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Abstract. In this paper we prove the existence of bent functions which
have simultaneously the following properties: cubic, homogeneous, no
affine derivatives and not in the completed Maiorana-McFarland class.
We also show, that in opposite to the cases of 6 and 8 variables the
original Maiorana-McFarland construction does not describe the whole
class of cubic bent functions in n variables for all n ≥ 16.
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1 Introduction

Homogeneous cubic bent functions [11] and cubic bent functions without affine
derivatives [9] have been intensively studied in the last two decades, partly be-
cause of their application in cryptography [10, 13]. Several infinite families of
such functions were constructed, however all of them belong to the completed
Maiorana-McFarland class M# [2, 10, 13], what may be considered as a crypto-
graphic weakness of these functions [4, p. 396].

In this paper we prove that cubic bent functions in n variables, which possess
both properties (homogeneity and having no affine derivatives), exist for all
n ≥ 50 and, moreover, do not belong to M#. Our solution strategy consists of
two steps. Firstly, we analyse lost1 examples of homogeneous cubic bent functions
in n = 10, 12 variables, constructed by Charnes et al. in [6, p. 149]. We show,
that some of these functions are outside the M# class and do not have affine
derivatives. Secondly, in order to extend these functions to an infinite family, we
introduce a new sufficient condition on bent functions f and g, such that the
direct sum f ⊕ g is outside M#. Finally, since the direct sum f ⊕ g trivially
preserves homogeneity and non-affinity of derivatives of functions f and g, it
is enough to check, whether the analysed functions satisfy the new sufficient
condition and hence are extendible to an infinite family of functions outside the
M# class.

The paper is organized in the following way. In Section 1.1, some basic no-
tions and background on Boolean functions are introduced. In Section 1.2 we

1 Since they are not available online any more.



describe an algorithm, which checks, whether a given Boolean function belongs
to theM#

r,s class; this is a generalization of the completed Maiorana-McFarland

class M#. In Section 2 we provide our main theoretical results. For a Boolean
function f we introduce relaxedM-subspaces as vector subspaces U by the prop-
erty, that second-order derivatives Da,bf are constants for all two-dimensional
vector subspaces 〈a,b〉 of U . Subsequently, we deduce some properties of these
subspaces and explain how one can construct them algorithmically. Finally, we
prove that the direct sum f⊕g of bent functions f and g is outsideM#, provided
relaxed M-subspaces of functions f and g are “small enough”. In Section 3 we
show, that certain cubic bent functions in 6 ≤ n ≤ 12 variables satisfy our new
sufficient condition and thus lead to infinitely many cubic bent functions outside
the M# class, which are homogeneous and (or) do not have affine derivatives.
Cubic bent functions used in the paper are given in the Appendix.

1.1 Preliminaries

Let F2 = {0, 1} be the finite field with two elements and let Fn
2 be the vector space

of dimension n over F2. Mappings f : Fn
2 → F2 are called Boolean functions in n

variables. A Boolean function on Fn
2 can be uniquely expressed as a polynomial in

F2[x1, . . . , xn]/(x1 ⊕ x21, . . . , xn ⊕ x2n). This representation is called the algebraic
normal form (denoted further as ANF ), that is,

f(x) =
⊕
v∈Fn

2

cv

(
n∏
i=i

xvii

)
,

where x = (x1, . . . , xn) ∈ Fn
2 , cv ∈ F2 and v = (v1, . . . , vn) ∈ Fn

2 . The algebraic
degree of a Boolean function f , denoted by deg(f), is the algebraic degree of its
ANF. Further we will be interested in homogeneous cubic functions, i.e. functions
whose ANF contains monomials of degree three only.

With a Boolean function f : Fn
2 → F2 one can associate the following two

mappings: Daf(x) := f(x⊕ a)⊕ f(x), which is called the first-order derivative
of f , and Da,bf(x) := Db(Daf)(x) = f(x⊕a⊕b)⊕f(x⊕a)⊕f(x⊕b)⊕f(x),
which is called the second-order derivative of f .

