
A Code-Based Signature Scheme in the Standard Model

O. Blazy1, P. Gaborit1, D.T. Mac1, A. Otmani2, and J.-P. Tillich3

1 XLIM – Université de Limoges
2 LITIS – University of Rouen Normandie

3 SECRET Project – Inria

Abstract. In this work, we propose a code-based signature scheme based on the signature
scheme of Kabatianskii, Krouk, and Smeets (known as the KKS scheme), and provide some
parameters for it to resist the current attacks. We start from the KKS scheme to construct a
chameleon hash function, and from it, build a chameleon signature scheme which is one-time
two-tier secure. We also derive a binary tree-based signature scheme from the constructed
scheme. The security of our scheme relies on the security of the KKS scheme and the hardness
of some code-based problems. We also emphasize that the security of the scheme is considered
in the standard model.

Keywords: code-based signature · chameleon hash · KKS assumption

1 Introduction

In 1997, Kabatianskii, Krouk and Smeets proposed in [8] a signature scheme based on the difficulty
of decoding an [N,K] binary random code. The public key of the scheme consists in a parity-check
matrix of this code together with k syndromes of errors whose supports are all included in a small
support of size n. The corresponding errors form the secret key of the scheme. They allow to sign
a binary message of length k by taking the corresponding linear combinations of these errors. This
linear combination is typically an error of rather small weight (since it has weight ≈ n

2) whose
syndrome can be computed by a verifier from the k public syndromes. Later on, several variants of
this scheme were proposed [9,3].

However, in 2011, Otmani and Tillich [11] devised attacks against these schemes. They showed
that if k

n is not significantly smaller than K
N , there is an efficient attack on these schemes. This did

not undermine the security of the whole scheme since the attack is still exponential in nature but
just showed that the parameters of the scheme have to be chosen carefully.

In the other direction of research, starting with the results of Krawczyk and Rabin [10], the work
of Bellare and Shoup [5], and Blazy et al. [6], another method of constructing and a new notion of
security of signature scheme are proposed, i.e., chameleon signature and two-tier security. Briefly
speaking, a chameleon signature scheme consists of two ingredients: a chameleon hash function,
and a regular signature scheme. In this type of signature scheme, the power of the recipient (i.e.,
possessing the trapdoor of the chameleon hash function) gives the scheme extra properties such
as non-transferability and non-repudiation. [6], this power is given to the signer to strengthen the
security, that is, their scheme achieves two-tier security in the standard model.

In this work, we combine the two directions to (i) construct a chameleon hash function from the
KKS assumption, and (ii) devise a code-based chameleon-hash signature scheme using this function
and also derive a corresponding binary tree-based scheme by using methods of [6]. This gives the
first code-based signature scheme with a security proof in the standard model. It is also worthwhile

to recall that obtaining an efficient and provably secure scheme in the much weaker random oracle
model is already quite a formidable challenge as illustrated by the fact that all the recent code-based
signature schemes to the NIST competition for standardizing post-quantum public key cryptography
were broken. The signature we propose here is also a post-quantum candidate and the only other
candidates for being secure against a quantum computer in the standard model are lattice based
signature schemes using bonsai trees and variations of this approach.

The rest of the paper is organized as follows. In Section 2, we recall basic facts on signature
schemes; in Section 3, we construct a chameleon hash function whose security is based on the KKS
scheme and other hard problems from coding theory; in Section 4, we derive a signature scheme
using the constructed chameleon hash function using the technique in [6]; and in the two last
sections, we give some concrete parameters for the scheme and draw some conclusions.

2 Preliminaries

2.1 Notation

Vectors are in row form and denoted by bold low-case letters whereas matrices are denoted by bold
capital letters. For a given vector v, and a subset J of indices, we let vJ = (vj)j∈J , the Hamming
norm (weight) of v is denoted by ‖v‖; its transpose is denoted by vT ; a similar notation is used for
the transpose of a matrix. x ← X means that x is drawn according to the distribution X, if X is
a distribution; or drawn uniformly at random from X when X is a set; or the output of algorithm
X, if X is an algorithm.

2.2 Signatures

We recall here the definition of a digital signature scheme.

