

$$\begin{cases} D_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^*(x, u_{\epsilon}(t,x)) D_x^2 u_{\epsilon}(t,x) \right] + \langle Ax + b(x), Du_{\epsilon}(t,x) \rangle_H, \\ u_{\epsilon}(0,x) = g(x), \quad x \in H. \end{cases}$$

We come back to the PDE in infinite variables

$$\begin{cases} D_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^{\star}(x, u_{\epsilon}(t,x)) D_x^2 u_{\epsilon}(t,x) \right] + \langle Ax + b(x), Du_{\epsilon}(t,x) \rangle_H, \\ u_{\epsilon}(0,x) = g(x), \quad x \in H. \end{cases}$$

We are now interested into "classical" solutions. We will only able to consider the case when there exist a bounded non-negative symmetric operator Q, a continuous mapping $f: H \times \mathbb{R} \to \mathcal{L}_1^+(H)$ and $\delta > 0$ small enough such that

$$\sigma^{\star}\sigma(x,r) = Q + \delta f(x,r), \quad x \in H, \quad r \in \mathbb{R}.$$

We come back to the PDE in infinite variables

$$\begin{cases} D_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^{\star}(x, u_{\epsilon}(t,x)) D_x^2 u_{\epsilon}(t,x) \right] + \langle Ax + b(x), Du_{\epsilon}(t,x) \rangle_H, \\ u_{\epsilon}(0,x) = g(x), \quad x \in H. \end{cases}$$

We are now interested into "classical" solutions. We will only able to consider the case when there exist a bounded non-negative symmetric operator Q, a continuous mapping $f: H \times \mathbb{R} \to \mathcal{L}_1^+(H)$ and $\delta > 0$ small enough such that

$$\sigma^{\star}\sigma(x,r)=Q+\delta f(x,r), \quad x\in H, \ r\in \mathbb{R}.$$

On A and Q we assume:

- The semigroup (S) generated by A is of negative type
- lacksquare For every $t\geq 0$, $Q_t:=\int_0^t S(r)QS^\star(r)\,dr$ is trace class (that is $\in \mathcal{L}_1^+(H)$).

We come back to the PDE in infinite variables

$$\begin{cases} D_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^{\star}(x, u_{\epsilon}(t,x)) D_x^2 u_{\epsilon}(t,x) \right] + \langle Ax + b(x), Du_{\epsilon}(t,x) \rangle_H, \\ u_{\epsilon}(0,x) = g(x), \quad x \in H. \end{cases}$$

We are now interested into "classical" solutions. We will only able to consider the case when there exist a bounded non-negative symmetric operator Q, a continuous mapping $f: H \times \mathbb{R} \to \mathcal{L}_1^+(H)$ and $\delta > 0$ small enough such that

$$\sigma^{\star}\sigma(x,r) = Q + \delta f(x,r), \quad x \in H, \quad r \in \mathbb{R}.$$

On A and Q we assume:

- The semigroup (S) generated by A is of negative type
- lacksquare For every $t\geq 0$, $Q_t:=\int_0^t S(r)QS^\star(r)\,dr$ is trace class (that is $\in \mathcal{L}_1^+(H)$).
- For every t > 0 $S(t)H \subset Q_t^{1/2}H$.

Part II The Quasilinear Kolmogorov Equation

We come back to the PDE in infinite variables

$$\begin{cases} D_t u_{\epsilon}(t,x) = \frac{\epsilon}{2} \operatorname{Tr} \left[\sigma \sigma^{\star}(x, u_{\epsilon}(t,x)) D_x^2 u_{\epsilon}(t,x) \right] + \langle Ax + b(x), Du_{\epsilon}(t,x) \rangle_H, \\ u_{\epsilon}(0,x) = g(x), \quad x \in H. \end{cases}$$

We are now interested into "classical" solutions. We will only able to consider the case when there exist a bounded non-negative symmetric operator Q, a continuous mapping $f: H \times \mathbb{R} \to \mathcal{L}_1^+(H)$ and $\delta > 0$ small enough such that

$$\sigma^{\star}\sigma(x,r) = Q + \delta f(x,r), \quad x \in H, \quad r \in \mathbb{R}.$$

On A and Q we assume:

- The semigroup (S) generated by A is of negative type
- lacksquare For every $t\geq 0$, $Q_t:=\int_0^t S(r)QS^\star(r)\,dr$ is trace class (that is $\in \mathcal{L}_1^+(H)$).
- For every t > 0 $S(t)H \subset Q_t^{1/2}H$.
- If we define $\Lambda_t := Q_t^{-1/2} S(t)$ there exists some $\lambda > 0$ such that $\|\Lambda_t\|_{\mathcal{L}(H)} \le c \, (t \wedge 1)^{-1/2} e^{-\lambda t}, \qquad t > 0.$

An example

Let $H = L^2(\mathcal{O})$, for some bounded interval $\mathcal{O} \subset \mathbb{R}$, and let $\{e_i\}_{i \in \mathbb{N}}$ be an orthonormal basis of H contained in $L^{\infty}(\mathcal{O})$.

