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Introduction

Motivated by various applications, mean-field systems and mean-field
games on large networks have been explored for different random graph
models, e.g. Erdös-Rényi graph (Delarue 2017) or heterogeneous
random graphs (Oliveira and Reis 2019).

Recently, the use of graphons has emerged in order to analyze
heterogeneous interactions in mean-field systems and game theory, (see
Caines, Carmona, Bayraktar, Lacker, Laurière ...)

Our goal here is to study Graphon Mean Field BSDEs with jumps

(INRIA, Mathrisk)



Introduction

Outline

1 BSDE with jumps with general mean-field operators
The driver of the BSDE contains a mean-field term which can
accomodate several types of interactions ; in particular higher order
interactions

2 Graphon Mean Field BSDEs
Extend the study by the introduction of graphon interaction in the
driver to capture heterogeneous interactions

(INRIA, Mathrisk)



BSDE with jumps with general mean-field operators

Mean-field BSDEs with jumps

Let (Ω,F ,P) be a probability space ; Let W be a Brownian motion ;
Ñ(dt,de) the compensated process of a Poisson r.m. N(dt,de) with
compensator ν(de)dt s.t. ν is a σ-finite positive measure on R∗.
Let IF = {Ft , t ≥ 0} the natural filtration associated with W and N. Let T > 0.

−dXt = f (t,ω,F(t,Xt),Xt ,Zt , lt(·))dt−ZtdWt −
∫
R∗

lt(e)Ñ(dt,de)

XT = ξ ∈ L2(FT )

where f is a Lipschitz driver and F is a Lipschitz mean-field operator
F : [0,T ]×L2(FT )→ R, (t,X) 7→ F(t,X) is measurable, ∀t ∈ [0,T ],
F(t,0) < +∞, and ∃ C ≥ 0 s.t. ∀(X1,X2) ∈ L2(FT )×L2(FT ),
|F(t,X1)−F(t,X2)| ≤ C‖X1−X2‖2.

(INRIA, Mathrisk)



BSDE with jumps with general mean-field operators Examples of mean-field operators

Examples of mean-field operators

First order interactions : F(t,X) := E[φ(t,X)],
where φ is a Lipschitz function s.t. φ(t,X) ∈ L2(FT ).

Second order mean-field interaction term :

F(t,X) =
∫
R×R

κ(x ,x ′)µt(dx)µt(dx ′) = E
[
κ(X ,X ′)

]
,
(
(X ,X ′)∼ µt ⊗µt

)
where κ is a Lipschitz kernel that captures the intensity of interactions,
and X ′ is an independent copy of the same distribution µt as X .
The operator F may represent the average intensity of interactions of
nodes in an inhomogeneous random graph (Bollobas et al 07).

7→When the kernel κ is constant in its first argument, we recover the
expectation operator.
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BSDE with jumps with general mean-field operators Results

Results

Existence and Uniqueness results

Comparison theorems under appropriate monotony assumptions
on f and F

Dual representation in the convex case
R. Chen, R. Dumitrescu, A. Minca, and A.S. : Mean-field BSDEs with jumps
and dual representation for global dynamic risk measures. Probability,
Uncertainty and Quantitative Risk, 8(1) :33–52, 2023
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Graphon Mean-field BSDEs

We now turn to the study a class of mean field BSDEs with coupling
specified via a graphon, to account for heterogeneity of a continuum of
agents.

Graphons have been developed by Lovász et al., as a natural
continuum limit object for large dense graphs.
A graphon is a symmetric measurable fn G : I2→ I, with I := [0,1]
indexing a continuum of possible positions for nodes in the graph
and G(u,v) representing the edge density between nodes placed
at u and v .
The so-called cut norm of a graphon is defined by

‖G‖� := sup
A,B∈B(I)

∣∣∫
A×B

G(u,v)dudv
∣∣.

We can also view a graphon as an operator from L∞(I) to L1(I),
defined for any φ ∈ L∞(I) as :

Gφ(u) :=
∫

I
G(u,v)φ(v)dv .

(INRIA, Mathrisk)



Graphon Mean-field BSDEs

Spaces of processes
Let J = Jt , t ≥ 0 be a filtration defined on some probability space

• L2(Jt) : set of all Jt -measurable and square integrable r.v. for t ∈ [0,T ].

