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Multi-Armed Bandits

I m slot machines in a casino, with different but unknown
winning probabilities – in what sequence to play the machines?

I Classical model-based approach: first estimate (explore) and
then optimize (exploit) - “Separation principle” or “plug-in”

I Reinforcement learning (RL) approach: explore and exploit
simultaneously - trades off exploration (learning) and
exploitation (optimization)

I ε-greedy strategy (Sutton and Barto 1998): playing the
current best machine with probability 1− ε and the other
machines at random with probability ε
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A Game Changer

I ε-greedy strategy is a randomized policy/strategy (trial and
error)

I The gambler learns the best (randomized) policies instead of
learning a model

5 / 37



Key Elements of Reinforcement Learning

I Exploration (trial and error): broaden search space via
randomization (stochastic policies)

I Policy evaluation (PE): estimate value (objective) function of
a given policy using samples only

I Policy improvement (PI): improve and update current policy
based on learned value function, including policy gradient
(PG) and Q-learning

I Convergence and regret analysis: convergence of the policy
parameters and loss of objective value compared with oracle
access
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Pitfalls of Current RL Study

I Two major limitations in existing study on RL
I Mainly for discrete-time Markov Decision Processes (MDPs)
I Many RL algorithms devised in heuristic and ad hoc manners

I There seems a lack of an overarching theoretical
understanding and a unified framework for RL methods
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RL in Continuous Time and Spaces

I Bridge these gaps by providing a unified theoretical
underpinning of RL in continuous time with possibly
continuous state and action spaces

I Carry out all theoretical analysis for the continuous setting
and take discrete observations at the final, algorithmic stage

I Rule out sensitivity in time step size

I Make use of well-developed tools in stochastic calculus,
differential equations, and stochastic control, which enables
better interpretability/explainability to underlying learning
technologies

I Provide new perspectives on RL overall
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Research Questions

I How to explore strategically?

I How to do PE?

I How to do PI generally?

I How to do PG specifically?

I Do we have sublinear regret?
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A Pentalogy

I H. Wang, T. Zariphopoulou and X. Zhou, “Reinforcement
learning in continuous time and space: A stochastic control
approach”, Journal of Machine Learning Research, 2020.

I Y. Jia and X. Zhou, “Policy evaluation and
temporal-difference learning in continuous time and space: A
martingale approach”, Journal of Machine Learning Research,
2022a.

I Y. Jia and X. Zhou, “Policy gradient and actor–critic learning
in continuous time and space: Theory and algorithms”,
Journal of Machine Learning Research, 2022b.

I Y. Jia and X. Zhou, “q-Learning in continuous time”, Journal
of Machine Learning Research, 2023.

I W. Tang and X. Zhou, “Regret of exploratory policy
improvement and q-learning”, working paper.
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Problem Formulation

I
(
Ω,F ,P; {FWt }t≥0

)
, Brownian motion W = {Wt, t ≥ 0}

I Action space A: representing constraints on an agent’s
actions (or “controls”)

I Admissible action or control a = {at, t ≥ 0}: an
{FWt }t≥0-adapted measurable process taking value in A

I State (or “feature”) dynamics governed by SDE in Rd

dXt = b(t,Xt, at)dt+ σ(t,Xt, at)dWt, t > 0

I Objective: to achieve maximum expected total reward
represented by optimal value function

w (t, x) := supE
[∫ T

t
r (s,Xs, as) ds+ h(XT )

∣∣∣∣Xt = x

]
,

where (t, x) ∈ [0, T ]× Rd
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Classical Model-Based Approach

I Dynamic programming (Fleming and Soner 1992, Yong and Z.
1998)

I HJB equation: optimal value function w satisfies

∂v

∂t
(t, x) + sup

a∈A
H(t, x, a,

∂v

∂x
(t, x),

∂2v

∂x2
(t, x)) = 0; v(T, x) = h(x)

I ... where (generalized) Hamiltonian (Yong and Z. 1998)

H(t, x, a, p, P ) =
1

2
tr
[
σ(t, x, a)′Pσ(t, x, a)

]
+p·b(t, x, a)+r(t, x, a)

I Verification theorem: optimal (feedback) control policy is

a(t, x) = argmaxa∈AH

(
t, x, a,

∂v

∂x
(t, x),

∂2v

∂x2
(t, x)