- $lue{A}$ is the realization of the Laplace operator with Dirichlet boundary conditions in $\mathcal O$
- $\mathbf{Q} = I$.

Let $H = L^2(\mathcal{O})$, for some bounded interval $\mathcal{O} \subset \mathbb{R}$, and let $\{e_i\}_{i \in \mathbb{N}}$ be an orthonormal basis of H contained in $L^{\infty}(\mathcal{O})$.

- lacksquare A is the realization of the Laplace operator with Dirichlet boundary conditions in $\mathcal O$
- $\mathbf{Q} = I$.

We fix non-negative numbers $\{\lambda_i\}_{i\in\mathbb{N}}$, and we assume that $\sum_{i=1}^{\infty}\lambda_i\,\|e_i\|_{L^\infty(\mathcal{O})}<\infty$.

■ For every $x \in H$, $r \in \mathbb{R}$, and $i \in \mathbb{N}$, we define

$$[f(x,r)e_i](\xi) = \mathfrak{f}_i(x(\xi),r)\lambda_i e_i(\xi), \quad \xi \in \mathcal{O},$$

for some nice smooth functions $f_i : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

The well-posedness result for the quasi-linear equation

We rewrite the quasi-linear equation as a **perturbation** of Ornstein-Uhlenbeck (ϵ is now irrelevant since we have δ small; we set $\epsilon=1$ and simplify notation)

$$\begin{cases} D_s u(s,x) = \mathcal{L}u(s,x) + \frac{\delta}{2} \operatorname{Tr} \left[f(x,u(s,x)) D_x^2 u(s,x) \right] + \langle b(x), Du(s,x) \rangle_H, \\ u(0,x) = g(x), \quad x \in H, \end{cases}$$

 $\mathcal{L}\varphi(x) = \text{Tr}\left[QD_x^2\varphi(x)\right] + \langle Ax, D_x\varphi(x)\rangle_H$ is the Ornstein-Uhlenbeck operator.

The well-posedness result for the quasi-linear equation

We rewrite the quasi-linear equation as a **perturbation** of Ornstein-Uhlenbeck (ϵ is now irrelevant since we have δ small; we set $\epsilon=1$ and simplify notation)

$$\begin{cases} D_s u(s,x) = \mathcal{L}u(s,x) + \frac{\delta}{2} \operatorname{Tr} \left[f(x,u(s,x)) D_x^2 u(s,x) \right] + \langle b(x), Du(s,x) \rangle_H, \\ u(0,x) = g(x), \quad x \in H, \end{cases}$$

 $\mathcal{L}\varphi(x)=\operatorname{Tr}\left[\mathit{QD}_{x}^{2}\varphi(x)
ight]+\langle \mathit{Ax},\mathit{D}_{x}\varphi(x)
angle_{\mathit{H}}$ is the Ornstein-Uhlenbeck operator.

Strategy: treat the red terms on the right hand side as perturbations of \mathcal{L} .

The well-posedness result for the quasi-linear equation

We rewrite the quasi-linear equation as a **perturbation** of Ornstein-Uhlenbeck (ϵ is now irrelevant since we have δ small; we set $\epsilon=1$ and simplify notation)

$$\begin{cases} D_s u(s,x) = \mathcal{L}u(s,x) + \frac{\delta}{2} \operatorname{Tr} \left[f(x,u(s,x)) D_x^2 u(s,x) \right] + \langle b(x), Du(s,x) \rangle_H, \\ u(0,x) = g(x), \quad x \in H, \end{cases}$$

 $\mathcal{L}\varphi(x) = \text{Tr}\left[QD_x^2\varphi(x)\right] + \langle Ax, D_x\varphi(x)\rangle_H$ is the Ornstein-Uhlenbeck operator.

Strategy: treat the red terms on the right hand side as perturbations of \mathcal{L} .

Theorem (S. Cerrai, G. Guatteri, G.T., JFA 2024)

Fix $\frac{1}{2} < \eta < 1$, $0 < \vartheta < \frac{\eta-1}{2}$, let $\varrho = \frac{1-\eta+\vartheta}{2}$ and assume that $g \in C_b^\eta(H)$. There exists $\bar{\delta} > 0$ such that for every $\delta \leq \bar{\delta}$, t > 0 there exists a unique classical solution $u \in C([0,t],H)$. Moreover denoting Hölder norms by $\|\cdot\|_{\alpha}$.

$$\sup_{s\in(0,t]}\left(\|u(s,\cdot)\|_{\eta}+(s\wedge 1)^{\varrho}\|D_{x}u(s,\cdot)\|_{\vartheta}+(s\wedge 1)^{\varrho+\frac{1}{2}}\|D_{x}^{2}u(s,\cdot)\|_{\vartheta}\right)\leq c_{\delta}\,\|g\|_{\eta},$$

for some constant $c_{\delta} > 0$ independent of t.

