Reflected BSDE driven by a marked point process with a convex/concave generator

yiqing.lin@sjtu.edu.cn Joint work with Zihao GU (SJTU) and Kun XU (SJTU)

Yiqing LIN

School of Mathematical Sciences, Shanghai Jiao Tong University

June, 2024 @ Rennes, France In celebration of the 60th birthday of Professor Ying HU

Reflected BSDE driven by a marked point process with a convex/concave generator

Reflected BSDEs (RBSDEs)

$$\begin{cases} Y_t = \xi + \int_t^T f(s, Y_s, Z_s) \, ds - \int_t^T Z_s dB_s + K_T - K_t; \\ Y_t \ge L_t, \quad \forall t \in [0, T]. \end{cases}$$

• K is an increasing process, satisfying Skorokhod condition:

$$\int_{0}^{1} (Y_t - L_t) \, dK_t = 0.$$

- El Karoui et al., 1997: arised from pricing of American contingent claims, Lipschitz generator+square integarble terminal;
- Matoussi, 1997: linear growth in (y, z)+square integarble terminal;

aT

- Kobylanski et al., 2002: superlinear in y and quadratic in z +bounded terminal and obstacle;
- Lepeltier and Xu, 2007, Bayraktar and Yao, 2012: unbounded terminal.

A priori estimates

Existence

Reflected BSDEs with jump (RBSDEJs)

 $\begin{cases} Y_t = \xi + \int_t^T f(s, Y_s, U_s(\cdot)) \, ds + \int_t^T dK_s - \int_t^T \int_E U_s(e) q(dsde), & 0 \le t \le T; \\ Y_t \ge L_t, & 0 \le t \le T; \\ \int_0^T (Y_{s^-} - L_{s^-}) \, dK_s = 0. \end{cases}$ (2)

- $\tilde{q} = p \nu$: martingale, (e.g. compensated Poisson process); L: barrier: càdlàg.
- f: Lipschitz in (y, z, u).
- Generlization in jump process: Hamadène and Ouknine, 2016; Hamadène and Ouknine, 2003: Poisson process; Ren and Otmani, 2010: Lévy process; Crépey and Matoussi, 2008: MPP with bounded density; Foresta, 2021: general MPP.
- Generlization in barrier: Grigorova et al., 2017, 2020: optional process.

A priori estimates

Existence

Quadratic-Exponential BSDEJs

Generalization in growth condition: Quadratic-Exponential growth:

- $-\frac{\lambda}{2}|z|^2 \alpha_t \beta|y| \frac{1}{\lambda}j_\lambda(t, -u) \le f(t, y, z, u) \le \frac{1}{\lambda}j_\lambda(t, u) + \alpha_t + \beta|y| + \frac{\lambda}{2}|z|^2,$ (3)
- $j_{\lambda}(t,u) = \int_{E} (e^{\lambda u(e)} \lambda u(e) 1)\phi_t(de), \ \nu(\omega, dt, dx) = \phi_t(\omega, de)dt.$
- Related to the quadratic variation of the Doléans-Dade exponential of the solution.
- BSDEs with bounded terminal: monotone: Becherer, 2006, Morlais, 2010; fixed point: Kazi-Tani et al., 2015.
- Semimartingale viewpoint: Ngoupeyou, 2010, Jeanblanc et al., 2016, El Karoui et al., 2016, existence for unbounded terminal.
- Application in exponential uitility maximization in jump market
- Particular form of generator related to utility maximization problem: Kaakai et al., 2022.

Concerning of classical auadratic RSDEs: Kobylanski 2000

(日)

Our results: wellposedness of RBSDEs driven by MPP

For simplicity, not involve z, with the help of Briand and Hu, 2006, 2008; Delbaen et al., 2011, 2015 to generalize.

$$\begin{cases} Y_t = \xi + \int_t^T f(s, Y_s, U_s) \, dA_s + \int_t^T dK_s - \int_t^T \int_E U_s(e) q(dsde), & 0 \le t \le T; \\ Y_t \ge L_t, & 0 \le t \le T; \\ \int_0^T (Y_{s^-} - L_{s^-}) \, dK_s = 0. \end{cases}$$
(4)

• MPP associated random discrete measure p on $((0, +\infty) \times E, \mathscr{B}((0, +\infty) \times E))$:

$$p(\omega, D) = \sum_{n \ge 1} \mathbf{1}_{(T_n(\omega), \zeta_n(\omega)) \in D}, \ \forall \omega \in \Omega.$$

• $q(dtde) := p(dtde) - \phi_t(de)dA_t$: martingale measure; process A may not absolutely continuous (See e.g. Janson et al., 2011).