Definition 1. A Boolean function f : Fn
2 → F2 is called bent, if for all a ∈ Fn

2

with a 6= 0 the equation Daf(x) = b has 2n−1 solutions x ∈ Fn
2 for any b ∈ F2.

Remark 1. It is well-known, that bent functions in n variables exist only for n
even and of degree at most n/2, see [12].

On the set of all Boolean functions one can introduce an equivalence relation
in the following way: two functions f, f ′ : Fn

2 → F2 are called equivalent, if there
exist a non-degenerate affine transformation A ∈ AGL(n, 2) and an affine func-
tion l(x) = 〈a,x〉n⊕b on Fn

2 (where x ∈ Fn
2 , b ∈ F2 and 〈·, ·〉n is a non-degenerate

bilinear form on Fn
2 ), such that f ′(x) = f(xA)⊕ l(x) holds for all x ∈ Fn

2 .
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1.2 The completed general Maiorana-McFarland class of Boolean
functions

The general Maiorana-McFarland class Mr,s of Boolean functions in n = r + s
variables [4, p. 354] is the set of Boolean functions of the form

f(x,y) = 〈x, φ(y)〉r ⊕ g(y),

where x ∈ Fr
2, y ∈ Fs

2, g is an arbitrary Boolean function on Fs
2 and φ : Fs

2 → Fr
2

is some mapping. A function f belongs to the completed general Maiorana-
McFarland class M#

r,s, if it is equivalent to some function from Mr,s. In the
case r = s, which corresponds to the original Maiorana-McFarland class of bent
functionsM, a function f is bent if and only if the mapping φ is a permutation
[4, p. 325]. The completed version of M is denoted by M#.

The characterization of the completed Maiorana-McFarland class M# of
bent functions is given in [8, p. 102] and [3, Lemma 33]. In the case of theM#

r,s

class, the proof is similar.

Proposition 1. Let f be a Boolean function on Fn
2 with n = r+s. The following

statements are equivalent.

1. The function f belongs to the M#
r,s class.

2. There exists a vector subspace U of dimension r such that the second order
derivatives Da,bf vanish for all a,b ∈ U , that means Da,bf = 0.

3. There exists a vector subspace U of dimension r such that the function f is
affine on every coset of U .

Motivated by this characterization, we introduce M-subspaces of Boolean
functions, as those, which satisfy the second statement of Proposition 1.

Definition 2. We will call a subspace U an M-subspace of a Boolean function
f : Fn

2 → F2, if for all a,b ∈ U second-order derivatives Da,bf are constant
zero functions, i.e Da,bf = 0. We denote by MSr(f) the collection of all r-
dimensional M-subspaces of f and by MS(f) the collection

MS(f) :=

n⋃
r=1

MSr(f).

Remark 2. It is enough to consider a,b ∈ U , which form two-dimensional vector
subspaces, since all second-order derivatives of the form Da,af,Da,0f and D0,bf
are equal to the zero function.

Definition 3. The linearity index ind(f) of a Boolean function f : Fn
2 → F2 is

is the maximal possible r, such that f ∈M#
r,s, see for details [14, p. 82]. In terms

of M-subspaces, the linearity index of f is given by ind(f) = max
U∈MS(f)

dim(U).

Example 1. Let f(x) := x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x1x2x3 be a cubic Maiorana-
McFarland Bent function on F6

2. Second-order derivatives of f are given by
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Da,bf(x) = c0(a,b) ⊕ (a3b2 ⊕ a2b3)x1 ⊕ (a3b1 ⊕ a1b3)x2 ⊕ (a2b1 ⊕ a1b2)x3,
where the constant term c0(a,b) depends on a,b and is given by c0(a,b) :=
a1(a2b3⊕a3b2⊕b2b3)⊕b1(a2a3⊕a2b3⊕a3b2)⊕a1b4⊕a2b5⊕a3b6⊕a4b1⊕a5b2⊕a6b3.
One can check, that the subspace U = 〈(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)〉
is an M-subspace of f , by verifying, that on all of its two-dimensional vector
subspaces given by generators a and b below, the corresponding second-order
derivatives Da,bf are constant zero:(