• H2(J) is the set of all real-valued J-predictable processes φ such that

‖φ‖H2 := (E[
∫ T

0
φ

2
t dt])1/2 < ∞.

• H2
νu

(J) (for each u ∈ I) is the set of all J-predictable function-valued
processes ` such that

‖`‖H2
νu

:= (E[
∫ T

0
‖`t‖2

νu
dt])1/2 < ∞.

• S2(J) is the set of all real-valued RCLL J-adapted processes φ with

‖φ‖S2 := (E[ sup
t∈[0,T ]

|φt |2])1/2 < ∞.

• M S2(J) is the set of all measurable functions X from I to S2(J) : u 7→ Xu,
satisfying supu∈I ‖Xu‖2

S2 = supu∈I E[supt∈[0,T ] |Xu(t)|2] < ∞.

Similarly let M L2(Jt) be the set of all measurable functions X from I to
L2(Jt) : u 7→ Xu, satisfying : supu∈I E[X 2

u ] < ∞.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Probability setup

Probability setup

Let (Ω,F ,P) be a complete probability space. Let I = [0,1].

Let {Wu : u ∈ I} be a family of independent Brownian motions.

Let {Nu(dt,de) : u ∈ I} be a family of independent Poisson
measures with compensator νu(de)dt such that νu is a probability
measure on E := R∗, for each u ∈ I. Let {Ñu(dt,de) : u ∈ I} be
their compensator processes.

Let F = {Ft , t ≥ 0} be the natural filtration associated with
{Wu : u ∈ I} and {Nu(dt,de) : u ∈ I}.
Let T > 0. Denote by P the predictable σ-algebra on [0,T ]×Ω.

For each u ∈ I, let Fu = {F u
t , t ≥ 0} be the augmented filtration

generated by Wu and Nu.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Definition

Graphon mean-field BSDEs with jumps

Xu(t) =ξu +
∫ T

t

∫
I

∫
R

G(u,y)f (s,x ,Xu(s−),Zu(s), `u,s(·))µy ,s(dx)dyds

−
∫ T

t
Zu(s)dWu(s)−

∫ T

t

∫
E
`u,s(e)Ñu(ds,de), for t ∈ [0,T ], u ∈ I,

(4.1)

where µy := L(Xy ) and µy ,s := L(Xy (s)). Assume ∀u ∈ I, ξu ∈ L2(F u
T ).

Definition
A solution consists of a family of processes Φ := (Xu,Zu, `u)u∈I with
(Xu,Zu, `u) in S2(Fu)×H2(Fu)×H2

νu
(Fu) for each u in I, satisfying (4.1), s.t.

u 7→ L(Xu) is measurable in the weak sense, Xu is a RCLL R-valued optional
process, and Zu (resp. `u) is a R-valued predictable process defined on
Ω× [0,T ] (resp. Ω× [0,T ]×E) s.t. the stochastic integral is well defined.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Definition

Assumption on f : For each u ∈ I, we assume that
f : Ω× [0,T ]×R3×L2

νu
→ R; (ω, t,x ′,x ,z, `(·)) 7→ f (ω, t,x ′,x ,z, `(·))

is P⊗B(R3)⊗B(L2
νu

) measurable, satisfies f (·, ·,0,0,0,0) ∈H2(Fu),
and f is Lipschitz-continuous in (x ′,x ,z, `), i.e., ∃ a constant C ≥ 0 s.t.
dt⊗dP-a.s., for each (x ′1,x1,z1, `1) and (x ′2,x2,z2, `2), we have∣∣f (ω, t,x ′1,x1,z1, `1(·))− f (ω, t,x ′2,x2,z2, `2(·))

∣∣
≤C(|x ′1− x ′2|+ |x1− x2|+ |z1− z2|+‖`1− `2‖νu ).