Definition 1 (Signature scheme). A digital signature scheme Sig with message space M is a
triple of probabilistic polynomial-time algorithms, Sig = (Gen,Sign,Verify), that verifies:

• On input 1λ, algorithm Gen outputs a signing key sk and a verification key pk.
• On input a signing key sk and a message m ∈M, algorithm Sign outputs a signature σ.
• On input consisting of a public key and a message-signature pair (m,σ), algorithm Verify outputs

1 (accept) or 0 (reject).

Sig is correct if for any λ ∈ N, all (pk, sk)← Gen(1λ), all m ∈M, and all σ ← Sign(sk,m), it holds
that Verify(pk,m, σ) = 1.

For the security of a signature scheme, we consider the notion of existentially unforgeability.

Definition 2. A signature scheme, Sig, is (t, ε, q)-existential unforgeable under non-adaptive chosen-
message attacks (EUF-NCMA) if

Pr
[
ExpEUF-NCMA

Sig,F,q (λ) = 1
]
≤ ε

holds for any probabilistic polynomial-time adversary F with running time t and q signature queries,
where ExpEUF-NCMA

Sig,F,q (λ) is defined in Table 1. Existential unforgeability under chosen-message attacks
is defined similarly.

Table 1. EUF-NCMA and EUF-CMA experiments for the signature scheme.

Experiment ExpEUF-NCMA
Sig,F,q (λ): Experiment ExpEUF-CMA

Sig,F,q (λ):

Q := (m1, . . . ,mq)← F(1λ); (pk, sk)← Gen(1λ);

(pk, sk)← Gen(λ); (m∗, σ∗)← FOSign(·)(pk), where the oracle
σi ← Sign(sk,mi) for i = 1, . . . , q; OSign(·) := Sign(sk, ·)
(m∗, σ∗)← F(pk, σ1, . . . , σq); If Verify(pk,m∗, σ∗) = 1 and m∗ /∈ Q := {m1, . . . ,mq},
If Verify(pk,m∗, σ∗) = 1 and m∗ /∈ Q, where mi is the i-th query, then return 1;
then return 1, else return 0. else return 0.

2.3 Two-Tier Signatures

We recall the notion of two-tier signature schemes due to M. Bellare and S. Shoup [5]. In a two-
tier signature scheme, the key generation algorithm is split into two algorithms, the primary and
secondary key generation algorithms. The primary key is static and used for all signatures. The
secondary key is ephemeral and used for only one signature. The following definition is from [6],
which is a generalization of two-tier signature.

Definition 3 (d-time two-tier signature scheme). A two-tier signature scheme, TTSig, is a
quadruple of probabilistic polynomial-time algorithms, TTSig = (PriGen,SecGen,TTSign,TTVerify),
satisfying that:

• On input 1λ, d, PriGen outputs a primary signing key psk and a primary verification key ppk.
• On input ppk and psk, SecGen outputs a fresh verification and signing key pair (spk, ssk).
• On input psk, ssk and a message m, algorithm TTSign outputs a signature σ. We denote the

stateful variant by TTSign(psk, ssk,m; j), where j is the state.
• On input ppk, spk, a message m and a signature σ, algorithm TTVerify deterministically outputs

1 (accept) or 0 (reject). We denote the stateful variant by TTVerify(ppk, spk,m, σ; j).

Security is stated in the following definition.

Definition 4 (Security of two-tier signature scheme). A two-tier signature scheme TTSig is
(t, q, d, ε)-existential unforgeable under non-adaptive chosen-message attacks (TT-EUF-NCMA) if

Pr
[
ExpTT-EUF-NCMA

TTSign,F,q (λ, d) = 1
]
≤ ε

holds for any probabilistic polynomial-time adversary F with running time t, where ExpTT-EUF-NCMA
TTSign,F,q (λ, d)

is defined in Table 2. Existential unforgeability under adaptive chosen-message attacks (TT-EUF-CMA)
is defined similarly.

2.4 Chameleon Hash Functions

The notion of chameleon hash function was introduced by Krawczyk and Rabin [10]. Here, we briefly
recall the definition and some of its properties.

Definition 5. A chameleon hash function is defined as CHF = (CHGen,CHash,Coll), where:

Table 2. TT-EUF-NCMA and TT-EUF-CMA experiments for two-tier signature scheme.