0 0 0 0 1 0
0 0 0 0 0 1

)
7→ 0,

(
0 0 0 1 0 0
0 0 0 0 0 1

)
7→ 0,

(
0 0 0 1 1 0
0 0 0 0 0 1

)
7→ 0,

(
0 0 0 1 0 0
0 0 0 0 1 0

)
7→ 0,(

0 0 0 1 0 1
0 0 0 0 1 0

)
7→ 0,

(
0 0 0 1 0 0
0 0 0 0 1 1

)
7→ 0,

(
0 0 0 1 0 1
0 0 0 0 1 1

)
7→ 0.

Now we describe a naive algorithm, which one can use to construct the col-
lection MSr(f) for a given function f and a fixed r.

Algorithm 1 Construct the collection MSr(f).

Input: A Boolean function Da,bf : Fn
2 → F2 and r ∈ N, r ≥ 2.

Output: The collection MSr(f).
1: ConstructMS2(f) := {U = 〈a,b〉 : dim(U) = 2 and Da,bf = 0}.
2: for all subspaces U ∈MS2(f) do
3: repeat
4: Determine subspaces Ũ = 〈U, ũ〉 for all ũ /∈ U , s.t. for any two-dimensional

vector subspace 〈a,b〉 ⊆ U second-order derivatives Da,bf = 0.

5: Put U ← Ũ for the obtained subspaces Ũ .
6: until dim(U) = r.
7: Output subspaces U of dimension r.
8: end for

Remark 3. Algorithm 1 can be used to compute the linearity index of a given
function f in the following way: ind(f) is the smallest r, for whichMSr(f) = ∅.

2 Relaxed M-subspaces of Boolean functions

In this section we analyse M-subspaces of the direct sum construction. Recall
that the function h : Fn+m

2 → F2, defined by h(x,y) := f(x) ⊕ g(y), is called
the direct sum of f and g, where f : Fn

2 → F2 and g : Fm
2 → F2. In this way, we

will identify Fn+m
2 with Fn

2 ⊗ Fm
2 and hence any vector v ∈ Fn+m

2 is identified
with a pair (vx,vy), where vx ∈ Fn

2 and vy ∈ Fm
2 . Now let U ∈MS(h), i.e. for

all a,b ∈ U second-order derivatives Da,bh = 0. This takes place if and only if
Dax,bxf = Day,byg = ca,b, where ca,b ∈ F2 is a constant, depending on a and
b, since g and h do not have common variables. This observation leads to the
following definition.
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Definition 4. We will call a subspace U a relaxed M-subspace of a Boolean
function f : Fn

2 → F2, if for all a,b ∈ U second order derivatives Da,bf are
either constant zero or constant one functions, i.e Da,bf = 0 or Da,bf = 1. We
denote by RMSr(f) the collection of all r-dimensional relaxed M-subspaces of
f and by RMS(f) the collection

RMS(f) :=

n⋃
r=1

RMSr(f).

While the linearity index of a Boolean function is defined as the maximal
possible dimension of its M-subspace, it is reasonable to define its analogue for
relaxed M-subspaces.

Definition 5. For a Boolean function f : Fn
2 → F2 its relaxed linearity index

r-ind(f) is defined by r-ind(f) := max
U∈RMS(f)

dim(U).

