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Multi-Armed Bandits

v

m slot machines in a casino, with different but unknown
winning probabilities — in what sequence to play the machines?

» Classical model-based approach: first estimate (explore) and
then optimize (exploit) - “Separation principle” or “plug-in"

» Reinforcement learning (RL) approach: explore and exploit
simultaneously - trades off exploration (learning) and
exploitation (optimization)

» c-greedy strategy (Sutton and Barto 1998): playing the
current best machine with probability 1 — € and the other
machines at random with probability €



A Game Changer

» c-greedy strategy is a randomized policy/strategy (trial and
error)

» The gambler learns the best (randomized) policies instead of
learning a model
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Key Elements of Reinforcement Learning

» Exploration (trial and error): broaden search space via
randomization (stochastic policies)

» Policy evaluation (PE): estimate value (objective) function of
a given policy using samples only

» Policy improvement (Pl): improve and update current policy
based on learned value function, including policy gradient
(PG) and Q-learning

» Convergence and regret analysis: convergence of the policy
parameters and loss of objective value compared with oracle
access
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Pitfalls of Current RL Study

» Two major limitations in existing study on RL
» Mainly for discrete-time Markov Decision Processes (MDPs)
» Many RL algorithms devised in heuristic and ad hoc manners
» There seems a lack of an overarching theoretical
understanding and a unified framework for RL methods
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RL in Continuous Time and Spaces

Bridge these gaps by providing a unified theoretical
underpinning of RL in continuous time with possibly
continuous state and action spaces

Carry out all theoretical analysis for the continuous setting
and take discrete observations at the final, algorithmic stage
Rule out sensitivity in time step size

Make use of well-developed tools in stochastic calculus,
differential equations, and stochastic control, which enables
better interpretability /explainability to underlying learning
technologies

Provide new perspectives on RL overall
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Research Questions

» How to explore strategically?
How to do PE?
How to do PI generally?

v

v

v

How to do PG specifically?

v

Do we have sublinear regret?
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A Pentalogy

» H. Wang, T. Zariphopoulou and X. Zhou, “Reinforcement
learning in continuous time and space: A stochastic control
approach”, Journal of Machine Learning Research, 2020.

» Y. Jia and X. Zhou, “Policy evaluation and
temporal-difference learning in continuous time and space: A
martingale approach”, Journal of Machine Learning Research,
2022a.

» Y. Jia and X. Zhou, “Policy gradient and actor—critic learning
in continuous time and space: Theory and algorithms”,
Journal of Machine Learning Research, 2022b.

» Y. Jia and X. Zhou, “g-Learning in continuous time"”, Journal
of Machine Learning Research, 2023.

» W. Tang and X. Zhou, “Regret of exploratory policy
improvement and g-learning”, working paper.
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Problem Formulation

>

>

(Q, F,P; {F" }4>0), Brownian motion W = {W;, t > 0}
Action space A: representing constraints on an agent’s
actions (or “controls”)

Admissible action or control a = {a;, t > 0}: an
{FV}i>0-adapted measurable process taking value in A

State (or “feature”) dynamics governed by SDE in R?
dX; = b(t, Xi, CLt)dt + O'(t, X4, at)th, t>0

Objective: to achieve maximum expected total reward
represented by optimal value function

T
w(t,z):=supk [/ r (s, Xs,as)ds + h(Xr)
t

Xt:-r:|7

where (¢,2) € [0,7] x R?
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Classical Model-Based Approach

>

>

v

v

v

Dynamic programming (Fleming and Soner 1992, Yong and Z.
1998)

HJB equation: optimal value function w satisfies

v v 0?v

a(t, x) + sgaH(t, x,a, %(t,m), @(t,x)) =0; v(T,z) = h(z)
.. where (generalized) Hamiltonian (Yong and Z. 1998)