• Wellposedness for unbounded terminal with convex / concave generators.

(5)

Marked point process

- $(\Omega, \mathscr{F}, \mathbb{P})$: a complete probability space
- E: mark space equipped with the Borel σ -algebra $\mathscr{B}(E)$.
- Given a sequence of random variables (T_n, ζ_n) taking values in $[0, \infty] \times E$, set $T_0 = 0$ and $\mathbb{P} a.s.$

$$T_n \leq T_{n+1}, \ \forall n \geq 0;$$

- **2** $T_n < \infty$ implies $T_n < T_{n+1} \ \forall n \ge 0$.
- $(T_n, \zeta_n)_{n \ge 0}$: marked point process (MPP).
- We assume the marked point process is non-explosive, i.e., $T_n \to \infty, \mathbb{P}-a.s.$
- MPP associated random discrete measure p on $((0, +\infty) \times E, \mathscr{B}((0, +\infty) \times E))$:

$$p(\omega, D) = \sum_{n \ge 1} \mathbf{1}_{(T_n(\omega), \zeta_n(\omega)) \in D}, \ \forall \omega \in \Omega.$$

Sac

Introduction	Comparison theorem	A priori estimates	Existence	Application in pricing via utility maximization

Assumptions

(H1) The process A is continuous, with $||A_T||_{\infty} < \infty$. \Rightarrow The MPP is totally inaccessible.

(H2) The obstacle process L is continuous with $L_T \leq \xi$. \Rightarrow The process K is continuous. (H3) For every $\omega \in \Omega$, $t \in [0,T]$, $r \in \mathbb{R}$, the mapping $f(\omega, t, r, \cdot) : L^0(\mathcal{B}(E)) \to \mathbb{R}$ satisfies: for every $U \in H^{2,2}_{\nu}$,

$$(\omega, t, r) \mapsto f(\omega, t, r, U_t(\omega, \cdot))$$

is $\operatorname{Prog} \otimes \mathscr{B}(\mathbb{R})$ -measurable.

Introduction	Comparison theorem	A priori estimates	Existence	Application in pricing via utility maximization

Assumption cont.

(H4) (a) (Continuity condition) For every $\omega \in \Omega$, $t \in [0,T]$, $y \in \mathbb{R}$, $u \in L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$, $(u, u) \longrightarrow f(t, u, u)$ is continuous. (b) (Lipschitz condition in y) There exist $\tilde{\beta} \ge 0$, such that for every $\omega \in \Omega, t \in [0,T], y, y' \in \mathbb{R}, u \in L^2(E, \mathcal{B}(E), \phi_t(\omega, dy)),$ we have $|f(\omega, t, y, u(\cdot)) - f(\omega, t, y', u(\cdot))| < \tilde{\beta} |y - y'|.$ (c) (Quadratic-exponential growth condition) For all $t \in [0, T]$, $(u, u) \in \mathbb{R} \times L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$: P-a.s. $q(t,y,u) = -\frac{1}{\lambda}j_{\lambda}(t,-u) - \alpha_t - \beta|y| \le f(t,y,u) \le \frac{1}{\lambda}j_{\lambda}(t,u) + \alpha_t + \beta|y| = \bar{q}(t,y,u).$ where $\{\alpha_t\}_{0 \le t \le T}$ is a progressively measurable nonnegative stochastic process. $j_{\lambda}(t,u) = \int_{E} \overline{(e^{\lambda u(e)} - \lambda u(e) - 1)} \phi_t(de).$

4 ロ ト 4 母 ト 4 ヨ ト ヨ 9 9 9 0

A priori estimates

xistence

Assumption cont.

