Reinforcement Learning in Continuous Time

Xunyu Zhou

Columbia University

June 2024 Rennes, Workshop Celebrating Ying Hu

Background and Motivation

Theory and Algorithms

Conclusions

Multi-Armed Bandits

- ▶ m slot machines in a casino, with different but unknown winning probabilities – in what sequence to play the machines?
- Classical model-based approach: first estimate (explore) and then optimize (exploit) - "Separation principle" or "plug-in"
- Reinforcement learning (RL) approach: explore and exploit simultaneously - trades off exploration (learning) and exploitation (optimization)
- ho ε -greedy strategy (Sutton and Barto 1998): playing the current best machine with probability $1-\varepsilon$ and the other machines at random with probability ε

A Game Changer

- \triangleright ε -greedy strategy is a *randomized* policy/strategy (trial and error)
- ► The gambler learns the best (randomized) policies instead of learning a model

Key Elements of Reinforcement Learning

- Exploration (trial and error): broaden search space via randomization (stochastic policies)
- Policy evaluation (PE): estimate value (objective) function of a given policy using samples only
- Policy improvement (PI): improve and update current policy based on learned value function, including policy gradient (PG) and Q-learning
- Convergence and regret analysis: convergence of the policy parameters and loss of objective value compared with oracle access

Pitfalls of Current RL Study

- ► Two major limitations in existing study on RL
 - ► Mainly for discrete-time Markov Decision Processes (MDPs)
 - ▶ Many RL algorithms devised in heuristic and ad hoc manners
- ► There seems a lack of an overarching theoretical understanding and a *unified* framework for RL methods

RL in Continuous Time and Spaces

- Bridge these gaps by providing a unified theoretical underpinning of RL in continuous time with possibly continuous state and action spaces
- Carry out all theoretical analysis for the continuous setting and take discrete observations at the final, algorithmic stage
- ▶ Rule out sensitivity in time step size
- Make use of well-developed tools in stochastic calculus, differential equations, and stochastic control, which enables better interpretability/explainability to underlying learning technologies
- Provide new perspectives on RL overall

Research Questions

- ► How to explore strategically?
- ► How to do PE?
- ► How to do PI generally?
- How to do PG specifically?
- Do we have sublinear regret?

A Pentalogy

- ▶ H. Wang, T. Zariphopoulou and X. Zhou, "Reinforcement learning in continuous time and space: A stochastic control approach", *Journal of Machine Learning Research*, 2020.
- Y. Jia and X. Zhou, "Policy evaluation and temporal-difference learning in continuous time and space: A martingale approach", Journal of Machine Learning Research, 2022a.
- Y. Jia and X. Zhou, "Policy gradient and actor-critic learning in continuous time and space: Theory and algorithms", Journal of Machine Learning Research, 2022b.
- ▶ Y. Jia and X. Zhou, "q-Learning in continuous time", Journal of Machine Learning Research, 2023.
- ▶ W. Tang and X. Zhou, "Regret of exploratory policy improvement and *q*-learning", working paper.

Problem Formulation

- $(\Omega, \mathcal{F}, \mathbb{P}; \{\mathcal{F}_t^W\}_{t \geq 0})$, Brownian motion $W = \{W_t, t \geq 0\}$
- ► Action space A: representing constraints on an agent's actions (or "controls")
- ▶ Admissible action or control $a = \{a_t, t \geq 0\}$: an $\{\mathcal{F}_t^W\}_{t \geq 0}$ -adapted measurable process taking value in \mathcal{A}
- lacktriangle State (or "feature") dynamics governed by SDE in \mathbb{R}^d

$$dX_t = b(t, X_t, a_t)dt + \sigma(t, X_t, a_t)dW_t, t > 0$$

 Objective: to achieve maximum expected total reward represented by optimal value function

$$w(t,x) := \sup \mathbb{E}\left[\int_t^T r(s, X_s, a_s) ds + h(X_T) \middle| X_t = x\right],$$

where
$$(t, x) \in [0, T] \times \mathbb{R}^d$$

Classical Model-Based Approach

- Dynamic programming (Fleming and Soner 1992, Yong and Z. 1998)
- lacktriangle HJB equation: optimal value function w satisfies

$$\frac{\partial v}{\partial t}(t,x) + \sup_{a \in \mathcal{A}} H(t,x,a,\frac{\partial v}{\partial x}(t,x),\frac{\partial^2 v}{\partial x^2}(t,x)) = 0; \quad v(T,x) = h(x)$$