)
I Deterministic policy, devised at t = 0

I This approach requires oracle access of environment
(functional forms of b, σ, r, h)
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Exploratory Formulation (Wang et al. 2020, JMLR)
I Exploratory control π = {πt(·), t ≥ 0}: a density-function-valued

adaptive process
I Exploratory state dynamics, a controlled stochastic differential

equation (SDE)

dXπ
t = b̃(t,Xπ

t , πt)dt+ σ̃(t,Xπ
t , πt)dWt, t > 0; Xπ

0 = x, (1)

where

b̃(t,Xπ
t , πt) :=

∫
A
b (t,Xπ

t , a)πt(a)da, (2)

and

σ̃(t,Xπ
t , πt) :=

√∫
A
σ2 (t,Xπ

t , a)πt(a)da (3)

I Entropy-regularized value function

J (t, x;π)

= E
[ ∫ T

0

(∫
A r

(
s,Xπs , a

)
πs (a) da− γ

∫
A πs(a) lnπs(a)da

)
ds + h(XπT )

∣∣∣Xπt = x
]
(4)

where γ > 0 is an exogenous weighting parameter
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Exploratory HJB Equation and Verification

I Optimal value function V (t, x) = supπ J (t, x;π)
I V satisfies exploratory HJB

vt(t, x)+ sup
π∈P(A)

∫
A

[H(t, x, a, vx(t, x), vxx(t, x))− γ lnπ(a)]π(a)da = 0,

with v(T, x) = h(x)
I Optimal feedback control (a stochastic policy)

π∗(a|t, x) =
1

Z(γ)
exp

(
1

γ
H(t, x, a, vx(t, x), vxx(t, x))

)
,

where a ∈ A, (t, x) ∈ [0, T ]× Rd, and

Z(γ) ≡ Z(γ, t, x, vx(t, x), vxx(t, x))

:=
∫
A exp

(
1
γH(t, x, a, vx(t, x), vxx(t, x))

)
da

is the normalizing factor

I Gibbs measure
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Extensions and Applications

I Gaussian exploration for LQ (Wang, Zariphopoulou and Z.
2020, JMLR)

I Mean–variance (Wang and Z. 2020, MF)

I Well-posedness of exploratory HJB equation (Tang, Zhang
and Z. 2022, SICON)

I Simulated annealing (Gao, Xu and Z. 2022, SICON)

I Mean field games learning (Guo, Xu and Zariphopoulou 2022,
MOR)

I Learning equilibrium mean-variance strategy (Dai, Dong and
Jia 2023, MF)

I Non-entropy regularization (Han, Wang and Z. 2023, SICON)
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Function Approximation

I Need to learn various functions (e.g. optimal value function
and policy) in machine learning

I Function approximation: approximates the functions to be
learned by parametric families of functions with
finite-dimensional parameters

I Parametric forms may be inspired by problem structure or
represented by neural networks
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Policy Evaluation by Jia and Z. (2022a)

I To evaluate a given stochastic policy without knowing model
parameters

I Martingale condition (by Feynman–Kac and BSDE)

I Martingality leads to a loss function and an orthogonality
system of equations

I Solvable by stochastic gradient descent and stochastic
approximation respectively
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Policy Gradient by Jia and Z. (2022b)

I To compute gradient of the (parameterized) value function of
a given policy

I Policy gradient turned into policy evaluation mathematically
by considering an auxiliary running reward function

I This auxiliary reward function value along state is
observable/accessible (i.e. data driven) by Ito’s formula
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Policy Improvement

Theorem (Wang and Z. 2020, Jia and Z. 2023)

Given π ∈ Π, define

π′(·|t, x) ∝ exp

{
1

γ
H
(
t, x, ·, ∂J

∂x
(t, x;π),

∂2J

∂x2
(t, x;π)

)}
.

If π′ ∈ Π, then
J(t, x;π′) ≥ J(t, x;π).

Moreover, if the following map

I(π) =
exp{ 1

γH
(
t, x, ·, ∂J∂x (t, x;π), ∂

2J
∂x2 (t, x;π)

)
}∫

A exp{ 1
γH
(
t, x, a, ∂J∂x (t, x;π), ∂

2J
∂x2 (t, x;π)

)
}da

, π ∈ Π

has a fixed point π∗ on Π, then π∗ is the optimal policy.
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Q-Learning

I The previous theorem is not implementable for learning
because both H and J are unknown

I Recall classical stochastic control

w (t, x) = supE
[∫ T

t
r (s,Xs, as) ds+ h(XT )

∣∣∣∣Xt = x

]
I With fixed ∆t > 0, Bellman’s principle of optimality

w (t, x) = supE

[∫ t+∆t

t

r (s,Xs, as) ds+ w(t+ ∆t,Xt+∆t)

∣∣∣∣∣Xt = x

]

I Q-function

Q∆t (t, x, a) = E
[ ∫ t+∆t

t
r (s,Xs, a) ds + sup

a′
Q∆t(t + ∆t,Xt+∆t, a

′
)

∣∣∣∣∣Xt = x

]

I a∗(t, x) = arg maxaQ∆t (t, x, a)
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No Q-Function in Continuous Time!