(d) (Integrability condition) We assume necessarily,

$$\forall p > 0, \quad \mathbb{E} \left| \exp \left\{ p\lambda e^{\beta A_T} (|\xi| \lor L_*^+) + p\lambda \int_0^T e^{\beta A_s} \alpha_s dA_s \right\} \right| < \infty$$

(e) (Convexity/Concavity condition) For each $(t, y) \in [0, T] \times \mathbb{R}$, $u \in L^2(E, \mathcal{B}(E), \phi_t(\omega, dy)), \ u \to f(t, y, u)$ is convex or concave.

Sar

Bounded Lipschitz case

Assume additionally: (H4') (a) There exists a constant M > 0 such that $L_* + |\xi| \le M$, $\mathbb{P} - a.s.$ (b) There exist $L_f \geq 0$, $L_U \geq 0$ such that for every $\omega \in \Omega$, $t \in [0,T]$, $y, y' \in \mathbb{R}$, $u, u' \in L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$ we have $|f(\omega, t, y, u(\cdot)) - f(\omega, t, y', u'(\cdot))| \le L_f |y - y'| + L_U \left(\int_{\Sigma} |u(e) - u'(e)|^2 \phi_t(\omega, de) \right)^{1/2}.$ (c) We have $\mathbb{E}\left[\int_{0}^{T}|f(s,0,0)|^{2}dA_{s}\right]<\infty.$

Sac

(日)

Introd 0000	duction	Comparison theorem	A priori estimates	Existence	Application in pricing via utility maxim	nization
Bo	ounded	Lipchitz case				
	Theorem	1			<u>197</u>	
	Let assum (i) there e help of Fc (ii) If in a and (y,u)	ptions (H1), (H2) exists a solution (Y presta, 2021, Lemn ddition, there exist $\in \mathbb{R} \times L^2(E, \mathcal{B}(E))$, (H3) and (H4') f_{t} $(Y,U,K) \in L^{2}(A) \times A$ $(X,U,K) \in L^{2}(A) \times A$ $(X,U,K) \in L^{2}(A) \times A$ $(X,U,K) \in L^{2}(A) \times A$ $(X,U,K) \in L^{2}(A) \times A$ $(Y,U,K) \in L^{2}($	foold, then, $H^{2,2}_{m u} imes \mathbb{K}^2$ to ant M_0 such th $\leq M_0.$	o (4). Moreover, with the hat , for each $t \in [0,T]$	
	Then, the	re exists a unique	solution (Y, U, K)	$\in S^{\infty} \times J^{\infty} \times$	$ imes \mathbb{K}^2.$	
	Need bett	er uniform estimat	ions in the sequel.	$H^{2,p}_{ u}$ is the space	pace of predictable	۲
	processes	U such that $\left\Vert U ight\Vert _{H}$	$\mathcal{L}^{2,p}_{\nu} := \left(\mathbb{E} \left[\int_{[0,T]} \int_{E} \right] \right)$	$ U_s(e) ^2 \phi_s(de)$	$d\mathcal{A}_{\mathfrak{S}} \Big \stackrel{\frac{p}{2}}{\overset{p}{{{{}{}{}{$	12/30

Reflected BSDE driven by a marked point process with a convex/concave generator

Introduction	Comparison theorem ●○○	A priori estimates	Existence	Application in pricing via utility maximization

Comparison theorem

Theorem 2

Let $(\xi, f, L), (\hat{\xi}, \hat{f}, \hat{L})$ be two parameter sets and let (Y, U, K) (resp. $(\hat{Y}, \hat{U}, \hat{K})$) be a solution of $RBSDE(\xi, f, L)$ (resp. $RBSDE(\hat{\xi}, \hat{f}, \hat{L})$) such that \mathbb{P} -a.s., $\xi \leq \hat{\xi}$ and that $L_t \leq \hat{L}_t$ for any $t \in [0, T]$. For process α and constants $\beta, \tilde{\beta} \geq 0, \lambda > 0$, suppose (H1)-(H2) and (H4)(d) hold, $Y, \ \hat{Y} \in \mathcal{E}, U, \ \hat{U} \in H^{2,p}_{\nu}$ and $K, \ \hat{K} \in \mathbb{K}^p$, for each $p \geq 1$. If in addition either of the following two holds:

(i) f satisfies (H3), (H4)(a-b), f is convex in u, $\Delta f(t) := f\left(t, \widehat{Y}_t, \widehat{U}_t\right) - \widehat{f}\left(t, \widehat{Y}_t, \widehat{U}_t\right) \le 0$, $dt \otimes d\mathbb{P}$ -a.e., and $f(t, y, u) \le \alpha_t + \beta |y| + \frac{1}{\lambda} j_\lambda(t, u);$

(ii)
$$\hat{f}$$
 satisfies (H3), (H4)(a-b), \hat{f} is convex in u ,
 $\Delta f(t) := f(t, Y_t, U_t) - \hat{f}(t, Y_t, U_t) \le 0, \ dt \otimes d\mathbb{P}$ -a.e., and
 $\hat{f}(t, y, u) \le \alpha_t + \beta |y| + \frac{1}{\lambda} j_\lambda(t, u);$

then it holds \mathbb{P} -a.s. that $Y_t \leq \widehat{Y}_t$ for any $t \in [0,T]$.

Reflected BSDE driven by a marked point process with a convex/concave generator

Introduction	Comparison theorem ○●○	A priori estimates	Existence	Application in pricing via utility maximization

Comparison theorem

- The θ -method; Fix $\theta \in (0,1)$., set $\tilde{Y} := Y \theta \widehat{Y}, \tilde{U} := U \theta \widehat{U}$;
- To deal with *j* term: define

$$\begin{aligned} a_t := \mathbf{1}_{\{Y_t \ge 0\}} \left(\mathbf{1}_{\{Y_t \neq \hat{Y}_t\}} \frac{\mathfrak{F}\left(t, Y_t, \widehat{U}_t\right) - \mathfrak{F}\left(t, \widehat{Y}_t, \widehat{U}_t\right)}{Y_t - \widehat{Y}_t} - \tilde{\beta} \mathbf{1}_{\{Y_t = \widehat{Y}_t\}} \right) - \tilde{\beta} \mathbf{1}_{\{Y_t < 0 \le \widehat{Y}_t\}} \\ + \mathbf{1}_{\{Y_t \lor \widehat{Y}_t < 0\}} \left(\mathbf{1}_{\{\widetilde{Y}_t \neq 0\}} \frac{\mathfrak{F}\left(t, Y_t, U_t\right) - \mathfrak{F}\left(t, \theta \widehat{Y}_t, U_t\right)}{\widetilde{Y}_t} - \tilde{\beta} \mathbf{1}_{\{\widetilde{Y}_t = 0\}} \right), \quad t \in [0, T], \end{aligned}$$

4 m b

and
$$\tilde{A}_t := \int_0^t a_s dA_s, t \in [0, T]$$
, estimate the exponential transform $\Gamma_t := \exp\left\{\zeta_{\theta} e^{\tilde{A}_t} \tilde{Y}_t\right\}$, where $\zeta_{\theta} := \frac{\lambda e^{\tilde{\beta} \|A_T\|_{\infty}}}{1-\theta}$.

Sac

Introduction	Comparison theorem ○○●	A priori estimates	Existence	Application in pricing via utility maximization

Comparison theorem

• Plug in suitable estimations for K.

$$\begin{split} Y_t &-\theta \widehat{Y}_t \leq & \frac{1-\theta}{\lambda} \ln \left(1 \vee \frac{\lambda e^{\widetilde{\beta} \|A_T\|_{\infty}}}{1-\theta} \right) e^{-\widetilde{\beta} \|A_T\|_{\infty} - \widetilde{A}_t} \\ &+ \frac{1-\theta}{\lambda} \left(e^{\widetilde{\beta} \|A_T\|_{\infty}} + \ln \left(\mathbb{E} \left[\eta \left(1 + K_T \right) \mid \mathcal{G}_t \right] \right) \right) e^{-\widetilde{\beta} \|A_T\|_{\infty} - \widetilde{A}_t}, \quad \mathbb{P}\text{-a.s.} \end{split}$$

• We get rid of A_{γ} condition: $\gamma > -1$,

$$f(t,y,z,u)-f\left(t,y,z,u'
ight)\leq\int_{E}\gamma_{t}(x)\left(u-u'
ight)(x)\psi_{t}(dx).$$

<<p>▲□▶ <</p>

DQC

э

Introduction	Comparison theorem	A priori estimates ●○○○	Existence	Application in pricing via utility maximization