1
H(t,z,a,p,P) = itr lo(t,z,a)' Po(t,z,a)|+p-b(t, z, a)+r(t, z,a)

Verification theorem: optimal (feedback) control policy is

ox

Deterministic policy, devised at ¢ =0

0 0?
a(t,x) = argmax,c 4 H (t, z,a, —v(t, x), —U(t, x))
x

This approach requires oracle access of environment
(functional forms of b, 0,7, h)
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Exploratory Formulation (Wang et al. 2020, JMLR)

> Exploratory control m = {m(-),t > 0}: a density-function-valued
adaptive process

» Exploratory state dynamics, a controlled stochastic differential
equation (SDE)

dXT = b(t, X[, m)dt + 6(t, X, m)dWy, t >0; XF ==z, (1)

where

b(t, X7, m) ::/Ab(t,Xt”,a)ﬂ't(a)da, (2)

and

Gt X, m) = \/ /A o2 (t, XF,a)m(a)da  (3)

» Entropy-regularized value function

J(t, z;7)
= ]E[fOT (fA r(s,X7,a)ms (a)da — v [ 4 s (a) Inns(a)da) ds + I'L(X%E)|Xt7r = z]
(4)

where v > 0 is an exogenous weighting parameter
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Exploratory HJB Equation and Verification

» Optimal value function V' (¢,x) = sup, J (¢, z;7)
» V satisfies exploratory HJB

ve(t, x)+ sup / [H(t,z,a,v,(t,x), V40 (t,2)) — yIn7(a)] 7(a)da = 0,
TeP(A)J A

with (T, ) = h(z)
» Optimal feedback control (a stochastic policy)

7 (alt,z) = ﬁexp (PlyH(t,J;,a,vw(t,x),vm(t,w))> ,

where a € A, (t,z) € [0,7] x R¢, and

Z(7) = Z(y,t, 2,05 (t, ), Vaa (t, 7))
= [ exp (%H(tﬂr7 a,vg(t, ), vm(tw))) da

is the normalizing factor
» Gibbs measure
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Extensions and Applications

» Gaussian exploration for LQ (Wang, Zariphopoulou and Z.
2020, JMLR)

» Mean-variance (Wang and Z. 2020, MF)

» Well-posedness of exploratory HJB equation (Tang, Zhang
and Z. 2022, SICON)

» Simulated annealing (Gao, Xu and Z. 2022, SICON)

» Mean field games learning (Guo, Xu and Zariphopoulou 2022,
MOR)

» Learning equilibrium mean-variance strategy (Dai, Dong and
Jia 2023, MF)

» Non-entropy regularization (Han, Wang and Z. 2023, SICON)
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Function Approximation

» Need to learn various functions (e.g. optimal value function
and policy) in machine learning

» Function approximation: approximates the functions to be
learned by parametric families of functions with
finite-dimensional parameters

» Parametric forms may be inspired by problem structure or
represented by neural networks
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Policy Evaluation by Jia and Z. (2022a)

» To evaluate a given stochastic policy without knowing model
parameters

» Martingale condition (by Feynman—Kac and BSDE)

» Martingality leads to a loss function and an orthogonality
system of equations

» Solvable by stochastic gradient descent and stochastic
approximation respectively
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Policy Gradient by Jia and Z. (2022b)

» To compute gradient of the (parameterized) value function of
a given policy

» Policy gradient turned into policy evaluation mathematically
by considering an auxiliary running reward function

» This auxiliary reward function value along state is
observable/accessible (i.e. data driven) by lto’s formula
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Policy Improvement

Theorem (Wang and Z. 2020, Jia and Z. 2023)
Given w € 11, define

0J 0%J

7' (-|t, 7) ocexp{iH(t,w,-,az(t x;T), e 5 (t,z; 71'))}

If ©' € T1, then
J(t,x; ') > J(t, z; 7).