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Agenda

Graphon Mean-field BSDEs
Agenda

existence, uniqueness and weak measurability of the solution

comparison theorems under a monotonicity condition

continuity of the solution with respect to the label index and
stability of the system

convergence of an interacting mean-field particle system with
heterogeneous interactions to the graphon MFBSDE

associated graphon dynamic risk measure and its properties

dual representation in the convex case.
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Graphon Mean-field BSDEs Canonical coupling

Canonical coupling

Xu(t) =ξu +
∫ T

t

∫
I

∫
R

G(u,y)f (s,x ,Xu(s−),Zu(s), `u,s(·))µy ,s(dx)dyds

−
∫ T

t
Zu(s)dWu(s)−

∫ T

t

∫
E
`u,s(e)Ñu(ds,de), for t ∈ [0,T ], u ∈ I,

Note that different labels interact only through their laws µu.

To handle the measurability of L(Xu) in u we can treat all processes
(Xu,Zu, `u)u∈I on one stochastic basis : To this purpose, we introduce a
canonical probability space (Ω̄, F̄ , P̄), on which we define a canonical
Brownian motion W̄ and a common Poisson random measure N̄(dt,de)
with compensator ν(de)dt that is specified below. We define the
canonical filtered probability space (Ω̄, F̄ , F̄, P̄), where F̄ = {F̄t , t ≥ 0} is
the completed natural filtration and P̄ is the corresponding probability
measure, generated by W̄ and N̄(dt,de).

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Canonical coupling

We transform the original graphon system into a fully coupled system driven by
a common (W̄ , N̄), defined on a canonical space (Ω̄, F̄ , F̄, P̄), which admits a
solution with the same law. We use trivially the canonical Brownian motion W̄ ,
and make the following assumption for the jump part :
Assumption :[Intensity measure]

The function I× [1,2] 3 (u,w) 7→ ϕ−1
u (ω−1) ∈ R is B(I)⊗B([1,2])

measurable, where ϕu denotes the cumulative distribution function of νu.
We define ϕ−1

u (1) as the essential supremum and ϕ−1
u (0) as the

essential infimum.

The idea is to use a common Poisson r.m. N̄ to generate different r.m. Nu for
all u ∈ I through the mapping ϕ−1

u ,u ∈ I. Thanks to the same time intensity of
all Nu, the jumps for different labels can be coupled through N̄, meaning all
labels u ∈ I jump at the same time but with different jump sizes. Here, N̄ is
chosen to have compensator measure ν(de)dt with ν being uniform on [1,2].
(We choose the interval [1,2] to avoid 0 since ν should not have mass at 0).
Now N̄(dt,ϕ−1

u (e−1)de) is a Poisson r.m. with intensity νu(de)dt, which has
the same law as Nu.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Canonical coupling

Example
Let νu be uniform on [1,2 + u]. Then ϕ−1

u (ω) = 1 + (1 + u)(ω−1), and
the Assumption is satisfied.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Canonical coupling

Assumption :[Coupling of terminal condition].
We also assume that ξ := {ξu}u∈I can be measurably coupled,i.e. ∀u ∈ I,
∃ξ̄u ∈ L2(F̄T ) s.t. u 7→ ξ̄u is measurable and L(ξu) = L(ξ̄u). We denote by
ξ ∈M L2(FT ) if the terminal condition satisfies this assumption.

Example

Let ξu := aW u
T + ∑

Nu(T )
i=1 Y u

i , where Y u
i is the i-th jump of label u according to

the distribution νu. Following the canonical coupling, we have

ξ̄u = aW̄T + ∑
N̄(T )
i=1 ϕ−1

u (Yi −1), where Yi , i = 1, . . . , N̄(T ) are i.i.d. uniform
random variables on [1,2]. If Assumption on intensity is satisfied, then
ξ̄ ∈M L2(F̄T ).

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Canonical coupling

The canonically coupled graphon system is now written as follows :

X̄u(t) = ξ̄u +
∫ T

t

∫
I

∫
R

G(u,y)f (s,x , X̄u(s−), Z̄u(s), ¯̀u,s(·))µy ,s(dx)dyds

−
∫ T

t
Z̄u(s)dW̄ (s)−

∫ T

t

∫
E

¯̀u,s(ϕ
−1
u (e−1))˜̄N(ds,de), u ∈ I, t ∈ [0,T ].

(4.2)

Note that L(X̄ , Z̄ , ¯̀) = L(X ,Z , `).