Experiment ExpTT-EUF-NCMA
TTSign,F,q (λ, d): Experiment ExpTT-EUF-CMA

TTSign,F,q (λ, d):

(ppk, psk)← PriGen(1λ, d); (ppk, psk)← PriGen(1λ, d);

(m∗, σ∗, i∗)← FNTTSign(·)(ppk); (m∗, σ∗, i∗)← FOSKey(),TTSign(·,·)(ppk);
If TTVerify(ppk, spki∗ ,m

∗, σ∗) = 1 and m∗ /∈ Qi∗ , If TTVerify(ppk, spki∗ ,m
∗, σ∗) = 1 and m∗ /∈ Qi∗ ,

then return 1, else return 0. then return 1, else return 0.

Oracle OSKey():
i = i+ 1 and ji = 0;
(spki, sski)← SecGen(ppk, psk);

Oracle NTTSign(m1, . . . ,md): Return spki.
i = i+ 1 and (spki, sski)← SecGen(ppk, psk); Oracle TTSign(i′,m):
σj ← TTSign(psk, sski,mj) for j = 1, . . . , d; ji′ = ji′ + 1; mji′ := m
Store (m1, . . . ,md) in the list Qi; If ji′ > d or (spki′ , sski′) is undefined then return ⊥;
Return (spki, σ1, . . . , σd). σ ← TTSign(psk, sski′ ,mji′) and store mji′ in Qi′ ;

Return σ.

• CHGen(1λ) outputs a hash key chk and the corresponding trapdoor td.
• CHash(chk,m, r) outputs the hash value h.
• Coll(td, (m, r), m̂) outputs a randomness r̂ such that CHash(chk,m, r) = CHash(chk, m̂, r̂).

Security of chameleon hash function is stated as follows.

Definition 6. A chameleon hash function CHF is said to be (t, ε)-collision resistant if for an ad-
versary A running in time at most t, it holds that

Pr
(chk,td)←CHGen(1λ)

((m1,r1)6=(m2,r2))←A(chk)

[
CHash(chk,m1, r1) = CHash(chk,m2, r2)

]
≤ ε.

A chameleon hash function CHash(chk, ·, ·) with hash key chk and corresponding trapdoor td
has to meet the following properties:

1. Collision resistance: There is no efficient algorithm that can find two pairs (m1, r1) and
(m2, r2) with m1 6= m2 such that CHash(chk,m1, r1) = CHash(chk,m2, r2).

2. Trapdoor collision: Given td, there exists an efficient algorithm that on any pair (m1, r1) and
a message m2 6= m1 finds a value r2 such that CHash(chk,m1, r1) = CHash(chk,m2, r2).

3. Uniformity: All messages m induce the same probability distribution on CHash(chk, ·, ·) for r
chosen randomly. This statement can be relaxed to require that the distributions induced by
different messages are computationally indistinguishable.

2.5 Difficult Problems

In this section, we state some code-based problems which are believed to be hard. The symbol F
means some finite field.

Definition 7 (Syndrome Decoding distribution-SD). For positive integers n, k, and w, the
SD(n, k, w) Distribution chooses H ← F(n−k)×n and x ← Fn such that ‖x‖ = w, and outputs
(H,H · xT).

Definition 8 (Decision SD Problem-DSD). On input (H,yT)← F(n−k)×n×Fn−k, the Decision
SD Problem, DSD(n, k, w), asks to decide with non-negligible advantage whether (H,yT) came from
the SD(n, k, w) distribution or the uniform distribution over F(n−k)×n × Fn−k.

These two definitions are from [1], and with the assumption that the DSD(n, k, w) is hard. We also
consider the case when the weight of errors varies in an acceptable interval.

Definition 9 (Extended extSD distribution). For positive integers n, k, a, b, with a ≤ b, the
extSD(n, k, a, b) Distribution chooses H ← F(n−k)×n and x ← Fn such that a ≤ ‖x‖ ≤ b, and
outputs (H, σ(x) = H · xT).

Definition 10 (Extended Decision extSD Problem). On input (H,yT) ← F(n−k)×n × Fn−k,
the Decision extSD Problem, extDSD(n, k, a, b), asks to decide with non-negligible advantage whether
(H,yT) came from the extSD(n, k, a, b) distribution or the uniform distribution over F(n−k)×n ×
Fn−k.