Example 2. Let f : F6
2 → F2 be a function from Example 1. One can check, that

subspace U = 〈(0, 1, 0, 0, 0, 1), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 1)〉 is a relaxedM-subspace
of f , since its second-order derivatives Da,bf are constant zero or constant one
for all a,b ∈ U , corresponding to two-dimensional vector subspaces:(

0 0 0 1 0 0
0 0 0 0 1 1

)
7→ 0,

(
0 1 0 0 0 1
0 0 0 0 1 1

)
7→ 1,

(
0 1 0 1 0 1
0 0 0 0 1 1

)
7→ 1,

(
0 1 0 0 0 1
0 0 0 1 0 0

)
7→ 0,(

0 1 0 0 1 0
0 0 0 1 0 0

)
7→ 0,

(
0 1 0 0 0 1
0 0 0 1 1 1

)
7→ 1,

(
0 1 0 0 1 0
0 0 0 1 1 1

)
7→ 1.

Now we present some properties of collections of M-subspaces as well as of
relaxed ones.

Proposition 2. Let f : Fn
2 → F2 be a Boolean function and let n = r + s.

1. MS(f) ⊆ RMS(f).
2. |MSr(f)| and |RMSr(f)| as well as ind(f) and r-ind(f) are invariants

under equivalence.
3. ind(f) ≤ r-ind(f) and f /∈M#

r,s for all r > r-ind(f).

Proof. 1. This follows from definitions of collections MS(f) and RMS(f).
2. Let f and f ′ be equivalent, i.e. f ′(x) = f(xA)⊕ l(x). Assume U ∈ RMSr(f)
and let U ′ = UA−1 with a′,b′ ∈ U ′. Denoting y = xA, one can see from the
following computations

Da′,b′f ′(x) = f ′(x⊕ a′ ⊕ b′)⊕ f ′(x⊕ a′)⊕ f ′(x⊕ b′)⊕ f ′(x′)
= f(y ⊕ a⊕ b)⊕ f(y ⊕ a)⊕ f(y ⊕ b)⊕ f(y) = Da,bf(y)

that U ′ ∈ RMSr(f ′). Since A−1 maps different subspaces to different ones, we
have |RMSr(f)| = |RMSr(f ′)| and |MSr(f)| = |MSr(f ′)|. Since dim(U) =
dim(U ′), we have ind(f) = ind(f ′) and r-ind(f) = r-ind(f ′).
3. First, since MS(f) ⊆ RMS(f) the inequality ind(f) ≤ r-ind(f) holds. The
statement f /∈M#

r,s for all r > r-ind(f) now follows from the maximality of the
linearity index.
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In the next theorem we will show, that each relaxed M-subspace of f ⊕ g is
contained in another relaxedM-subspace, constructed via the direct product of
relaxed M-subspaces of f and g.

Theorem 1. Let h(x,y) := f(x)⊕ g(y), for x ∈ Fn
2 and y ∈ Fm

2 .

1. If V ∈ RMS(f) and W ∈ RMS(g), then V ⊗W ∈ RMS(h).
2. For any U ∈ RMS(h) there exist V ∈ RMS(f) and W ∈ RMS(g), such

that U ⊆ V ⊗W .
3. r-ind(h) ≤ r-ind(f) + r-ind(g).

Proof. 1. Let U = V ⊗W . Since V ∈ RMS(f) and W ∈ RMS(g), then for
all v1,v2 ∈ V holds Dv1,v2

f = cv1,v2
and for all w1,w2 ∈ W holds Dw1,w2

g =
cw1,w2

, where cv1,v2
and cw1,w2

are some constants. In this way, for all pairs
u1 = (v1,w1) and u2 = (v2,w2) holds Du1,u2h = Dv1,v2f ⊕Dw1,w2g = cv1,v2⊕
cw1,w2 , and, hence, U ∈ RMS(h).
2. Recall that any vector v ∈ Fn+m

2 is identified with a pair (vx,vy), where
vx ∈ Fn

2 and vy ∈ Fm
2 . We define two vector subspaces V ⊆ Fn

2 and W ⊆ Fm
2 as

follows:
V = span({ux : u ∈ U}) and W = span({uy : u ∈ U}).