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Existence and uniqueness

Theorem
The coupled system (4.2) admits a unique solution Φ̄ := (X̄ , Z̄ , ¯̀) ∈M such
that X̄ ∈M S2(F̄). Furthermore, the graphon mean-field BSDE system (4.1)
also admits a unique solution Φ := (X ,Z , `) ∈M , and I 3 u 7→ L(Xu) is
measurable.

We denote by M the space

M := {Φ := {(Xu,Zu, `u(·)) ∈ S2(Fu)×H2(Fu)×H2
νu

(Fu)}u∈I , such that

‖Φ‖M := sup
u∈I

(
E[ sup

t∈[0,T ]
|Xu(t)|2] +E[

∫ T

0
|Zu(t)|2dt +E[

∫ T

0
‖`u,t‖2

νu
dt]
)1/2

< ∞}.

For the measurability, we prove that u 7→ X̄u is measurable in u, and thus also
the map u 7→ L(X̄u).
Then since the canonical coupling does not change the law of the first
component of solution of the original system (4.1), we have L(Xu) = L(X̄u) for
all u ∈ I. Thus u 7→ L(Xu) is measurable.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Comparison theorems

Assumption A.1 (Monotonicity assumption)
∀u ∈ I,(x ′,x ,z, `1, `2) ∈ R3× (L2

νu
)2, ∃ φ

x ′,x ,z,`1,`2
u,t ∈ L2

νu
, measurable, bounded

s.t.
f (t,x ′,x ,z, `1)− f (t,x ′,x ,z, `2)≥ 〈φx ′,x ,z,`1,`2

u,t , `1− `2〉νu ,

with φ
x ′,x ,z,`1,`2
u,t (y)≥−1 and |φx ′,x ,z,`1,`2

u,t (y)| ≤ ψ(y), for some ψ ∈ L2
νu

.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Comparison theorems

Theorem (Comparison theorem)

Let ξ1,ξ2 ∈M L2(FT ) and denote (X i ,Z i , `i) the solution of graphon
mean-field BSDE (4.1) associated to (ξi , f i) , i = 1,2. Assume

f1 satisfies Assumption A.1, and f2 is non-decreasing in x ′ ;

For each u ∈ I \H with H a zero Lebesgue measure subset of I,
ξ2

u ≥ ξ1
u a.s. and f2(ω, t,x ′,x ,z, `)≥ f1(ω, t,x ′,x ,z, `) a.s. for all

(t,x ′,x ,z, `) ∈ R4×L2
νu

.

Then for all t ∈ [0,T ] and u ∈ I \H, we have X 2
u (t)≥ X 1

u (t) a.s..

Strict comparison thm (under Assumption A.1 with strict inequality).

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Continuity and stability results

Continuity of the solution with respect to the label index u

For each u ∈ I, assume

(i) u→ L(ξu) is continuous w.r.t. the W2 metric.

(ii) there exists a finite collection of intervals {Ii : i = 1, . . . ,N} such
that I = ∪i Ii , and for each i ∈ {1, . . . ,N}, we have G(u,v) is
continuous at u for each v ∈ I \Hi for some zero Lebesgue
measure set Hi .

Then for each i ∈ {1, . . . ,N}, the map Ii 3 u→ L(Xu) is continuous
w.r.t. the W2,T metric.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Continuity and stability results

Stability

Convergence issues when the underlying graphon G is induced by a
sequence of graphons Gn converging to G, in the sense of cut norm
‖Gn−G‖�→ 0.
(Recall that ‖G‖� := supA,B∈B(I)

∣∣∫
A×B G(u,v)dudv

∣∣.)
Technical assumption : Assume that for each u ∈ I, the driver f can
be characterized as Ee

u [̃f (·, `(e))], where Ee
u means taking

integration of f̃ (·, `(e)) with respect to e under the measure νu,
and f̃ is Lipschitz continuous in all parameters except time t .