Here, we make the assumption that the extDSD(n, k, a, b) problem is hard. In [8], besides providing
that the weight of the error lies in [t1, t2], the authors also reveal a matrix F, which is closely related
to the matrix H. The problem above just provides the information on the weight of the error and
nothing more, and in fact, it can be seen as a corollary of Conjecture 3 in [2].

3 The Transformation

3.1 KKS scheme

The KKS scheme uses two codes: a linear code defined by an (N −K)×N parity-check matrix H
over Fq; a linear code Chid over Fq of length n ≤ N and of dimension k which is defined by a k× n
generator matrix G. The code Chid has the property that there exist two positive integers t1 ≤ t2
such that with high probability, t1 ≤ ‖c‖ ≤ t2 for any non-zero codeword c ∈ Chid. The description
of the scheme is as follows.

1. Gen(1λ): The signer
• chooses parameters N,K, n, k, t1, and t2 with respect to the security parameter λ;
• draws a random (N −K)×N matrix H; chooses an n-subset J ⊂ {1, . . . , N};
• chooses a random k × n generator matrix G that defines a code Chid such that with high

probability, t1 ≤ ‖c‖ ≤ t2 for any non-zero codeword c ∈ Chid;

• defines F
def
= HJGT , where HJ is the restriction of H to the columns in J ;

• publishes H and F as the public key pk, and keeps J and G as the secret key sk.
2. Sign(sk,x):
• On input a message x ∈ Fkq , the signer computes v = x ·G.
• Next, the signer defines the signature s = (s1, . . . , sN) as sJ = v, and si = 0 for i /∈ J .

3 Verify(pk, (x, s)): On input a pair (x, s) ∈ Fkq × FNq , the verifier checks that t1 ≤ ‖s‖ ≤ t2, and

H · sT = F · xT .

As noticed in [8], the code Chid can be chosen as a random code. A signature corresponds to a
random codeword of Chid and it is readily seen that its weight lies in an interval [t1, t2] around n/2
with high probability.

As explained in the introduction, the original KKS scheme with its proposed parameters (and
some other variants) was efficiently attacked by Otmani and Tillich in [11]. However, as already
pointed out in [11], this attack is of exponential nature and can be avoided if the parameters are
chosen carefully. We refer to Section 5 for such a selection. We will therefore make the following
assumption.

Assumption 1 (KKS assumption) There is some region of parameters such that the above scheme
is one-time EUF-CMA.

For our purpose, it will be helpful to adapt the analysis of the key attack of [11] to the case
where the attacker has also a KKS signature (the so-called one-time signature scenario). It will be
helpful to introduce the following notions:

(i) Let Csec be the [N, k] code generated by k words c1, . . . , ck whose support is included in J and
such that (ci)J = gi, where gi is the i-th row of G. In other words, puncturing Csec with respect
to the positions that are not in J gives Chid.

(ii) Let C be the sum of Csec and the code of parity-check matrix H. It is a code of length N and
dimension K + k. C can be easily constructed by an attacker by adding to the code of parity-
check matrix H, k words c′1, . . . , c

′
k that are arbitrary solutions of H · c′i

T
= fTi , where fi is the

i-th column of F. This comes from the fact that H · cTi = fTi .

The attacker has also in the one-time signature scenario a word s of weight in the range [t1, t2]
whose support is included in J and whose syndrome H · sT is a linear combination of columns of
F. Let J ′ be the support of s.

The attack on KKS scheme suggested in [11] amounts to find codewords of Csec that reveal the
rest of the secret support J by looking for low weight codewords in C′ that is defined to be the
code C punctured in the positions belonging to J ′. Therefore, we look for codewords of weight
≤ n− |J ′| and hope they belong to C′sec that is the code Csec punctured in J ′. The best algorithms
for finding low weight codewords in a code consist in variants of information set decoding that
look for codewords of some very small weight p in a punctured code C′′ whose support contains an
information set of C and whose dimension is slightly larger than the dimension k +K of the code,
say k +K + `, where ` is small. In such a case, any codeword of C′′ can be completed in a unique
way to form a codeword of C. This can be done in polynomial time by standard linear algebra.
These algorithms output a non-negligible fraction of codewords of C′′ that are of weight p and check
whether the completion of those codewords forms a low weight codeword of C. An upper-bound on
the complexity for such an algorithm to output a codeword of Csec is given by

Proposition 1. The complexity for outputting one codeword of Csec is upper-bounded by

min
p,`

C(K + k, `, p) ·
(
N−w
K+k+`

)
∑n−w
n′=k

(
n−w
n′

)(
N−n

K+k−`−n′
)
·min

(
1, 2k−n′

(
n′

p

)) ,
where w

def
= |J ′| and C(K+k, `, p) is the complexity for outputting the codewords of length k+K+`

and weight p in a code of dimension k +K.