... where (generalized) Hamiltonian (Yong and Z. 1998)

$$H(t,x,a,p,P) = \frac{1}{2} \operatorname{tr} \left[\sigma(t,x,a)' P \sigma(t,x,a) \right] + p \cdot b(t,x,a) + r(t,x,a)$$

Verification theorem: optimal (feedback) control policy is

$$\mathbf{a}(t,x) = \mathrm{argmax}_{a \in \mathcal{A}} H\left(t,x,a,\frac{\partial v}{\partial x}(t,x),\frac{\partial^2 v}{\partial x^2}(t,x)\right)$$

- ▶ *Deterministic* policy, devised at t = 0
- ► This approach requires oracle access of environment (functional forms of b, σ, r, h)

Exploratory Formulation (Wang et al. 2020, JMLR)

- Exploratory control $\pi = \{\pi_t(\cdot), t \geq 0\}$: a density-function-valued adaptive process
- Exploratory state dynamics, a controlled stochastic differential equation (SDE)

$$dX_t^{\pi} = \tilde{b}(t, X_t^{\pi}, \pi_t)dt + \tilde{\sigma}(t, X_t^{\pi}, \pi_t)dW_t, \ t > 0; \quad X_0^{\pi} = x, \quad (1)$$

where

$$\tilde{b}(t, X_t^{\pi}, \pi_t) := \int_{\mathcal{A}} b(t, X_t^{\pi}, a) \, \pi_t(a) da,$$
 (2)

and

$$\tilde{\sigma}(t, X_t^{\pi}, \pi_t) := \sqrt{\int_{\mathcal{A}} \sigma^2(t, X_t^{\pi}, a) \, \pi_t(a) da}$$
 (3)

Entropy-regularized value function

$$\begin{split} &J\left(t,x;\pi\right)\\ &=\mathbb{E}\Big[\int_{0}^{T}\left(\int_{\mathcal{A}}r\left(s,X_{s}^{\pi},a\right)\pi_{s}\left(a\right)da-\gamma\int_{\mathcal{A}}\pi_{s}(a)\ln\pi_{s}(a)da\right)ds+h(X_{T}^{\pi})\Big|X_{t}^{\pi}=x\Big] \end{aligned} \tag{4}$$

where $\gamma > 0$ is an exogenous weighting parameter

Exploratory HJB Equation and Verification

- ▶ Optimal value function $V(t, x) = \sup_{\pi} J(t, x; \pi)$
- V satisfies exploratory HJB

$$v_t(t,x) + \sup_{\pi \in \mathcal{P}(\mathcal{A})} \int_{\mathcal{A}} \left[H(t,x,a,v_x(t,x),v_{xx}(t,x)) - \gamma \ln \pi(a) \right] \pi(a) da = 0,$$
 with $v(T,x) = h(x)$

Optimal feedback control (a stochastic policy)

$$\boldsymbol{\pi}^*(a|t,x) = \frac{1}{Z(\gamma)} \exp\left(\frac{1}{\gamma} H(t,x,a,v_x(t,x),v_{xx}(t,x))\right),\,$$

where $a \in \mathcal{A}, (t, x) \in [0, T] \times \mathbb{R}^d$, and

$$\begin{split} Z(\gamma) &\equiv Z(\gamma, t, x, v_x(t, x), v_{xx}(t, x)) \\ &:= \int_{\mathcal{A}} \exp\left(\frac{1}{\gamma} H(t, x, a, v_x(t, x), v_{xx}(t, x))\right) da \end{split}$$

is the normalizing factor

Gibbs measure

Extensions and Applications

- Gaussian exploration for LQ (Wang, Zariphopoulou and Z. 2020, JMLR)
- Mean-variance (Wang and Z. 2020, MF)
- Well-posedness of exploratory HJB equation (Tang, Zhang and Z. 2022, SICON)
- Simulated annealing (Gao, Xu and Z. 2022, SICON)
- Mean field games learning (Guo, Xu and Zariphopoulou 2022, MOR)
- Learning equilibrium mean-variance strategy (Dai, Dong and Jia 2023, MF)
- ▶ Non-entropy regularization (Han, Wang and Z. 2023, SICON)