Then the corresponding solution of the Gn graphon mean-field BSDE
converges (in some sense) to the solution of the G graphon mean-field
BSDE and the law of the X component also converges in an integral
sense of the Wasserstein distance W2,T on I :∫

I W2,T (L(Xu),L(X n
u ))→ 0.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Continuity and stability results

Theorem

Let (X ,Z , `) and (X n,Z n, `n) be the solutions of (4.1) associated with
graphons G and Gn, terminal condition ξ and ξn, respectively. Then

E
[∫

I

(
sup

t∈[0,T ]
|X n

u (t)−Xu(t)|2 +
∫ T

0
|Z n

u (t)−Zu(t)|2dt +
∫ T

0
‖`n

u,t − `u,t‖2
νu

dt
)
du
]

≤ C
[∫

I
E|ξu−ξ

n
u|2du + CM‖G−Gn‖� + ε(M)

]
,

where M is some large constant, CM is some constant depends on M and
ε(M) is some constant converging to 0 as M goes to ∞.
If ‖Gn−G‖�→ 0 and E[

∫
I |ξu−ξn

u|2du]→ 0 as n→ ∞, it follows that
E
[∫

I

(
supt∈[0,T ] |X n

u (t)−Xu(t)|2 +
∫ T

0 |Z n
u (t)−Zu(t)|2dt +

∫ T
0 ‖`n

u,t −
`u,t‖2

νu
dt
)
du
]
→ 0, and consequently

∫
I W2,T (L(Xu),L(X n

u ))→ 0.

Proof : use a truncation and approximation argument
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Graphon Mean-field BSDEs Continuity and stability results

Example (Converging graphons)

For a size n adjacency matrix A, we define the associated step graphon
GA as :

GA(u,v) := Aij , for (u,v) ∈ In
i × In

j ,

where In
i := ((i−1)/n, i/n], for i = 2, . . . ,n and In

1 := [0,1/n].
Let ζn be the adjacency matrix of an Erdös-Rényi random graph
G(n,pn). If pn = p is fixed as n→ ∞, then it is well known that, as
n→ ∞, the associated graphon Gζn converges in cut norm to the
constant graphon G ≡ p.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Continuity and stability results

The following theorem gives another stability result which provides the
convergence of graphon mean-field BSDEs in the space M .

Theorem

sup
u∈I

E
[

sup
t∈[0,T ]

|X n
u (t)−Xu(t)|2 +

∫ T

0
|Z n

u (t)−Zu(t)|2dt +
∫ T

0
‖`n

u,t − `u,t‖2
νu

dt
]

≤ C
[
sup
u∈I

E|ξu−ξ
n
u|2 + C(M)‖G−Gn‖∞→∞ + ε(M)

]
→ 0.

Consequently, if ‖Gn−G‖∞→∞→ 0 and supu∈I E[|ξu−ξn
u|2]→ 0 as n→ ∞,

then
W M

2,T (L(X),L(X n))→ 0.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Convergence of interacting particle systems to GMFBSDEs

Convergence of interacting particle systems to Graphon MF-BSDEs

Consider a sequence of N particle graphon interacting systems.

X N
i (t) = ξ

N
i +

∫ T

t

1
N

N

∑
j=1

ζ
N
ij f (s,X N

j (s−),X N
i (s−),Z N

i (s), `N,i
s (·))ds

−
∫ T

t
Z N

i (s)dŴi(s)−
∫ T

t

∫
E
`N,i

s (e)˜̂N i(ds,de), t ∈ [0,T ]

(4.3)

where for the i-th particle Ŵi := W i
N

and N̂i(dt,de) = N i
N

(dt,de) are chosen
to be the same ones associated to label i/N.

Assume ξN
i ∈ L2(F i/N

T ) for all i = 1, . . . ,N.

Here, (ζN
ij : i, j ∈ [N]× [N]) is a N×N symmetric matrix, describing the

strength of interaction between particle i and j .

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Convergence of interacting particle systems to GMFBSDEs

Define the space M N :=
{ΦN := {(Xi ,Zi , `i(·)) ∈ S2(Fi/N)×H2(Fi/N)×H2

νN
i

(Fi/N)}N
i=1, s.t.

‖ΦN‖M N := maxi=1,...,N
(
E[supt∈[0,T ] |Xi(t)|2] +E[

∫ T
0 |Zi(t)|2dt +

E[
∫ T

0 ‖`i,t‖2
νi

dt]
)1/2

< ∞},
where νN

i := νi/N .

Theorem
The N-coupled BSDE system (4.3) admits a unique solution ΦN ∈M N .