3.2 A chameleon hash function

In this section, we construct a chameleon hash function in the relaxed sense using the KKS assump-
tion. First, define two types of sets as

Sd
def
= { s ∈ FNq | ‖s‖ = d },

S[a,b]
def
= { s ∈ FNq | a ≤ ‖s‖ ≤ b }.

Now, we consider the function f(·, ·, ·) defined as

f(ppk,x, s)
def
= F · xT + H · sT ,

where ppk = (F,H) comes from a KKS signature scheme, x ∈ Fkq random, and s ∈ St, where t ∈ N
is defined later. On input a pair (x1, s1) ∈ Fkq × St and a message x2 6= x1 ∈ Fkq , the one who
possesses J,G (i.e., the trapdoor) can find an s2 ∈ S[t−t1,t2+t], with assumption that t ≥ t1, such
that f(ppk,x1, s1) = f(ppk,x2, s2) as follows:

1. Compute vT = xT1 − xT2 ∈ Fkq .

2. Solve the equation F ·vT = H ·sT for ‖s‖ ∈ S[t1,t2] (using the signing process of the KKS scheme
and set s to be the signature corresponding to v).

3. Define s2 = s + s1 ∈ FNq . It can be seen that ‖s2‖ ≤ ‖s‖+ ‖s1‖ ≤ t2 + t, and ‖s2‖ ≥ t− t1.

It is clear that

F · xT2 + H · sT2 = F · xT2 + H · (s + s1)T = F · (−vT + xT1) + H · sT + H · sT1 = F · xT1 + H · sT1 .

A collision is the two pairs (x1, s1) 6= (x2, s2) with x1,x2 ∈ Fkq , s1 ∈ St, and s2 ∈ S[t−t1,t+t2].
For the uniformity, given x1,x2 ∈ Fkq , the uniform property requires that when s1 ← St and
s2 ← S[t−t1,t+t2], the induced probability distributions are computationally indistinguishable, i.e.,{

f(ppk,x1, s1) | s1 ← St
} c≡

{
f(ppk,x1, s2) | s2 ← S[t−t1,t+t2]

}
.

We claim that the function f is a chameleon hash function exactly in this sense.

Proposition 2. Assume that the DSD(N,K, t) and the extDSD(N,K, t − t1, t + t2) problems are
hard, and the KKS signature scheme for t1, t2,F,H is one-time secure, then f is a chameleon hash
function.

Proof (sketch). We need to show that the function f defined as above satisfies the three properties
of a chameleon hash function.

Collision resistance: This property is guaranteed by the KKS assumption.

Trapdoor collision: One who has the trapdoor can find a collision as above.

Uniformity: Let

D1 =
{
f(ppk,x1, s1) | s1 ← St

}
and D2 =

{
f(ppk,x1, s2) | s2 ← S[t−t1,t+t2]

}
.

Using hybrid arguments, we can conclude that D1
c≡ D2.

ut

4 A Signature Scheme using f

In this section, we describe a signature scheme using the function f. We follow the methodology
from [6], first, we show how to use it to build a one-time two-tier signature scheme, then in a black
box manner we move from the one-time two-tier construction to a non-adaptive signature scheme,
and then with an extra use of f, we can obtain a regular signature scheme in the standard model.

4.1 A one-time two-tier Scheme

Our first step is establishing a one-time two tier signature. The descriptions of f, St, and S[t−t1,t+t2]
are as in Section 3. The message space is Fkq .

• PriGen(1λ): Use the setting procedure of the KKS scheme. The primary public key ppk = (H,F)
and the primary secret key is psk = (G, J).

• SecGen(ppk, psk): Choose ŝ ← St, and compute h = CHash(ppk, x̂, ŝ) for some arbitrary public
x̂ ∈ Fkq . The secondary public key is spk = h, and the secondary secret key is ssk = ŝ.