Function Approximation

- ► Need to learn various functions (e.g. optimal value function and policy) in machine learning
- Function approximation: approximates the functions to be learned by parametric families of functions with finite-dimensional parameters
- Parametric forms may be inspired by problem structure or represented by neural networks

Policy Evaluation by Jia and Z. (2022a)

- ► To evaluate a given stochastic policy without knowing model parameters
- Martingale condition (by Feynman–Kac and BSDE)
- Martingality leads to a loss function and an orthogonality system of equations
- Solvable by stochastic gradient descent and stochastic approximation respectively

Policy Gradient by Jia and Z. (2022b)

- ➤ To compute gradient of the (parameterized) value function of a given policy
- Policy gradient turned into policy evaluation mathematically by considering an auxiliary running reward function
- ► This auxiliary reward function value along state is observable/accessible (i.e. data driven) by Ito's formula

Policy Improvement

Theorem (Wang and Z. 2020, Jia and Z. 2023)

Given $\pi \in \Pi$, define

$$\boldsymbol{\pi}'(\cdot|t,x) \propto \exp\left\{\frac{1}{\gamma}H(t,x,\cdot,\frac{\partial J}{\partial x}(t,x;\boldsymbol{\pi}),\frac{\partial^2 J}{\partial x^2}(t,x;\boldsymbol{\pi}))\right\}.$$

If $\pi' \in \Pi$, then

$$J(t, x; \boldsymbol{\pi}') \ge J(t, x; \boldsymbol{\pi}).$$

Moreover, if the following map

$$\mathcal{I}(\boldsymbol{\pi}) = \frac{\exp\{\frac{1}{\gamma}H\left(t, x, \cdot, \frac{\partial J}{\partial x}(t, x; \boldsymbol{\pi}), \frac{\partial^2 J}{\partial x^2}(t, x; \boldsymbol{\pi})\right)\}}{\int_{\mathcal{A}} \exp\{\frac{1}{\gamma}H\left(t, x, a, \frac{\partial J}{\partial x}(t, x; \boldsymbol{\pi}), \frac{\partial^2 J}{\partial x^2}(t, x; \boldsymbol{\pi})\right)\}\mathrm{d}a}, \quad \boldsymbol{\pi} \in \boldsymbol{\Pi}$$

has a fixed point π^* on Π , then π^* is the optimal policy.

Q-Learning

- ► The previous theorem is not implementable for learning because both *H* and *J* are unknown
- Recall classical stochastic control

$$w(t,x) = \sup \mathbb{E}\left[\left.\int_{t}^{T} r(s, X_{s}, a_{s}) \, \mathrm{d}s + h(X_{T})\right| X_{t} = x\right]$$

• With fixed $\Delta t > 0$, Bellman's principle of optimality

$$w(t,x) = \sup \mathbb{E}\left[\left.\int_{t}^{t+\Delta t} r(s, X_{s}, a_{s}) \, \mathrm{d}s + w(t+\Delta t, X_{t+\Delta t})\right| X_{t} = x\right]$$

Q-function

$$Q_{\Delta t}(t, x, a) = \mathbb{E}\left[\left.\int_{t}^{t+\Delta t} r\left(s, X_{s}, a\right) ds + \sup_{a'} Q_{\Delta t}(t + \Delta t, X_{t+\Delta t}, a')\right| X_{t} = x\right]$$

 $a^*(t,x) = \arg\max_a Q_{\Delta t}(t,x,a)$

No Q-Function in Continuous Time!

- lackbox Q-learning works inherently for discrete-time only: Δt is fixed
- \blacktriangleright Q-function collapses in continuous time when $\Delta t \rightarrow 0$ (Tallec et al. 2019)
- ▶ Impact of any action a is negligible on $[t, t + \Delta t]$ when $\Delta t \rightarrow 0$
- ► What should be a proper continuous-time counterpart of Q-function?