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Convergence of interacting particle systems to GMFBSDEs

Assumption : For a given graphon G, we say that ζN := {ζN
ij }i,j∈[N]

satisfies the regularity assumption with graphon G if either :

(i) ζN
ij = G( i

N ,
j
N ) ;

(ii) ζN
ij = Bernoulli

(
G( i

N ,
j
N )
)

independently for all 1≤ i ≤ j ≤ N and
independent of {Wu,Nu,ξu : u ∈ I}.

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Convergence of interacting particle systems to GMFBSDEs

Convergence of finite particle systems to the graphon BSDE

Theorem

Suppose that ζN satisfies the regularity assumption with graphon G, G is
Lipschitz continuous and maxi=1,...,N E|ξN

i −ξ i
N
|2 = O(N−1). Then the unique

solution ΦN of (4.3) converges to the unique solution of (4.1) with the
convergence rate 1/

√
N and

max
i=1,...,N

E

[
sup

t∈[0,T ]
|X N

i (t)−X i
N

(t)|2 +
∫ T

0
|Z N

i (t)−Z i
N

(t)|2dt +
∫ T

0
‖`i,N

t − `
i
N
t ‖2

νdt

]
≤ CN−1 + C max

i=1,...,N
E|ξN

i −ξ i
N
|2 = O(N−1),

for all N ∈ N and some constant C. Furthermore, for κN
t = 1

N ∑
N
i=1 δX N

i (t) and
κt =

∫
I L(Xu(t))du, we have

sup
t∈[0,T ]

E
[
(W2(κ

N
t ,κt))2]≤ CN−1/2. (4.4)
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Graphon Mean-field BSDEs Convergence of interacting particle systems to GMFBSDEs

Similar convergence result is obtained when the heterogeneous
interaction weights are sampled from a sequence of convergent
graphons (instead of from the limiting graphon)

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Graphon dynamic risk measure

Graphon dynamic risk measure

For ξ ∈M L2(FT ) (i.e. ξu ∈ F u
T ∀u ∈ I, and ξu,u ∈ I can be canonically

coupled to satisfy the label measurability) representing a financial position at
T , we interpret ρu,t(ξ,T ) :=−Xu(t,ξ,T ), for each u ∈ I, where
{Xu(t,ξ,T )}u∈I is the solution of the graphon mean-field BSDE system, as the
risk measure of ξ at time t and position u ∈ I. Then ρt(ξ,T ) := {ρu,t(ξ,T )}u∈I

is called the graphon associated dynamic risk measure.

Interpretation : a regulator imposes the capital to be ξ at time T, and the risk
measure ρt(ξ,T ) is interpreted as the acceptable levels of liquidity at time t ,
for a given driver capturing how a representative bank’s position evolves with
dependence on the heterogeneous mean-field interactions in the system.
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Properties of global dynamic risk measures

Consistency. Let τ < T be a stopping time. Then
∀t ≤ τ, ρt(ξ,T ) = ρt(−ρτ(ξ,T ),τ) a.s. (consequence of the
uniqueness result).

Continuity. Let {τα,α ∈ R} be a family of stopping times converging a.s.
to τα0 as α→ α0. Let {ξα,α ∈ R} be a sequence of random families s.t.
for each α ∈ R, ξα,u is F u

τα -measurable, u ∈ I and
E[esssupα,u(ξα,u)2] < ∞. Suppose also that ξα,u converges a.s. to a
F u

τα0 -measurable r.v. ξu as α→ α0. Then for each stopping time
τ̂ < τα,α ∈ R, the r.v. ρτ̂(ξα,τα)→ ρτ̂(ξ,τα0) a.s. and the processes
ρu(ξα,τα)→ ρu(ξ,τα0) for all u ∈ I, as α→ α0.