A priori estimates

Definition 3 (Solution to the RBSDE)

Under assumptions (H1)-(H4), a solution to RBSDE (4) is a triple process (Y, U, K) on [0, T], in which Y is a càdlàg process, and U is an G-predictable random field. Moreover, for each $p \ge 1$, processes $\int_0^{\cdot} \int_E (e^{p\lambda U_t(e)} - 1)q(dsde)$ and $\int_0^{\cdot} \int_E (e^{p\lambda U_t(e)} - 1)q(dsde)$ are local martingales on [0, T]. K is a continuous increasing process.

The following additional assumption helps provide uniform estimates for the solutions. (H5) (Uniform linear bound condition) There exists a positive constant C_0 such that for each $t \in [0,T]$, $u \in L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$, if f is convex (resp. concave) in u, then $f(t,0,u) - f(t,0,0) \ge -C_0 ||u||_t$ (resp. $f(t,0,u) - f(t,0,0) \le C_0 ||u||_t$). Weaker than the A_{γ} condition.

A priori estimates for Y

Bounded obstacle and terminal first (+ monotone convergence \Rightarrow unbounded).

Proposition 4

Let (ξ, f, L) be a parameter set such that (H1'), (H2)-(H3), (H4)(b-e), (H4')(a) and (H5) hold. If $(Y, U, K) \in \mathcal{E} \times H^{2,p} \times \mathbb{K}^p$, for each $p \ge 1$, is a solution of the quadratic exponential $RBSDE(\xi, f, L)$, then it holds \mathbb{P} -a.s. that for each $t \in [0, T]$,

$$\exp\left\{p\lambda|Y_t|\right\} \le \mathbb{E}_t\left[\exp\left\{p\lambda e^{\beta A_T}(|\xi| \lor L^+_*) + p\lambda \int_t^T e^{\beta A_s} \alpha_s dA_s\right\}\right].$$
(7)

(日)

By estimations for BSDEs (see our work Gu et al., 2024) and Snell envolope.

0000	000000 000	0000	0000000	000	, ,
Α	priori estimates fo	$\mathbf{r} \ U$ and K			
	Proposition 5			534	
	Let (ξ, f, L) be a parameter quadratic RBSDE (ξ, F, I)	eter such that (H1)- $\mathcal{L}(\mathcal{L})$ such that $Y\in\mathcal{E},$	(H4) hold. If (Y then for each p	$U,K)$ is a solution of ≥ 1 ,	of the
	$\mathbb{E}\left[\left(\int_0^T \int_E U_t(e) ^2 dt\right)\right]$	$\phi_t(de)dA_t\bigg)^{\frac{p}{2}} + K_T^p$	$\bigg] \le C_p \mathbb{E} \left[e^{36p\lambda(1)} \right]$	$+\beta \ A_T\ _{\infty})Y_* \Big] < \infty,$	(8)
	and also				
	$\mathbb{E}\left[\int_0^T\int_E\left(e^{p\lambda U_t}\right.$	$ \Phi^{(e) }-1\Big)^2\phi_t(de)dA_t$	$\bigg] \le C_p \mathbb{E} \left[e^{36p\lambda(2)} \right]$	$\left\ +\beta \ A_T\ _{\infty} \right) Y_* \Big] < \infty,$	(9)

A priori estimates

where C_p is a constant depending on p and the constants in $(H_1)-(H_2)$.

Sac

Application in pricing via utility maximization

Introduction	Comparison theorem	A priori estimates 000●	Existence	Application in pricing via utility maximization

A priori estimates for U and K

- **1** Estimate the quadratic variation of $\underline{G}_t = -Y_t + \int_0^t \alpha_s dA_s + \int_0^t \beta |Y_s| dA_s$ via Garcia-Neveu Lemma.
- **2** Estimate $\mathbb{E}[K_T^2]$ via Burkholder-Davis-Gundy inequality. Not easy to obtain $\mathbb{E}[K_T^p]$ directly without adequate integarbility on U at this stage.
- **3** Define similarly $\bar{G}_t = Y_t + \int_0^t \alpha_s dA_s + \int_0^t \beta |Y_s| dA_s$, estimate the quadratic variation of $e^{p\lambda \bar{G}_t}$ via Garcia-Neveu Lemma. Need the previous esimation on K.
- **4** Obtain adequate integrability for U from 1 and 3.
- **5** Estimate $\mathbb{E}[K_T^p]$ via a generalized Burkholder-Davis-Gundy inequality (see Hernández-Hernández and Jacka, 2022, Theorem 2.1).