Continuous Time

• Given a policy $oldsymbol{\pi} \in \Pi$, define

$$\begin{split} &Q_{\Delta t}(t,x,a;\pmb{\pi}) \\ :=& \mathbb{E}^{\mathbb{P}}\bigg[\int_{t}^{t+\Delta t} r(s,X_{s}^{a},a)\mathrm{d}s \\ &+ \mathbb{E}^{\mathbb{P}}\Big[\int_{t+\Delta t}^{T} [r(s,X_{s}^{\pmb{\pi}},a_{s}^{\pmb{\pi}}) - \gamma\log \pmb{\pi}(a_{s}^{\pmb{\pi}}|s,X_{s}^{\pmb{\pi}})]\mathrm{d}s + h(X_{T}^{\pmb{\pi}})|X_{t+\Delta t}^{a}] \Big|X_{t}^{\pmb{\pi}} = x\bigg] \\ =& J(t,x;\pmb{\pi}) + \mathbb{E}^{\mathbb{P}}\bigg[\int_{t}^{t+\Delta t} r(s,X_{s}^{a},a)\mathrm{d}s + J(t+\Delta t,X_{t+\Delta t}^{a};\pmb{\pi}) - J(t,x;\pmb{\pi})\bigg] \\ =& J(t,x;\pmb{\pi}) + \bigg[\frac{\partial J}{\partial t}(t,x;\pmb{\pi}) + H\left(t,x,a,\frac{\partial J}{\partial x}(t,x;\pmb{\pi}),\frac{\partial^{2} J}{\partial x^{2}}(t,x;\pmb{\pi})\right)\bigg]\Delta t + o(\Delta t) \end{split}$$

- ▶ Leading term *J* is independent of *a*, as expected
- Consider the first-order term instead!

q-Function

Definition (Jia and Z. 2022c)

The q-function associated with a given stochastic policy $\pi\in\Pi$ is defined as

$$q(t,x,a;\boldsymbol{\pi}) = \frac{\partial J}{\partial t}(t,x;\boldsymbol{\pi}) + H\left(t,x,a,\frac{\partial J}{\partial x}(t,x;\boldsymbol{\pi}),\frac{\partial^2 J}{\partial x^2}(t,x;\boldsymbol{\pi})\right).$$

Discussions

q-Function is first-order *derivative* of conventional Q-function in time:

$$q(t, x, a; \boldsymbol{\pi}) = \lim_{\Delta t \to 0} \frac{Q_{\Delta t}(t, x, a; \boldsymbol{\pi}) - J(t, x; \boldsymbol{\pi})}{\Delta t}$$

- ► A continuous-time notion because *it does not depend on any time-discretization*
- Vital advantage for learning algorithm design as performance of RL algorithms is very sensitive wrt time discretization step (Tallec et al. 2019)
- Policy improvement theorem can now be expressed in terms of q-function:

$$\boldsymbol{\pi}'(\cdot|t,x) \propto \exp\left\{\frac{1}{\gamma}H\big(t,x,\cdot,\frac{\partial J}{\partial x}(t,x;\boldsymbol{\pi}),\frac{\partial^2 J}{\partial x^2}(t,x;\boldsymbol{\pi})\big)\right\} \propto \exp\left\{\frac{1}{\gamma}q(t,x,\cdot;\boldsymbol{\pi})\right\}$$

lacktriangle Only need to learn q-function $q(\cdot,\cdot,\cdot;m{\pi})$ under any policy $m{\pi}$

Martingale Characterization

Theorem (Jia and Z. 2023)

Let a policy $\pi \in \Pi$, a function $\hat{J} \in C^{1,2}\big([0,T) \times \mathbb{R}^d\big) \cap C\big([0,T] \times \mathbb{R}^d\big)$ and a continuous function $\hat{q}: [0,T] \times \mathbb{R}^d \times \mathcal{A} \to \mathbb{R}$ be given satisfying

$$\hat{J}(T,x) = h(x), \int_{\mathcal{A}} \left[\hat{q}(t,x,a) - \gamma \log \boldsymbol{\pi}(a|t,x) \right] \boldsymbol{\pi}(a|t,x) da = 0, \quad \forall (t,x).$$