Monotonicity. ρ is nonincreasing with respect to ξ. i.e. , for each T > 0
and each ξ1,ξ2 ∈M L2(FT ), if ξ1 ≥ ξ2 a.s., then a.s.
ρt(ξ1,T )≤ ρt(ξ2,T ),0≤ t ≤ T . (consequence of comparison theorem)
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Homogeneity : If f is positively homogeneous wrt (x ′,x ,z, `), i.e.,
for a > 0, f (t,ax ′,ax ,az,al) = af (t,x ′,x ,z, `), then the risk
measure ρ is positively homogeneous wrt ξ, that is, for all λ≥ 0,
t ∈ [0,T ] and ξ ∈M L2(FT ), we have ρt(λξ,T ) = λρt(ξ,T ).
Translation invariance : If f depends only on (t,x ′− x ,z, `), then
the risk measure satisfies the translation invariance property : for
any ξ ∈M L2(FT ), t0 ∈ [0,T ] and ξ′ ∈M L2(Ft0),

ρt(ξ + ξ
′,T ) = ρt(ξ,T )−ξ

′ for all t ∈ [t0,T ].

No Arbitrage. when strict comparison holds, then for each T > 0
and each ξ1,ξ2 ∈M L2(FT ), if ξ1 ≥ ξ2 and ρt(ξ1,T ) = ρt(ξ2,T )
a.s. on an event A ∈ Ft , then ξ1 = ξ2 a.s. on A.
Convexity If f is concave with respect to (x ,z, l), then the dynamic
risk measure is convex, that is for any λ ∈ [0,1] and
ξ1,ξ2 ∈M L2(FT ), we have

ρt(λξ
1 + (1−λ)ξ

2,T )≤ λρt(ξ
1,T ) + (1−λ)ρt(ξ

2,T ).
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Special case.No Graphons and f independent on x and concave Quenez-A.S. SPA 2013

−dXt = f (t,ω,Zt , lt(·))dt−ZtdWt −
∫
R∗

lt(e)Ñ(dt,de); XT = ξ,

Consider the polar function of f (t,ω,z, `) :

f ∗(ω, t,α1,α2) := sup
(z,`)∈R×L2

ν

[f (ω, t,z, `)−α
1 z−〈α2, `〉ν].

Let AT the set of predictable proc. αs = (α1
s,α

2
s) s.t. f ∗(t,α1,α2) ∈ IH2 (it

implies in particular α2
s(u)≥−1). For α ∈ AT , let Q α be the probability

(absolutely cont. wrt to P) which admits Γα
T as density wrt P on FT , where

dΓα
t = Γα

t−
(
α

1
t dWt +

∫
R∗

α
2
t (e)dÑ(dt,de)

)
; Γα

0 = 1.

Then
−X0 = sup

α∈AT

[EQ α

(−ξ)−ζ(α, T )]

where the function ζ, called penalty function, is defined, by

ζ(α, T ) := EQ α

[
∫ T

0
f ∗(s,αs)ds]
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Example : the entropic risk measure :

ρt(ξ,T ) :=
1
γ

lnE[exp(−γξ) | Ft ]

is associated to the BSDE with driver g(z) :=
1
2

γz2

In this case the penalty function is

ζ(Q) = E[
dQ
dP

ln
dQ
dP

]

(INRIA, Mathrisk)
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Dual representation

Xu(t) =ξu +
∫ T

t

∫
I

∫
R

G(u,y)f (s,x ,Xu(s−),Zu(s), `u,s(·))µy ,s(dx)dyds

−
∫ T

t
Zu(s)dWu(s)−

∫ T

t

∫
E
`u,s(e)Ñu(ds,de), for t ∈ [0,T ], u ∈ I,

Suppose that f is concave with respect to (x ′,x ,z, `) and non-decreasing in x ′.
Let Fu denote the drift driver of the u component :

Fu(ω, t,L(Xt),x ,z, `(·)) :=
∫

I

∫
R

G(u,y)f (t,x ′,x ,z, `(·))µy ,t(dx ′)dy .

For each (ω, t) and u ∈ I, let (Fu)∗ the Fenchel-Legendre transform defined as

(Fu)∗(ω, t,L(Y ),βu,α
1
u,α

2
u) := sup

(X ,x ,z,`)∈L2,I(F̄t )⊗R2⊗L2
νu

{Fu(ω, t,L(X),x ,z, `)

−〈X ,Y 〉L2,I −βux−α
1
uz−〈α2

u, `u〉νu}.
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For u ∈ I and given predictable process αu = (α1
u,α

2
u), let Q α

u be the proba
abs. continuous wrt P, which admits Γαu,T as density, where Γαu is solution of

dΓαu,t = Γαu,t−
(
α

1
u,tdWu(t) +

∫
E

α
2
u,t(e)dÑu(dt,de)

)
, Γαu,0 = 1.