Moreover, if the following map

exp{%H(t,a:, o (t x; 7r), 6 2(t x: 7r))}

I(m) =
™ Jaexp{3H (t 2,0, 32 (t o), G (@3 m)) hda

well

has a fixed point ©* on II, then w* is the optimal policy.
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Q-Learning

» The previous theorem is not implementable for learning
because both H and J are unknown

» Recall classical stochastic control

T
w(t,x) =supE [/ r (s, Xs,as)ds + h(X7)
t

Xt = IL’:|
» With fixed At > 0, Bellman's principle of optimality

t+At
w(t,z) =supE / r (s, Xs,as)ds +w(t + At, Xiyar)
¢

Xt:$‘|

» Q-function

Qat (t,,a) =E

t+AL ,
/ r (s, Xs,a)ds +sup Qa¢(t + At, Xy a¢,a’)
t a’

Xt:z:|

> a*(t,x) = argmax, Qa¢ (t,2,a)
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No Q-Function in Continuous Time!

v

Q-learning works inherently for discrete-time only: At is fixed

v

Q-function collapses in continuous time when At — 0 (Tallec
et al. 2019)

Impact of any action a is negligible on [t, ¢+ At] when At — 0

v

What should be a proper continuous-time counterpart of
Q-function?

v



Continuous Time

» Given a policy w € II, define

Qat(t, =, a;m)
t+At
::]E]P[/ T(S,Xg,a)ds
t
P T T ™ ™ ™ a kg
+E7[ ), [ XT al) = ylogm(aT s, XTds + hXT)XE A [XT =2
t t

tAt
=J(t, z; ™) +]E]P[/t r(s, X5, a)ds + J(t + At,Xf+At;7r) - J(t,a:;ﬂ')]

8J 8J 82J
=J(t,x;m) + | —(t,zsmw) + H | t,z,a, — (t,z5m), — (t, 5m) | | At + o(At)
ot ox ox2

» Leading term J is independent of a, as expected

» Consider the first-order term instead!
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g-Function

Definition (Jia and Z. 2022c)
The g-function associated with a given stochastic policy @ € I1 is

defined as
2

oJ oJ J
q(t,z,a;mw) = E(t,x,ﬂ')—kﬂ <t,a:,a, a—x(t,az, ), W(t,m,w)) .
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Discussions

» g-Function is first-order derivative of conventional Q-function
in time:

QAt(ta €, a; 7‘-) — J(t7 €5 7‘-)
At—0 At

» A continuous-time notion because it does not depend on any
time-discretization

» Vital advantage for learning algorithm design as performance
of RL algorithms is very sensitive wrt time discretization step
(Tallec et al. 2019)

» Policy improvement theorem can now be expressed in terms of

g-function:

, 1 8J 8%J 1
7 (|t @) oc exp 4 —H(t, @, == (t,@;m), 5 (t2im)) b oc exp | —q(t, @, i)
0% oz ox2 0%

» Only need to learn g-function ¢(-,-, ;o) under any policy =
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Martingale Characterization

Theorem (Jia and Z. 2023)
Let a policy m € I1, a function J € CV2([0,T) x R%) N C([0,T] x RY)
and a continuous function § : [0,T] x R? x A — R be given satisfying

J(T,z) = h(z), /A [4(t,z,a) — ylogw(alt,z)|m(alt, x)da = 0, V(t,z).

Then J and q are respectively the value function and the g-function
associated with 7 if and only if for all (t,z) € [0,T] x RY, the following
process

j(s,ng;n)+/ (¢, X, %) — G(t', X7, am
t

is an ({Fs}s>0, P)-martingale, where {XT,t < s < T} is the state
process under w with X" = x. If it holds further that
m(alt, z) = exp{24(t,x,a)}
Ja cxp{ q(t,z,a)}da’
optimal value funct/on

then 7 is the optimal policy and J is the
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Function Approximation

» Function approximation: approximates J and ¢ by parametric
families of functions J? and ¢¥ respectively, where § € R
and ¢ € RN

» Parametric forms may be inspired by problem structure or
neural networks
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Martingality: Loss Function and SGD Algorithms
> MY = JO0 XT ) + [ole(¢, XF L af) — gV (), X, aT)]d
is martlngale
> MY =EMPYIF]=
arg min, i ]-'t—measurable]E‘MT’w =& tel0,1]
» Martingale loss function:

1 T
ML(0,1) = QE/O |MEY — MY 2dt — min.

» However
= K—1 0 i—1 v 2
ML(6,¢) ~ E]E[ Z% (h(XtK)+ Jgo riAt—J%(t;, X¢;) —J;O(Tj —q (tj,xtj)) At]

» This function only depend on observed data, not functional
forms of b, 0,7, h

» Stochastic gradient descent (SGD) algorithm to solve for
(0,9)
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Martingality: Orthogonality Conditions and SA Algorithms

>

>

In general, M?%" is a square integrable martingale if and only
if E [ &dM]" =0 for any € € L%([0,T]; M%)
Martingale orthogonality conditions

For numerical approximation methods, we can choose finitely
many test functions in special forms

For example, we can take

é't = (887(]06(157)(25)7 %(tht)) € RL+N

Use stochastic approximation (SA) algorithms to solve the
resulting system of equations to get (6,1)
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Actor—Critic Algorithms

» Actor: actions (controls)
» Critic: value (objective) functions

» Actor—critic algorithms: learning and self-improving

n G-learning n ny Pl n+1 9-learning n+1  n+l
T (J",¢") = " = (ST ")
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A g-Learning Algorithm

» Parametrizing (J(t,z; ), q(t, x,a; 7)) with
{(Jg(t,x),qw(t,x,a))}gw
» Initialize with some (1,1) and a control policy 7!(-] -, )

» Forn>1:
1. Update

T 9J°? n

0 =0 + ag. / == t, X )G dt,

n+1 n 9,71'0 50 ‘9=9”( t ) t:T
T T 0oy g% n .n

PYrt1 :wnJraw,n/ / e~ Pl L (5, XT" a7 " )dsG P pdt
o Jt OV =y

where G7 1= e =BT =0 p(xE™y _ gOn (g, xT") +
ST e PO (s, XTI, aT") = q¥n (s, XT ", aT " ))ds

2. Sample
1
A1) o exp (q¢"+1 (1., ->)
Y
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Regret Bound

Theorem (Tang and Z. 2024)

Assume o(t,z,a) = o(t,x) and some technical conditions. Set
Py Qip iy = MiB for some constants A > 0 and B > 0, and let
€ > 0. Then there exists C' > 0 (depending on ~ but not on n,c)
such that with probability 1 — ¢, the regret is

S

SOVt 2) — (770 < &_SQni(lnn) .
k=1

32/37



Model-Based vs Model-Free

» Data used

» Model-based: exogenous
» Model-free: both exogenous and endogenous

» What to learn

» Model-based: the model
» Model-free: the optimal strategy

» How to achieve optimality

» Model-based: compare with others
» Model-free: compare with selves
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What Do We Need To Learn About Environment?

» Classical model-based approach: separates “estimation” and
“optimization”

» Model-free RL approach: skips estimating a model and learns
optimizing policies directly via PG or Q/qg-learning

» But RL still learns something about the environment:
g-function or Hamiltonian

» It is the Hamiltonian, rather than each and every individual
model coefficient, that needs to be learned/estimated for
optimization

» From a pure computational standpoint, estimating a single
function is much more efficient and robust than estimating
multiple functions (b, 0,7, h) in terms of avoiding or reducing
over-parameterization, sensitivity to errors and accumulation
of errors
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Why Is g-Function Learnable?

> |td's formula
q(t, X7, al;m)dt = dJ(t, X7 7) + r(t, X[, af )dt + {- - - }dW4.

» So g-function can be learned through temporal differences of
the value function; hence the task of learning and optimizing
can be accomplished in a data-driven way

» This would not be the case if we chose to learn individual
model coefficients separately

36
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Finally ...

» There are fundamental theoretical questions in machine
learning that beg for answers

» Answering them often calls for fundamentally different
thinking out of our comfort zone

» The mathematical techniques employed may still well be
within our comfort zone (stochastic analysis, stochastic
control, differential equations, etc.)
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