Then \hat{J} and \hat{q} are respectively the value function and the q-function associated with π if and only if for all $(t,x) \in [0,T] \times \mathbb{R}^d$, the following process

$$\hat{J}(s, X_s^{\pi}; \pi) + \int_t^s [r(t', X_{t'}^{\pi}, a_{t'}^{\pi}) - \hat{q}(t', X_{t'}^{\pi}, a_{t'}^{\pi})] dt'$$

is an $(\{\mathcal{F}_s\}_{s\geq 0},\mathbb{P})$ -martingale, where $\{X_s^{m{\pi}},t\leq s\leq T\}$ is the state process under ${\pi}$ with $X_t^{m{\pi}}=x$. If it holds further that ${\pi}(a|t,x)=\frac{\exp\{\frac{1}{\gamma}\hat{q}(t,x,a)\}}{\int_{\mathcal{A}}\exp\{\frac{1}{\gamma}\hat{q}(t,x,a)\}\mathrm{d}a}$, then ${\pi}$ is the optimal policy and \hat{J} is the optimal value function.

Function Approximation

- ▶ Function approximation: approximates J and q by parametric families of functions J^{θ} and q^{ψ} respectively, where $\theta \in \mathbb{R}^L$ and $\psi \in \mathbb{R}^N$
- Parametric forms may be inspired by problem structure or neural networks

Martingality: Loss Function and SGD Algorithms

- $\begin{array}{l} \blacktriangleright \ M_t^{\theta,\psi} = J^\theta(t,X_t^{\pmb{\pi}};\pmb{\pi}) + \int_0^t [r(t',X_{t'}^{\pmb{\pi}},a_{t'}^{\pmb{\pi}}) q^\psi(t',X_{t'}^{\pmb{\pi}},a_{t'}^{\pmb{\pi}})] \mathrm{d}t' \\ \text{is martingale} \end{array}$
- $\begin{array}{l} \blacktriangleright \ \ M_t^{\theta,\psi} = \mathbb{E}[M_T^{\theta,\psi}|\mathcal{F}_t] = \\ \arg\min_{\xi} \text{ is } \mathcal{F}_t\text{-measurable} \ \mathbb{E}[M_T^{\theta,\psi} \xi|^2, \ t \in [0,T] \end{array}$
- Martingale loss function:

$$ML(\theta, \psi) := \frac{1}{2} \mathbb{E} \int_0^T |M_T^{\theta, \psi} - M_t^{\theta, \psi}|^2 dt \to \min.$$

However

$$ML(\theta,\psi) \approx \frac{1}{2}\mathbb{E}\bigg[\sum_{i=0}^{K-1} \bigg(h(X_{t_K}) + \sum_{j=0}^{K-1} r_j \Delta t - \boldsymbol{J}^{\theta}(t_i, X_{t_i}) - \sum_{j=0}^{i-1} (r_j - \boldsymbol{q}^{\psi}(t_j, X_{t_j}) \bigg)^2 \Delta t\bigg]$$

- ▶ This function only depend on observed data, not functional forms of b, σ , r, h
- Stochastic gradient descent (SGD) algorithm to solve for (θ,ψ)

Martingality: Orthogonality Conditions and SA Algorithms

- ▶ In general, $M^{\theta,\psi}$ is a square integrable martingale if and only if $\mathbb{E} \int_0^T \xi_t \mathrm{d} M_t^{\theta,\psi} = 0$ for any $\xi \in L^2_{\mathcal{F}}([0,T];M^{\theta,\psi})$
- Martingale orthogonality conditions
- For numerical approximation methods, we can choose finitely many test functions in special forms
- ► For example, we can take $\xi_t = \left(\frac{\partial J^{\theta}}{\partial \theta}(t, X_t), \frac{\partial q^{\psi}}{\partial u^t}(t, X_t)\right) \in \mathbb{R}^{L+N}$
- ▶ Use stochastic approximation (SA) algorithms to solve the resulting system of equations to get (θ, ψ)

Actor-Critic Algorithms

- Actor: actions (controls)
- Critic: value (objective) functions
- Actor–critic algorithms: learning and self-improving

$$\boldsymbol{\pi}^n \xrightarrow{\operatorname{q-learning}} (J^n,q^n) \xrightarrow{\operatorname{PI}} \boldsymbol{\pi}^{n+1} \xrightarrow{\operatorname{q-learning}} (J^{n+1},q^{n+1}) \cdots$$