Let A I
T : set of families of processes (γt ,βt ,αt)t∈[0,T ], where (γt)t∈[0,T ] (with

γt := (γ
u,v
t )u,v∈I) progressively measurable, (βt ,αt)t∈[0,T ] predictable, and s.t.

α := {αu}u∈I s.t. ∀u ∈ I,
∫ T

0 (α1
u,s)2ds +

∫ T
0 ‖α2

u,s‖2
νu

ds is bounded, and
α2

u,t(y) >−1 νu(dy)-a.s. for all t ∈ [0,T ].
(This implies Γαu,t > 0 a.s. on [0,T ] and (Γαu,t )t∈[0,T ] ∈ S2).

∀(u,v) ∈ I, (Γα
v ,te

∫ t
0 γ

u,v
y dy )t∈[0,T ] ∈H2 ;

∀v ∈ I, {(Fv )∗
(
t,
( Γ

αv1
t H

βv1 ,γ
v ,v1

0,t γ
v ,v1
t

E[Γαv
t

∫
I Hβv ,γv1,v

0,t dv1]

)
v1∈I ,βv ,t ,α

1
v ,t ,α

2
v ,t(·)

)
}t∈[0,T ] ∈H2.
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Theorem (Dual representation)

For each t ∈ [0,T ], we have :

E[
∫

I
ρv ,t(ξ,T )dv ] =

sup
(γ,β,α)∈A I

T

{
∫

I
EQ α

v [−(
∫

I
Hβv ,γ

u,v

t,T du)ξv ]dv−
∫

I
ζv ,t(γ,β,α,T )dv},

where ζv ,t(γ,β,α,T ) :=

∫ T

t
EQ α

v
[
(
∫

I
Hβv ,γ

u,v

t,s du)(Fv )∗
(
s,
( Γ

αv1
s H

βv1 ,γ
v ,v1

t,s γ
v ,v1
s

E[Γαv
s

∫
I Hβv ,γv1,v

t,s dv1]

)
v1
,βv ,s,α

1
v ,s,α

2
v ,s(·)

)]
ds,

Hβ,γ
t,s := exp{

∫ s

t
(βy + γy )dy}.

Moreover, ∃(γ,β,α) ∈ A I
T attaining the supremum
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Steps of the proof :

establish bounds on the effective domain of F∗.

provide some explicit form to conjugacy relations relying on a
Mean-Field Graphon FSDE
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Happy birthday Ying !

(INRIA, Mathrisk)



Graphon Mean-field BSDEs Dual representation in the convex case

Wasserstein distances. Given a Polish space S , denote by D([0,T ],S) the
space of RCLL functions from [0,T ] to S , equipped with the Skorokhod
topology. Let Dm := D([0,T ],Rm). Denote by P (S) the space of probability
measures on S .
Wasserstein distances between two probability measures µ and ν :

W2(µ,ν) := (inf{E[|X1−X2|2] : L(X1) = µ,L(X2) = ν})1/2, for µ,ν∈P (Rm),

W2,T (µ,ν) := (inf{ sup
t∈[0,T ]

E|X1(t)−X2(t)|2 : L(X1) = µ,L(X2) = ν})1/2, for µ,ν∈P (Dm).

For two families of probability measures µ = {µu}u∈I and ν = {νu}u∈I , set

W M
2 (µ,ν) := sup

u∈I
W2(µu,νu), for µ,ν ∈ P (M L2) for all t ∈ [0,T ],

and
W M

2,T (µ,ν) := sup
u∈I

W2,T (µu,νu), for µ,ν ∈ P (M S2).
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For Lipschitz continuity, we need a stronger assumption.
There exists a finite collection of intervals {Ii : i = 1, . . . ,N} such that
I = ∪i Ii , and for some constant C, we have for all u1,u2 ∈ Ii , v1,v2 ∈ Ij ,
and i, j ∈ {1, . . . ,N},

W2(L(ξu1),L(ξu2))≤ C|u1−u2|,

and,
|G(u1,v1)−G(u2,v2)| ≤ C(|u1−u2|+ |v1− v2|).

(INRIA, Mathrisk)
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