• TTSign(psk, ssk,x): The signer uses the trapdoor (G, J) to compute a collision as s = Coll(psk, x̂, ŝ,x).
The signature on x is s ∈ S[t−t1,t+t2].

• TTVerify(ppk, spk,x, s): The verifier checks the condition CHash(ppk,x, s) = h.

The security of the scheme is stated in the following theorem.

Theorem 1. If f is a (t, ε)-collision resistant chameleon hash function, then for any q ∈ N, TTSigf
is a (t′, q, 1, ε′)-TT-EUF-NCMA signature, where ε′ = ε, and t′ = t−O(q).

Proof (sketch). Let F be a probabilistic polynomial-time adversary that (t′, q, 1, ε′)-breaks the
TT-EUF-NCMA security of TTSigf . Then we construct an adversary B that (t, ε)-breaks the collision
resistance of f .

Simulation. B simulates PriGen(1λ) as follows: it sets ppk = chk and returns ppk to F . Now,
B does not have the chameleon hash trapdoor and psk is empty. Upon receiving the ith message
xi from F , B simulates NTTSign(xi) as follows: it picks a random si ← S[t−t1,t+t2] and computes
hi = CHash(ppk,xi, si); defines the secondary public key spki = hi and return spki and the signature
si. The simulation is computationally indistinguishable from the real execution.

Extracting collision. Once F outputs a forgery (x∗, s∗, i∗), B aborts if spki∗ is undefined.
Otherwise, B checks if CHash(ppk,xi∗ , si∗) = spki∗ = CHash(ppk,x∗, s∗). If that is the case, then B
returns the collision ((x∗, s∗), (xi∗ , si∗)). ut

4.2 A non-adaptive Signature Scheme

By adapting the generic constructions from [6] for the above one-time two-tier scheme, we immedi-
ately obtain a stateful scheme BinTree[TTSign] = (Gen,Sign,Verify) using a binary tree of height `
where we assume the message space to be of size 2`.

The signer will implicitly hold a binary tree of depth `. Every node v ∈ {0, 1}≤` has a label
Lv which is a secondary public key of the two-tier scheme. All nodes can be computed “on the
fly.” Each leaf is used to sign a single message. When signing message m, the signer takes the
leftmost unused leaf v` ∈ {0, 1}` in the tree and generates the label Lv` ← SecGen(ppk, psk). Define

Lv`+1
= m. Then the path from the root v0 to v` is computed. For each undefined node vi on the

path, the signer assigns label Lvi ← SecGen(ppk, psk). After that, every node on the path is signed
using the label of its parent.

The signer holds a Merkle tree. When signing the nodes on the path, the signer takes the node vi
in the top-down manner and signs both children of vi under Lvi , σi+1 ← Sign(psk, sskvi ,Childl||Childr),
where sskvi is the secondary secret key associated with node vi, and Childl and Childr are the left
and right children of node vi, respectively. The signer outputs the path and the two-tier signatures
on the path as the signature of m.

4.3 Wrapping-up

To obtain a signature scheme, one can now use the classical transformation from [10] using an extra
chameleon hash, so another use of the function f on the leaves. In other words, we pick a fresh
s ← St, set Lv`+1

= f(ppk,m, s), proceed as before to build the tree (using Lv`+1
as the target

message), and output both s, and this non-adaptive signature. The resulting signature is stateful.
Depending on the applications, one might prefer to move to a stateless scheme, once again, there
exist generic techniques, like the one presented by Goldreich in [7], where basically every randomness
is generated through a pseudo-random function. However, as here, we need to keep only the ` active
nodes, there is not a huge blow up in memory for the signer, so it is not really worth the trade-off.

5 Parameters

We have chosen the parameters of the scheme such that the best “practical” information set decoding
algorithm, namely the BJMM algorithm [4] has complexity at least 2λ for solving DSD(N,K, t),
extDSD(N,K, t− t1, t+ t2) or breaking the KKS assumption. The parameters that we have obtained
are given in Table 3. P represents the probability that the signature does not lie in the interval
[t1, t2].

Table 3. Example of parameters for the one-time two-tier scheme.