We will show, that V ∈ RMS(f) and W ∈ RMS(g). We define two functions
f ′, g′ : Fn+m

2 → Fn+m
2 as f ′(x,y) := f(x) for all y ∈ Fm

2 and g′(x,y) := g(y) for
all x ∈ Fn

2 . Since U ∈ RMS(h), then for all u1,u2 ∈ U the equality

Du1,u2h(x,y) = Du1,u2f
′(x,y)⊕Du1,u2g

′(x,y) = cu1,u2 (1)

holds for all (x,y) ∈ Fn+m
2 . Let x1,x2 ∈ Fn

2 and consider the following equalities

Du1,u2
f ′(x1,y)⊕Du1,u2

g′(x1,y) =cu1,u2
(2)

Du1,u2
f ′(x2,y)⊕Du1,u2

g′(x2,y) =cu1,u2
, (3)

which hold for any y ∈ Fm
2 due to (1). Adding equation (2) to (3), one gets

Du1,u2f
′(x1,y) = Du1,u2f

′(x2,y) since g′ depends on the variable x “fictively”.
Now, since f ′(x,y) depends on the variable y “fictively”, we get that for all
v1,v2 ∈ V the equality Dv1,v2

f(x1) = Dv1,v2
f(x2) holds for all x1,x2 ∈ Fn

2 and
hence Dv1,v2

f = cv1,v2
(one can think about v1 and v2 as (u1)x and (u2)x,

respectively). Thus we have shown, that V ∈ RMS(f). Since f and g are
interchangeable, we get W ∈ RMS(g). Clearly, U ⊆ V ⊗W and by the previous
statement we have V ⊗W ∈ RMS(h).
3. Let U ∈ RMS(h) and dim(U) = r-ind(h). By the previous statement there
exist V ∈ RMS(f) and W ∈ RMS(g), such that U ⊆ V ⊗W . Now, using the
following series of inequalities

r-ind(h) = dim(U) ≤ dim(V ⊗W ) = dim(V ) + dim(W )

≤ max
V ∈RMS(f)

dim (V ) + max
W∈RMS(g)

dim (W )

= r-ind(f) + r-ind(g).

we complete the proof.
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The next corollary provides a sufficient condition on bent functions f and g
for f ⊕ g being not in the M# class in terms of their relaxed M-subspaces.

Corollary 1. Let f : Fn
2 → F2 and g : Fm

2 → F2 be two Boolean bent functions.
If f and g satisfy r-ind(f) < n/2 and r-ind(g) ≤ m/2, then f ⊕ g /∈M#.

Remark 4. For a given function f one can compute the relaxed linearity index
r-ind(f) in the same way as the linearity index ind(f), but with only one change.
Instead of the second-order derivative Da,bf , given by its ANF

Da,bf(x) =
⊕
v∈Fn

2

cv(a,b)

(
n∏
i=i

xvii

)
,

where coefficients cv depend on a and b, one considers the “relaxed” second-
order derivative RDa,bf , defined by RDa,bf(x) := Da,bf(x)⊕ c0(a,b) and use
it as the input of the Algorithm 1 in the way already described in Remark 3.

3 Application to homogeneous cubic bent functions

First, we describe how one can compute, whether a given cubic function does
not have affine derivatives.

Remark 5. If the function f is cubic, its derivatives are quadratic or affine. That
means, for each a ∈ Fn

2 the first-order derivative Daf can be represented as a
quadratic form

Daf(x) =
⊕

1≤i≤j≤n

ci,jxixj ⊕ d = xCxT ⊕ d,

where C = (c′i,j)1≤i,j≤n is the coefficient matrix of the quadratic form, which is
defined as c′i,j := ci,j if i ≤ j and c′i,j := 0 otherwise. The rank of a quadratic

function f is defined as rank(f) := rankF2(C ⊕ CT ). Finally, a cubic function f
has no affine derivatives if and only if

θ0(f) := |{a ∈ Fn
2 : a 6= 0, rank(Daf) = 0}| = 0.