Introduction	Comparison theorem	A priori estimates	Existence ●000000	Application in pricing via utility max	imization
Existen	се				
Theor	rem 6 (Existence)			54	
Assum unique	he that assumptions (Figure 5.5) that assumptions $(Y,U,K)\in$	H1)-(H5) are fulfille $\mathcal{E} imes H^{2,p} imes \mathbb{K}^p$, fo	ed. Then the l or all $p \ge 1$.	RBSDE (4) admits a	
• \mathcal{E}^p • $H^2_{ u}$	$e^{ Y } \in S^p$. Denote $Y^{2,p}$: predictable process	$Y \in \mathcal{E} ext{ if } Y \in \mathcal{E}^p ext{ for }$ ses U such that	r any $p \ge 1$.		
	$\ U\ _{H^{2,p}_{ u}}:=$	$\left(\mathbb{E}\left[\int_{[0,T]}\int_{E} U_{s}(\mathbf{x}) \right]\right)$	$(e) ^2 \phi_s(de) dA$	$s \left[\begin{array}{c} rac{p}{2} \\ \end{array} ight)^{rac{1}{p}} < \infty.$	
	$\subset \mathbb{C}^0$: increasing and	continuous adapte	d process start	ing from 0, $\mathbb{K}^p\subset\mathbb{K}$:	A SID LA

- $\mathbb{K} \subset \mathbb{C}^0$: increasing and continuous adapted process starting from 0, $\mathbb{K}^p \subset \mathbb{K}$: $X \in \mathbb{K}^p \Leftrightarrow X_T \in \mathbb{L}^p$.
- Begin with bounded case and then generalize to unbounded case.

ъ

Existence–bounded terminal and obstacle

We use the following auxiliary generators to approximate convex f.

$$f^{n}(t, y, u) = \inf_{r \in L^{2}(E, \mathcal{B}(E), \phi_{t}(\omega, dy))} \{f(t, y, r) + n \|u - r\|_{t}\}$$

The properties of the auxiliary drivers are outlined below. See also Lepeltier and Martin, 1997.

Lemma 7

Under the assumptions (H1)–(H4), (i) The sequence $\{f^n\}_n$ is globally Lipschitz with respect to (y, u) in $\mathbb{R} \times L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$. (ii) The sequence $\{f^n\}_n$ is convex with respect to u if f is convex with respect to u for $u \in L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$. (iii) For $t \in [0, T]$, the sequence $\{f^n\}_n$ converges to f on $(y, u) \in \mathbb{R} \times L^2(E, \mathcal{B}(E), \phi_t(\omega, dy))$ Also strong convergence on bounded subsets.

Existence

(日)

Application in pricing via utility maximization

3

Sar

Existence-bounded terminal and obstacle

Lemma 7 cont.

Introduction

(iv) For $n > C_0$, (Here we need the linear lower bound assumption for the lower bound.)

$$-3\alpha_t - 3\beta|y| - \frac{1}{\lambda}j_\lambda(t, -u) \le f^n(t, y, u)$$

$$\le f(t, y, u) \le \alpha_t + \beta|y| + \frac{1}{\lambda}j_\lambda(t, u) \le 3\alpha_t + 3\beta|y| + \frac{1}{\lambda}j_\lambda(t, u).$$

(v) For each $n > C_0$ and $t \in [0, T]$, $f^n(t, 0, 0) = f(t, 0, 0)$.

(10)

Existence–bounded terminal and obstacle

The proof consists of 5 steps. We start from RBSDE (ξ , $f^{n,k}$, L), where $n > C_0$, $f^{n,k} = (f^n \wedge -k) \lor k, \ k \in \mathbb{N}$. $(Y^{n,k}, U^{n,k}, K^{n,k}) \in S^{\infty} \times \mathbb{J}^{\infty} \times \mathbb{K}^2$. Step 1 The convergence of the sequence $\{(Y^{n,k}, U^{n,k})\}_k$ to (Y^n, U^n) .