A q-Learning Algorithm

- Parametrizing $(J(t,x;\pi),q(t,x,a;\pi))$ with $\{(J^{\theta}(t,x),q^{\psi}(t,x,a))\}_{\theta,\psi}$
- ▶ Initialize with some (θ_1, ψ_1) and a control policy $\pi^1(\cdot | \cdot, \cdot)$
- For n > 1:
 - 1. Update

$$\begin{split} \theta_{n+1} &= \theta_n + \alpha_{\theta,n} \int_0^T \frac{\partial J^\theta}{\partial \theta} \Big|_{\theta = \theta_n} (t, X_t^{\pmb{\pi}^n}) G_{t:T}^n dt, \\ \psi_{n+1} &= \psi_n + \alpha_{\psi,n} \int_0^T \int_t^T e^{-\beta(s-t)} \frac{\partial q^\psi}{\partial \psi} \Big|_{\psi = \psi_n} (s, X_s^{\pmb{\pi}^n}, a_s^{\pmb{\pi}^n}) ds G_{t:T}^n dt \end{split}$$
 where $G_{t:T}^n := e^{-\beta(T-t)} h(X_T^{\pmb{\pi}^n}) - J^{\theta_n}(t, X_t^{\pmb{\pi}^n}) + \int_t^T e^{-\beta(s-t)} [r(s, X_s^{\pmb{\pi}^n}, a_s^{\pmb{\pi}^n}) - q^{\psi_n}(s, X_s^{\pmb{\pi}^n}, a_s^{\pmb{\pi}^n})] ds$

2. Sample

$$\boldsymbol{\pi}^{n+1}(\cdot \mid t, x) \propto \exp\left(\frac{1}{\gamma} q^{\phi_{n+1}}(t, x, \cdot)\right)$$

Regret Bound

Theorem (Tang and Z. 2024)

Assume $\sigma(t,x,a)=\sigma(t,x)$ and some technical conditions. Set $\alpha_{\theta,n}, \alpha_{\psi,n}=\frac{A}{n+B}$ for some constants A>0 and B>0, and let $\varepsilon>0$. Then there exists C>0 (depending on γ but not on n,ε) such that with probability $1-\varepsilon$, the regret is

$$\sum_{k=1}^{n} |V(t,x) - J(t,x; \boldsymbol{\pi}^k)| \le \frac{C}{\varepsilon^{1/2}} n^{\frac{3}{4}} (\ln n)^{\frac{1}{2}}.$$

Model-Based vs Model-Free

- Data used
 - ► Model-based: exogenous
 - Model-free: both exogenous and endogenous
- What to learn
 - ▶ Model-based: the model
 - Model-free: the optimal strategy
- How to achieve optimality
 - Model-based: compare with others
 - Model-free: compare with selves

What Do We Need To Learn About Environment?

- Classical model-based approach: separates "estimation" and "optimization"
- Model-free RL approach: skips estimating a model and learns optimizing policies directly via PG or Q/q-learning
- But RL still learns something about the environment: q-function or Hamiltonian
- ▶ It is the Hamiltonian, rather than each and every individual model coefficient, that needs to be learned/estimated for optimization
- From a pure computational standpoint, estimating a single function is much more efficient and robust than estimating multiple functions (b, σ, r, h) in terms of avoiding or reducing over-parameterization, sensitivity to errors and accumulation of errors

Why Is q-Function Learnable?

▶ Itô's formula

$$q(t, X_t^{\boldsymbol{\pi}}, a_t^{\boldsymbol{\pi}}; \boldsymbol{\pi}) dt = dJ(t, X_t^{\boldsymbol{\pi}}; \boldsymbol{\pi}) + r(t, X_t^{\boldsymbol{\pi}}, a_t^{\boldsymbol{\pi}}) dt + \{\cdots\} dW_t.$$

- ► So q-function can be learned through temporal differences of the value function; hence the task of learning and optimizing can be accomplished in a data-driven way
- This would not be the case if we chose to learn individual model coefficients separately

Finally ...

- ► There are fundamental theoretical questions in machine learning that beg for answers
- Answering them often calls for fundamentally different thinking out of our comfort zone
- The mathematical techniques employed may still well be within our comfort zone (stochastic analysis, stochastic control, differential equations, etc.)