Using Remarks 3, 4 and 5 we checked, whether among the 200 functions in
n = 10 variables and the 480 functions in n = 12 variables, constructed in [5,
p. 149], there exist homogeneous cubic bent functions without affine derivatives
outside M#, which have relaxed linearity index less (or equal to) n/2. An ex-
ample of such a function h10 in 10 variables with r-ind(h10) = 4 is given in
the Appendix. However, all homogeneous cubic bent functions in 12 variables,
constructed in [5, p. 149] belong to theM# class. Nevertheless, among them we
found a function h12 without affine derivatives and r-ind(h12) = 6.

Since all cubic bent functions in 6 variables belong toM# [7, p. 37], one can
expect to find only homogeneous cubic bent function without affine derivatives
and relaxed linearity index equal to 3, but not outsideM#. Unfortunately, such
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functions do not exist. However, we found a non-homogeneous cubic function
f6 without affine derivatives and relaxed linearity index equal to 3. Since all
cubic bent functions in 8 variables are members of theM# class [1, p. 103] and
have affine derivatives [9], we can only expect to have homogeneous cubic bent
function with linearity index equal to 4. Such a function, denoted by h8, is given
in the Appendix.

Table 1. Linearity index ind(·), relaxed linearity index r-ind(·) and the number of
affine derivatives θ0(·) for cubic bent functions f6, h8, h10, h12, given in the Appendix.

f6 h8 h10 h12

ind(·) 3 4 2 6

r-ind(·) 3 4 4 6

θ0(·) 0 1 0 0

Finally we give our main result about the existence of cubic bent functions
outside M#, having nice cryptographic properties.

Theorem 2. On Fn
2 there exist:

1. Cubic bent functions outside M# for all n ≥ 16.

2. Cubic bent functions without affine derivatives outside M# for all n ≥ 26.

3. Homogeneous cubic bent functions outside M# for all n ≥ 26.

4. Homogeneous cubic bent functions without affine derivatives outsideM# for
all n ≥ 50.

Proof. We will prove only the last case, since it deals with the most interesting
combination of properties and the rest of the cases can be shown in the same
manner. First, we construct the following functions hk in k variables for k ∈
{50, 52, 54, 56, 58}:

h50 :=h10 ⊕ h10 ⊕ h10 ⊕ h10 ⊕ h10,
h52 :=h10 ⊕ h10 ⊕ h10 ⊕ h10 ⊕ h12,
h54 :=h10 ⊕ h10 ⊕ h10 ⊕ h12 ⊕ h12,
h56 :=h10 ⊕ h10 ⊕ h12 ⊕ h12 ⊕ h12,
h58 :=h10 ⊕ h12 ⊕ h12 ⊕ h12 ⊕ h12.

Let hn := hk ⊕
(⊕

j h10

)
be a function on Fn

2 , where k ∈ {50, 52, 54, 56, 58}.
Clearly, for any even n ≥ 50 the function hn is homogeneous cubic bent [13,
Theorem 2], does not have affine derivatives (otherwise one of the summands
has) and is outside M#, since functions h10 and h12 satisfy Corollary 1, see
Table 1, and, hence, the relaxed linearity index of hn is upper bounded by
r-ind(hn) ≤ 28 + 4j < n/2.
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4 Conclusion

In this paper we proved the existence of homogeneous cubic bent functions with-
out affine derivatives outside theM# class on Fn

2 for all n ≥ 50. However, since
we do not have enough many good examples in small number of variables, some
values of n are not covered. But we expect, that such bent functions exist for
all even n ≥ 10 and we leave this statement as a problem. Since our proof uses
the direct sum construction and functions, some of them being members ofM#,
what makes our solution not suitable for cryptographic purposes, we suggest to
work on the following problem.

Problem 1. Construct homogeneous cubic bent functions without affine deriva-
tives outside M# class not using the direct sum construction.