- For fixed $n > C_0$, $\lim_{k \to \infty} \mathbb{E}\left[|Y_t^n Y_t^{n,k}|^2\right] = 0$,
 - $\lim_{k\to\infty} \mathbb{E}\left[\int_0^T \int_E |U^{n,k} U^n|^2 \phi_t(de) dA_t\right] = 0.$
- Stochastic (pointwise) Gronwall inequality involved a martingale term (inspired by Scheutzow, 2013, Theorem 4.)
- To obtain uniform a priori estimates for $\mathsf{RBSDE}(\xi, f^n, L)$.
- **Step 2** Construction of candidate solution (Y^0, U^0) .
 - For Y^0 , comparison theorem.
 - For U^0 , stability of Cauchy sequence.
 - Based on uniform a priori estimates.
 - Y^0 not for sure càdlàg, only a limit for strong convergence in constructing U^0 .

Sac

Existence–bounded terminal and obstacle

Step 3 A priori estimate of
$$|Y^n - Y^m|$$

• The θ -method.

$$|Y_t^n - Y_t^m| \le (1 - \theta) \left(|Y_t^m| + |Y_t^n| \right) + \frac{1 - \theta}{\lambda} \ln \left(\sum_{i=1}^3 J_t^{m,n,i} \right), \quad t \in [0, T]$$

 $J^{m,n,i}$ uniformly bounded in appropriate spaces.

Step 4 Convergence of the sequence $\{Y^n\}$ in S^1 .

- Find a càdlàg candidate \tilde{Y}^0 .
- Need the estimate in step 3.

Step 5 Find candidate solution K^0 and verify the solution (\tilde{Y}^0, U^0, K^0) .

• For K^0 , Cauchy sequence in S^2 .

Existence–unbounded terminal and obstacle

Approximate by solutions in bounded case, i.e., RBSDE(ξ^n , \bar{f}^n , L^n) with solution $(Y^n, U^n, K^n) \in \mathcal{E} \times \bigcap_{p>1} H^{2,p}_{\nu} \times \bigcap_{p>1} \mathbb{K}^p$. Here, $\xi^n = (\xi \wedge n) \vee -n$, $L^{n} = (L \wedge n) \vee -n, \ \bar{f}^{n}(t, \cdot, \cdot) = f(t, \cdot, \cdot) - f(t, 0, 0) + f^{n}(t, 0, 0),$ $f^{n}(t,0,0) = (f(t,0,0) \wedge n) \vee -n.$

- **Step 1** Construction of candidate solution Y^0 .
 - Find an a priori estimate of $|Y^n Y^m|$ (solutions for truncated RBSDEs) via the θ -method.
 - Some tricks when seperating different obstacles.

Step 2 Construction of candidate solution U^0 .

- Cauchy sequence in H^{2,2}.
- A prirori estimates in $H^{2,p}_{\mu}$.

Step 3 Construction of candidate solution K^0 and verification of the solution $(Y^0, U^0, K^0).$

- Cauchy sequence in \mathbb{K}^2 .
- A prirori estimates in \mathbb{K}^p .

Sac

- 3-

Sar

Generalization to quadratic-exponentional RBSDEs (involving Z)

A priori estimates

$$\begin{cases} Y_t = \xi + \int_t^T f(s, Y_s, Z_s, U_s) \, dC_s + \int_t^T dK_s - \int_t^T Z_s dB_s - \int_t^T \int_E U_s(e) q(dsde), & 0 \le t \le T, \\ Y_t \ge L_t, & 0 \le t \le T, \\ \int_0^T (Y_{s^-} - L_{s^-}) \, dK_s = 0, & \mathbb{P}\text{-a.s.} \end{cases}$$
(11)

Existence

With quadratic-exponential growth condition:

Comparison theorem

Introduction

$$-\left(\alpha_t + \beta|y| + \frac{\lambda}{2}|z|^2\right)dt + \left(-\alpha_t - \beta|y| - \frac{1}{\lambda}j_{\lambda}(t, -u)\right)dA_t$$

$$\leq f(t, y, z, u)dC_t \leq \left(\alpha_t + \beta|y| + \frac{1}{\lambda}j_{\lambda}(t, u)\right)dA_t + \left(\alpha_t + \beta|y| + \frac{\lambda}{2}|z|^2\right)dt.$$
(12)

(日)

Combining our discussion with the wellposedness of quadratic RBSDEs in Bayraktar and Yao, 2012 to conclude.