I Q-learning works inherently for discrete-time only: ∆t is fixed

I Q-function collapses in continuous time when ∆t→ 0 (Tallec
et al. 2019)

I Impact of any action a is negligible on [t, t+ ∆t] when ∆t→ 0

I What should be a proper continuous-time counterpart of
Q-function?
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Continuous Time

I Given a policy π ∈ Π, define

Q∆t(t, x, a; π)

:=EP
[ ∫ t+∆t

t
r(s,X

a
s , a)ds

+ EP[ ∫ T
t+∆t

[r(s,X
π
s , a

π
s )− γ log π(a

π
s |s,X

π
s )]ds + h(X

π
T )|Xat+∆t

]∣∣∣Xπ
t = x

]

=J(t, x; π) + EP
[ ∫ t+∆t

t
r(s,X

a
s , a)ds + J(t + ∆t,X

a
t+∆t; π)− J(t, x; π)

]

=J(t, x; π) +

[
∂J

∂t
(t, x; π) +H

(
t, x, a,

∂J

∂x
(t, x; π),

∂2J

∂x2
(t, x; π)

)]
∆t + o(∆t)

I Leading term J is independent of a, as expected

I Consider the first-order term instead!
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q-Function

Definition (Jia and Z. 2022c)

The q-function associated with a given stochastic policy π ∈ Π is
defined as

q(t, x, a;π) =
∂J

∂t
(t, x;π)+H

(
t, x, a,

∂J

∂x
(t, x;π),

∂2J

∂x2
(t, x;π)

)
.
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Discussions

I q-Function is first-order derivative of conventional Q-function
in time:

q(t, x, a;π) = lim
∆t→0

Q∆t(t, x, a;π)− J(t, x;π)

∆t

I A continuous-time notion because it does not depend on any
time-discretization

I Vital advantage for learning algorithm design as performance
of RL algorithms is very sensitive wrt time discretization step
(Tallec et al. 2019)

I Policy improvement theorem can now be expressed in terms of
q-function:

π
′
(·|t, x) ∝ exp

{
1

γ
H
(
t, x, ·,

∂J

∂x
(t, x; π),

∂2J

∂x2
(t, x; π)

)}
∝ exp

{
1

γ
q(t, x, ·; π)

}

I Only need to learn q-function q(·, ·, ·;π) under any policy π
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Martingale Characterization

Theorem (Jia and Z. 2023)
Let a policy π ∈ Π, a function Ĵ ∈ C1,2

(
[0, T )× Rd

)
∩ C

(
[0, T ]× Rd

)
and a continuous function q̂ : [0, T ]× Rd ×A → R be given satisfying

Ĵ(T, x) = h(x),

∫
A

[
q̂(t, x, a)− γ logπ(a|t, x)

]
π(a|t, x)da = 0, ∀(t, x).

Then Ĵ and q̂ are respectively the value function and the q-function
associated with π if and only if for all (t, x) ∈ [0, T ]× Rd, the following
process

Ĵ(s,Xπ
s ;π) +

∫ s

t

[r(t′, Xπ
t′ , a

π
t′)− q̂(t′, Xπ

t′ , a
π
t′)]dt

′

is an ({Fs}s≥0,P)-martingale, where {Xπ
s , t ≤ s ≤ T} is the state

process under π with Xπ
t = x. If it holds further that

π(a|t, x) =
exp{ 1

γ q̂(t,x,a)}∫
A exp{ 1

γ q̂(t,x,a)}da , then π is the optimal policy and Ĵ is the

optimal value function.
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Function Approximation

I Function approximation: approximates J and q by parametric
families of functions Jθ and qψ respectively, where θ ∈ RL
and ψ ∈ RN

I Parametric forms may be inspired by problem structure or
neural networks
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Martingality: Loss Function and SGD Algorithms

I M θ,ψ
t = Jθ(t,Xπ

t ;π) +
∫ t

0 [r(t′, Xπ
t′ , a

π
t′ )− qψ(t′, Xπ

t′ , a
π
t′ )]dt

′

is martingale

I Mθ,ψ
t = E[Mθ,ψ

T |Ft] =

arg min
ξ is Ft-measurable E|M

θ,ψ
T − ξ|2, t ∈ [0, T ]

I Martingale loss function:

ML(θ, ψ) :=
1

2
E
∫ T

0
|M θ,ψ

T −M θ,ψ
t |2dt→ min.