λ N K n k t1 t2 t P

128 9800 4510 1900 259 844 1056 1046 2−20

192 14700 6765 2850 387 1281 1569 1569 2−24

256 19600 9020 3800 518 1706 2094 2092 2−35

The public key is pk = (ppk, spkε), where ppk = (F,H) and spkε = SecGen(ppk, psk). The size of
pk is dominated by the size of ppk which is (N+k)·(N−K). If one wants to sign 2` times, the size of
the signature is σ = (vh, (Lv0 , σ0), . . . , (Lv` , σ`), (Lv`+1

, s)), each L∗ is of size about N−K, and each
σ∗, s is a chameleon hash opening so of size N . Hence the size of σ is (`+ 1) ·

(
2N −K

)
= O(`N).

Table 4 provides some examples of parameters for a security parameter λ = 128.

6 Conclusion

In this work, we construct a chameleon hash function. From this function, we proceed to construct
a one-time two-tier signature scheme, and finally, this scheme allows us to adapt the technique in
[6] to build a binary tree-based signature scheme.

Table 4. Examples of parameters for the tree-based scheme.

` Size of public key |pk| (bytes) Size of signatures |σ| (bytes)

8 222.7 16,976
16 222.7 32,066
32 222.7 62,246
64 222.7 122,606

However, the size of the signatures of our scheme is linear in `, that is the number of sub-
signatures, this can hardly be considered as practical (the same problem as mentioned in [6]).
Another point which is worth mentioning is that the uniform property of the constructed chameleon
hash function is in the sense of computationally indistinguishability which is weaker than the sense
in the original definition.

From the above mentioned shortcomings, two problems are immediately raised, that is, strengthen
the uniform property of the chameleon hash function and devise a code-based signature scheme that
is practical.

Acknowledgements. This work has been supported in part by the French ANR project CBCRYPT
(ANR-17-CE39-0007).

References

1. C. Aguilar, O. Blazy, J.-C. Deneuville, P. Gaborit, and G. Zémor. Efficient Encryption from Random
Quasi-Cyclic Codes. In IEEE Transactions on Information Theory, page 3927–3943, 2018.

2. M. Alekhnovich. More on average case vs. approximation complexity. In Proc. 44th Annual IEEE Symp.
on Foundations of Computer Science (FOCS), pages 298–307, 2003.

3. P. S.L.M. Barreto, R. Misoczki, and M. A. Simplicio Jr. One-time signature scheme from syndrome
decoding over generic error-correcting codes. In Journal of Systems and Software, 84(2), pages 198–204,
2011.

4. A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes in 2n/20: How 1+1 = 0
improves information set decoding. In Advances in Cryptology–EUROCRYPT 2012, LNCS. Springer,
2012.

5. M. Bellare and S. Shoup. Two-Tier Signatures, Strongly Unforgeable Signatures, and Fiat-Shamir without
Random Oracles. In T. Okamoto and X. Wang, editors, PKC 2007, volume 4450 of LNCS, pages 201216.
Springer, Apr. 2007.

6. O. Blazy, S. A. Kakvi, E. Kiltz, and J. Pan. Tightly-Secure Signatures from Chameleon Hash Functions.
In J. Katz, editor, Public-Key Cryptography–PKC 2015, volume 9020 of LNCS, pages 256279. Springer,
2015.

7. O. Goldreich Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In A.M. Odlyzko,
editor, CRYPTO’86, volume 263 of LNCS, pages 104–110. Springer, Aug. 1986.

8. G. Kabatianskii, E. Krouk, and B. Smeets. A digital signature scheme based on random error-correcting
codes. In Proceedings of the 6th IMA International Conference on Cryptography and Coding, pages
161167, London, UK, 1997. Springer-Verlag.

9. G. Kabatianskii, E. Krouk, and B. Smeets. Error Correcting Coding and Security for Data Networks:
Analysis of the Superchannel Concept. John Wiley & Sons, 2005.

10. H. Krawczyk and T. Rabin. Chameleon Signatures. In NDSS 2000. The Internet Society, Feb. 2000.
11. A. Otmani and J.-P. Tillich. An Efficient Attack on All Concrete KKS Proposals. In PQCrypto, volume

7071 of Lecture Notes in Computer Science, pages 98116, 2011.

	A Code-Based Signature Scheme in the Standard Model