Application: American contingent claims pricing via utility maximization

• Risky asset:

$$\mathrm{d}S_s = S_{s-} \left(b_s \,\mathrm{d}s + \sigma_s \,\mathrm{d}W_s + \int_{\mathbb{R} \setminus \{0\}} \beta_s(x) \tilde{N}_p(\mathrm{d}s, \mathrm{d}x) \right)$$

- Exponential utility function: $U_{\tilde{\alpha}}(\cdot) := -\exp(-\tilde{\alpha} \cdot)$
- Value process:

$$V_t^B(x) = \sup_{\pi \in A_t} \mathbb{E}\left(U_{\tilde{\alpha}}\left(x + \int_t^T \pi_s \frac{\mathrm{d}S_s}{S_{s-}} - B\right) \mid \mathcal{G}_t\right)$$

200

Introduction Com

A priori estimates

Existence

Application in pricing via utility maximization ○●○

Connection with quadratic-exponential RBSDEs

 $V_t^B(x) = -\exp\left(-\tilde{\alpha}\left(x - Y_t\right)\right),\,$

where Y_t is the first component of the solution (Y, Z, U) of the BSDE:

$$Y_t = B + \int_t^T f_s\left(Z_s, U_s\right) ds - \int_t^T Z_s dW_s - \int_t^T \int_{\mathbb{R} \setminus \{0\}} U_s(x) \tilde{N}_p(ds, dx), \quad 0 \le t \le T, \quad \mathbb{P}\text{-a.s.}$$

$$f(s,z,u) = \inf_{\tilde{\pi} \in \mathcal{C}} \left(\frac{\tilde{\alpha}}{2} \left| \tilde{\pi} \sigma_s - \left(z + \frac{\theta}{\tilde{\alpha}} \right) \right|^2 + \frac{1}{\tilde{\alpha}} j_{\tilde{\alpha}}(s,u - \tilde{\pi}\beta_s) \right) - \theta z - \frac{|\theta|^2}{2\tilde{\alpha}}$$

There exists $\pi^* \in A_t$ (compact) satisfying:

$$\pi_s^* \in \arg\min_{\tilde{\pi}\in\mathcal{C}} \left(\frac{\tilde{\alpha}}{2} \left| \tilde{\pi}\sigma_s - \left(Z_s + \frac{\theta_s}{\tilde{\alpha}} \right) \right|^2 + \frac{1}{\tilde{\alpha}} j_{\tilde{\alpha}}(s, U_s - \tilde{\pi}\beta_s) \right).$$

Pricing for American contingent claims

• As in Rouge and El Karoui, 2000, the price of contingent claim *B* defined via utility function reads:

$$pr_t(B) = \inf\{y \in \mathbb{R}, V_t^B(y) \ge V_t^0(0) = -1\} = Y_t := Y_t(T, B).$$

• With early exercise payoff: $\{\xi_t, 0 \leq t \leq T\}$, the price

$$Y_{t}^{A} = \operatorname{ess \, sup}_{\tau \in \mathcal{S}_{t,T}'} Y_{t}\left(\tau, \xi_{\tau}\right).$$

satisfies the RBSDE:

$$\begin{split} Y_t^A &= B + \int_t^T f\left(s, Z_s, U_s\right) \mathrm{d}s - \int_t^T Z_s \ \mathrm{d}W_s - \int_t^T \int_{\mathbb{R} \setminus \{0\}} U_s(x) \tilde{N}_p(\ \mathrm{d}s, \ \mathrm{d}x) + \int_t^T dK_s; \\ Y_t^A &\geq \xi_t; \\ \int_0^T \left(Y_{s^-}^A - \xi_s\right) dK_s &= 0, \quad \mathbb{P}\text{-a.s.} \quad , \end{split}$$

in which f satisfies all aforementioned assumptions. $\mbox{\ }\mbox{\ }\mbox{\$