I However

ML(θ, ψ) ≈
1

2
E
[K−1∑
i=0

(
h(XtK ) +

K−1∑
j=0

rj∆t−J
θ
(ti, Xti )−

i−1∑
j=0

(rj − q
ψ

(tj , Xtj )

)2
∆t

]

I This function only depend on observed data, not functional
forms of b, σ, r, h

I Stochastic gradient descent (SGD) algorithm to solve for
(θ, ψ)
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Martingality: Orthogonality Conditions and SA Algorithms

I In general, M θ,ψ is a square integrable martingale if and only
if E

∫ T
0 ξtdM

θ,ψ
t = 0 for any ξ ∈ L2

F ([0, T ];M θ,ψ)

I Martingale orthogonality conditions

I For numerical approximation methods, we can choose finitely
many test functions in special forms

I For example, we can take

ξt = (∂J
θ

∂θ (t,Xt),
∂qψ

∂ψ (t,Xt)) ∈ RL+N

I Use stochastic approximation (SA) algorithms to solve the
resulting system of equations to get (θ, ψ)
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Actor–Critic Algorithms

I Actor: actions (controls)

I Critic: value (objective) functions

I Actor–critic algorithms: learning and self-improving

πn
q-learning−−−−−−→ (Jn, qn)

PI−→ πn+1 q-learning−−−−−−→ (Jn+1, qn+1) · · ·
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A q-Learning Algorithm

I Parametrizing (J(t, x;π), q(t, x, a;π)) with
{(Jθ(t, x), qψ(t, x, a))}θ,ψ

I Initialize with some (θ1, ψ1) and a control policy π1(· | ·, ·)
I For n ≥ 1:

1. Update

θn+1 = θn + αθ,n

∫ T
0

∂Jθ

∂θ |θ=θn
(t,X

πn

t )G
n
t:T dt,

ψn+1 = ψn + αψ,n

∫ T
0

∫ T
t
e
−β(s−t) ∂q

ψ

∂ψ |ψ=ψn

(s,X
πn

s , a
πn

s )dsG
n
t:T dt

where Gnt:T := e−β(T−t)h(Xπn

T )− Jθn (t,Xπn

t ) +∫ T
t e−β(s−t)[r(s,Xπn

s , aπ
n

s )− qψn (s,Xπn

s , aπ
n

s )]ds

2. Sample

πn+1(· | t, x) ∝ exp

(
1

γ
qφn+1(t, x, ·)

)
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Regret Bound

Theorem (Tang and Z. 2024)

Assume σ(t, x, a) = σ(t, x) and some technical conditions. Set
αθ,n, αψ,n = A

n+B for some constants A > 0 and B > 0, and let
ε > 0. Then there exists C > 0 (depending on γ but not on n, ε)
such that with probability 1− ε, the regret is

n∑
k=1

|V (t, x)− J(t, x;πk)| ≤ C

ε1/2
n

3
4 (lnn)

1
2 .
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Model-Based vs Model-Free

I Data used
I Model-based: exogenous
I Model-free: both exogenous and endogenous

I What to learn
I Model-based: the model
I Model-free: the optimal strategy

I How to achieve optimality
I Model-based: compare with others
I Model-free: compare with selves
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What Do We Need To Learn About Environment?

I Classical model-based approach: separates “estimation” and
“optimization”

I Model-free RL approach: skips estimating a model and learns
optimizing policies directly via PG or Q/q-learning

I But RL still learns something about the environment:
q-function or Hamiltonian

I It is the Hamiltonian, rather than each and every individual
model coefficient, that needs to be learned/estimated for
optimization

I From a pure computational standpoint, estimating a single
function is much more efficient and robust than estimating
multiple functions (b, σ, r, h) in terms of avoiding or reducing
over-parameterization, sensitivity to errors and accumulation
of errors
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Why Is q-Function Learnable?

I Itô’s formula

q(t,Xπ
t , a

π
t ;π)dt = dJ(t,Xπ

t ;π) + r(t,Xπ
t , a

π
t )dt+ {· · · }dWt.

I So q-function can be learned through temporal differences of
the value function; hence the task of learning and optimizing
can be accomplished in a data-driven way

I This would not be the case if we chose to learn individual
model coefficients separately

36 / 37



Finally ...

I There are fundamental theoretical questions in machine
learning that beg for answers

I Answering them often calls for fundamentally different
thinking out of our comfort zone

I The mathematical techniques employed may still well be
within our comfort zone (stochastic analysis, stochastic
control, differential equations, etc.)
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