There are two main classes of Bent functions: the completed Maiorana-
McFarland class M# of bent functions and the completed partial spread class
PS# of bent functions, introduced by Dillon [8]. Since we have shown, that cu-
bic bent functions with nice properties can be outside M#, it is reasonable to
ask, whether the cubic bent functions with the same properties can be outside
PS#. This problem seems way more difficult than the original one, solved in
the paper, since unlike the M# class, the completed partial spread class PS#
of bent functions does not have a nice algebraic description, which can be seen
from the algebraic normal form of a Boolean function.

Problem 2. Construct homogeneous cubic bent functions without affine deriva-
tives outside PS# class.

Appendix

Algebraic normal forms of cubic bent functions used in the paper. We abbrevi-
ated 0 ≤ i ≤ 9 for the variable xi, variables x10 and x11 are replaced by a and b
respectively. The index below the function indicates the number of its variables.
Homogeneous cubic bent functions h8, h10 and h12 are taken from [6, p. 149].

f6. 012⊕ 034⊕ 235⊕ 05⊕ 13⊕ 24⊕ 25⊕ 34⊕ 35
h8. 012⊕013⊕015⊕017⊕023⊕025⊕026⊕045⊕047⊕057⊕067⊕126⊕135⊕136⊕

137⊕146⊕147⊕ 167⊕234⊕235⊕236⊕245⊕257⊕267⊕346⊕356⊕357⊕567
h10. 015 ⊕ 016 ⊕ 017 ⊕ 019 ⊕ 023 ⊕ 024 ⊕ 026 ⊕ 028 ⊕ 029 ⊕ 034 ⊕ 035 ⊕ 037 ⊕

038 ⊕ 039 ⊕ 046 ⊕ 056 ⊕ 057 ⊕ 059 ⊕ 068 ⊕ 069 ⊕ 089 ⊕ 124 ⊕ 127 ⊕ 128 ⊕
129 ⊕ 135 ⊕ 136 ⊕ 137 ⊕ 145 ⊕ 148 ⊕ 156 ⊕ 158 ⊕ 159 ⊕ 167 ⊕ 169 ⊕ 178 ⊕
179 ⊕ 189 ⊕ 236 ⊕ 238 ⊕ 245 ⊕ 246 ⊕ 247 ⊕ 249 ⊕ 257 ⊕ 258 ⊕ 269 ⊕ 278 ⊕
279 ⊕ 289 ⊕ 346 ⊕ 348 ⊕ 349 ⊕ 357 ⊕ 359 ⊕ 367 ⊕ 368 ⊕ 369 ⊕ 379 ⊕ 389 ⊕
457⊕ 458⊕ 459⊕ 468⊕ 469⊕ 478⊕ 479⊕ 489⊕ 567⊕ 579⊕ 589⊕ 679

h12. 024 ⊕ 025 ⊕ 027 ⊕ 02a ⊕ 038 ⊕ 03a ⊕ 046 ⊕ 047 ⊕ 049 ⊕ 05a ⊕ 068 ⊕ 069 ⊕
06b⊕08a⊕08b⊕127⊕129⊕135⊕136⊕138⊕13b⊕149⊕14b⊕157⊕158⊕
15a⊕16b⊕179⊕17a⊕19b⊕234⊕235⊕239⊕23a⊕23b⊕245⊕247⊕249⊕
24b⊕256⊕257⊕25a⊕279⊕27a⊕28b⊕29a⊕29b⊕2ab⊕345⊕346⊕34a⊕
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34b⊕356⊕358⊕35a⊕367⊕368⊕36b⊕38a⊕38b⊕3ab⊕456⊕457⊕45b⊕
467⊕469⊕46b⊕478⊕479⊕49b⊕567⊕568⊕578⊕57a⊕589⊕58a⊕678⊕
679⊕ 689⊕ 68b⊕ 69a⊕ 69b⊕ 789⊕ 78a⊕ 79a⊕ 7ab⊕ 89a⊕ 89b⊕ 8ab⊕ 9ab
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