Step 1.

We write the quasi-linear PDE in mild form as

$$u(s,x) = R_s g(x) + \frac{\delta}{2} \int_0^s R_{s-r} \text{Tr} \left[F(u(r,\cdot)) D_x^2 u(r,\cdot) \right] (x) dr + \int_0^s R_{s-r} \langle b(\cdot), Du(r,\cdot) \rangle_H(x) dr.$$

where $F(\psi)(x) = f(x, \psi(x))$ and

$$R_s\psi:=\int_H \psi(S(s)x+y)\mathcal{N}_{Q_s}(dy), \qquad \psi\in B_b(H)$$

is the Ornstein-Uhlenbeck semigroup.

Notice that if $\xi(s,x) = [R_s\psi](x)$ then ξ is a classical solution of the linear PDE in H:

$$\begin{cases} \frac{d}{ds}\xi(s,x) = \mathcal{L}\,\xi(s,x) \\ \xi(0,x) = \psi(x) \end{cases}$$

Smoothing properties of Ornstein-Uhlenbeck semigroups

By [Da Prato, Zabczyk 2002] we know that the operator R_s , s>0 is smoothing. For instance for every $0 \le \beta \le \alpha$ there exist some $c_{\alpha,\beta}>0$ such that

$$\|R_s\varphi\|_{\alpha} \leq c_{\alpha,\beta} (s \wedge 1)^{-\frac{\alpha-\beta}{2}} \|\varphi\|_{\beta}, \quad t>0.$$

By [Da Prato, Zabczyk 2002] we know that the operator R_s , s>0 is smoothing. For instance for every $0 \le \beta \le \alpha$ there exist some $c_{\alpha,\beta}>0$ such that

$$\|R_s\varphi\|_{\alpha} \leq c_{\alpha,\beta} (s \wedge 1)^{-\frac{\alpha-\beta}{2}} \|\varphi\|_{\beta}, \quad t>0.$$

Moreover R_s , s > 0 maps $C^0(H)$ into $C^{\infty}(H)$. In particular if we set

$$\|\varphi\|_{s,\theta} := (\|\varphi\|_0 + e^{-\omega\theta s} [\varphi]_\theta)$$

where $[\varphi]_{\theta}$ is the θ -Hölder seminorm then il holds for every $n\in\mathbb{N}$ and $0\leq\theta\leq\rho\leq1$

$$\|D^n R_s \varphi\|_{\theta} \leq c_{n,\theta,\rho} (s \wedge 1)^{-\frac{n-(\rho-\theta)}{2}} e^{-\lambda n s} \|\varphi\|_{s,\rho}, \quad s > 0.$$

By [Da Prato, Zabczyk 2002] we know that the operator R_s , s>0 is smoothing. For instance for every $0 \le \beta \le \alpha$ there exist some $c_{\alpha,\beta}>0$ such that

$$\|R_s\varphi\|_{\alpha} \leq c_{\alpha,\beta} (s \wedge 1)^{-\frac{\alpha-\beta}{2}} \|\varphi\|_{\beta}, \quad t>0.$$

Moreover R_s , s > 0 maps $C^0(H)$ into $C^{\infty}(H)$. In particular if we set

$$\|\varphi\|_{s,\theta} := (\|\varphi\|_0 + e^{-\omega\theta s} [\varphi]_\theta)$$

where $[\varphi]_{\theta}$ is the θ -Hölder seminorm then il holds for every $n\in\mathbb{N}$ and $0\leq\theta\leq\rho\leq1$

$$\|D^n R_s \varphi\|_{\theta} \leq c_{n,\theta,\rho} (s \wedge 1)^{-\frac{n-(\rho-\theta)}{2}} e^{-\lambda n s} \|\varphi\|_{s,\rho}, \quad s > 0.$$

Step 2: We try to establish a contraction argument, we have to take into account that:

- we deal with a second order nonlinear term $\text{Tr}\left[F(u(r,\cdot))D_x^2u(r,\cdot)\right]$ in our function space we have to go up to **second order differentiability**.
- **g** is not smooth we have to cope with **explosions** of norms when $s \searrow 0$.

Thus we chose to work with the space of smooth Hölder continuous functions in H endowed with a slight modification of the norm:

$$\sup_{s\in(0,t]}\left(\|u(s,\cdot)\|_{\eta}+(s\wedge1)^{\varrho}\|D_{x}u(s,\cdot)\|_{\vartheta}+(s\wedge1)^{\varrho+\frac{1}{2}}\|D_{x}^{2}u(s,\cdot)\|_{\vartheta}\right):=\|\|u\|\|_{\eta,\rho,\theta,t}$$

Step 2: We try to establish a contraction argument, we have to take into account that:

- we deal with a second order nonlinear term $\text{Tr}\left[F(u(r,\cdot))D_x^2u(r,\cdot)\right]$ in our function space we have to go up to **second order differentiability**.
- **g** is not smooth we have to cope with **explosions** of norms when $s \searrow 0$.

Thus we chose to work with the space of smooth Hölder continuous functions in H endowed with a slight modification of the norm:

$$\sup_{s\in(0,t]}\left(\|u(s,\cdot)\|_{\eta}+(s\wedge1)^{\varrho}\|D_{\mathsf{x}}u(s,\cdot)\|_{\vartheta}+(s\wedge1)^{\varrho+\frac{1}{2}}\|D_{\mathsf{x}}^{2}u(s,\cdot)\|_{\vartheta}\right):=\|\|u\|\|_{\eta,\rho,\theta,t}$$

We prove, exploiting smoothing estimates for (R), that if

$$\Gamma[u](s,x) := R_s g(x) + \frac{\delta}{2} \int_0^s R_{s-r} \operatorname{Tr} \left[F(u(r,\cdot)) D_x^2 u(r,\cdot) \right](x) dr + \int_0^s R_{s-r} \langle b(\cdot), Du(r,\cdot) \rangle_H(x) dr.$$

and if δ and t are sufficiently small then Γ is a contraction with respect to norm $\|\cdot\|_{n,q,\theta,t}$. Thus a unique local mild solution exists.

Step 3: We show, again exploiting the smoothing of R_s , that any local mild solution u is in fact a **classical** solution. In particular,

- $u(s,\cdot) \in C_b^2(H)$, for every $s \in (0, t]$,
- $extbf{Q} QD_x^2 u(t,x) \in \mathcal{L}_1(H)$ (is a trace-class operator),
- $u(\cdot,x) \in C^1(0,+\infty)$, for every $x \in D(A)$,

Step 3: We show, again exploiting the smoothing of R_s , that any local mild solution u is in fact a **classical** solution. In particular,

- $u(s,\cdot) \in C_b^2(H)$, for every $s \in (0,t]$,
- $extbf{Q} QD_x^2 u(t,x) \in \mathcal{L}_1(H)$ (is a trace-class operator),
- $lack u(\cdot,x)\in \mathit{C}^1(0,+\infty)$, for every $x\in \mathit{D}(A)$,

Step 4: We show that local solution satisfies an *a-priori* bound, that is lies in a ball with respect to the norm $\|\|u\|_{\eta,\rho,\theta,t}$.

Notice that the estimate if the C^0 part of the norm, that is the **maximum** principle

$$||u(s,\cdot)||_0 \leq ||g||_0$$

comes form stochastic representation of the solution u.

We conclude **global existence** by a standard iterative process.

We remark that, even in the case in which f only depends on x, that is for equation:

$$\begin{cases}
D_t u(t,x) = \mathcal{L}u(t,x) + \operatorname{Tr}\left[f(x)D_x^2 u(t,x)\right] + \langle b(x), Du(t,x)\rangle_H, \\
u(0,x) = g(x), \quad x \in H,
\end{cases}$$
(6)

existence of classical solutions is not a trivial result, see [Cannarsa, Da Prato 1996] or [Zambotti 1999].

We remark that, even in the case in which f only depends on x, that is for equation:

$$\begin{cases}
D_t u(t,x) = \mathcal{L}u(t,x) + \operatorname{Tr}\left[f(x)D_x^2 u(t,x)\right] + \langle b(x), Du(t,x)\rangle_H, \\
u(0,x) = g(x), \quad x \in H,
\end{cases}$$
(6)

existence of classical solutions is not a trivial result, see [Cannarsa, Da Prato 1996] or [Zambotti 1999].

In particular, the regularity estimates for u, obtained in the above papers, depending on the regularity of f, are not good enough (for us).

Namely we can not attack our PDE by a contraction argument following the schema:

$$u \mapsto f \circ u := f \mapsto u$$

where the last map is indeed given by equation (6).

Some References

- A. Budhiraja, P. Dupuis, V. Maroulas, Annals of Probability 36 (2008), pp. 1390-1420.
- M. Freidlin, L. Koralov, Probability Theory Related Fields 147, (2010), pp. 273-301.
- P. Cannarsa, G. Da Prato, Advances in Differential Equations, (1996).
- M. Freidlin, A. Wentzell, RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS, third edition, Springer, Heidelberg, 2012.
- E. Pardoux, S. Tang, Probability Theory Related Fields 114, 1999, 123–150.
- L. Zambotti, Stochastic Analysis and Applications, 17, 1999.

Thank You

and

Happy Birthday Ying!