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Abstract. The additive generalized twisted Gabidulin codes, recently introduced
by Otal and Özbudak, is a large family of maximum rank distance (MRD) codes,
which covers almost all the known linear MRD codes and some non-linear MRD
codes. We introduce an interpolation approach to decoding these MRD codes and
also discuss the complexity of the proposed decoding algorithm.
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1 Introduction

Error correction codes with rank metric have gained steady attention in the literature
due to their applications in various areas, including space-time coding [9], random net-
work coding [20] and cryptography [2]. Many important properties of rank metric codes
were established in the pioneering works by Delsarte [1], Gabidulin [3] and Roth [17].
Independently in [1], [3], [17], a rank metric Singleton bound was established and the
maximum rank distance (MRD) codes achieving the bound with equality were con-
structed. Gabidulin codes, the rank metric analogues of Reed-Solomon codes, are the
most famous sub-family of MRD codes and have been extensively studied in the last
decades.

Since the invention of Gabidulin codes, it had been an open question whether other
MRD codes exist. Gabidulin codes were firstly generalized in [18], [6], where the
Frobenious automorphism in the original Gabidulin codes was generalized to arbitrary
automorphisms and the resulting codes are known as the generalized Gabidulin codes.
Significant progresses were made in the construction of new MRD codes in the last
few years. The first non-(generalized) Gabidulin MRD codes were introduced indepen-
dently by Sheekey [19] and Otal and Özbudak [10], where the latter were contained in
the former as a special case. The twisted Gabidulin codes introduced in [19] are de-
fined by adding an extra monomial to the evaluation polynomial of a Gabidulin codes
with its coefficient satisfying certain condition that lead to new MRD codes. The gen-
eralized twisted Gabidulin codes, which employed arbitrary automorphism, were later
intensively studied in [8] and were shown to contain new MRD codes inequivalent to
the known ones. Very recently Otal and Özbudak [11] introduced a family of additive
rank metric codes, known as the additive generalized twisted Gabidulin codes, which
covers all the aforementioned linear MRD codes as well as some nonlinear MRD codes.
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These new constructions and several further constructions of MRD codes were lately
summarized in [12].

For different polynomial-time decoding algorithms for Reed-Solomon codes, their
rank metric variants for Gabidulin codes were proposed [3], [17], [15], [7] and some of
them were further accelerated [21], [22]. However, it appears that the known decoding
algorithms for Gabidulin codes cannot be trivially applied to those new MRD codes. By
modifying the decoding algorithm by Kötter and Kschischang for subspace codes [5],
Randrianarisoa and Rosenthal made an attempt to decode the twisted Gabidulin codes in
[16]. Yet the proposed decoding algorithm only works for a particular case of the twisted
Gabudulin codes. Very recently the problem was further studied by Randrianarisoa in
[14], where an interpolation approach was proposed and briefly discussed.

In this paper, we further explore the interpolation-based approach introduced in [14]
and intensively investigate the zeros of a certain polynomial. As a result we obtain an
efficient decoding algorithm for the additive generalized twisted Gabidulin codes. Our
decoding algorithm can correct errors up to the error correcting ability of such codes
for all parameters, indicating that it works for all the aforementioned MRD codes. We
also show that the complexity of the decoding algorithm is dominated by the modi-
fied Berlekamp-Massey algorithm in [15] which has quadratic complexity in the code
length. The remainder of this paper is organized as follows: Section 2 recalls some
preliminaries and summarizes the relation among aforementioned known MRD codes.
Section 3 is dedicated to the interpolation decoding algorithm for the additive general-
ized twisted Gabidulin codes, where Subsection 3.1 describes the decoding approach;
Subsection 3.2 explains the reconstruction process and identifies a critical task in the
decoding algorithm; Subsection 3.3 investigates the task in detail, and Subsection 3.4
summarizes the procedure of the decoding algorithm and briefly discusses its complex-
ity. Section 4 concludes the work.

2 Preliminaries

Throughout this paper we denote by GF pqrq the finite field with qr elements for a
prime power q and an integer r ě 1.

2.1 Linearized Polynomial

A polynomial over GF pqnq of the form Lpxq “
řn´1

i“0 lix
qi is known as a linearized

polynomial over GF pqnq as it induces a GF pqq-linear transformation. The q-degree of
a nonzero linearized polynomial L “

řn´1
i“0 lix

qi is given by degqpLpxqq “ maxt0 ď

i ă n : li ‰ 0u. Considered as maps from GF pqnq to itself over GF pqq, linearized
polynomials are generally taken as

Lpxq “

n´1
ÿ

i“0

lix
qi P GF pqnqrxs{pxqn ´ xq. (1)

Let LnpGF pqnqq be the set of all polynomials of the form in (1). Equipped with the
operations of component-wise addition and composition of polynomials, LnpGF pqnqq

forms a non-commutative GF pqq-algebra.
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For a linearized polynomial Lpxq in LnpGF pqnqq, its rank, denoted by RankpLq,
is defined as the rank of its coefficients over GF pqq and can be given by RankpLq “

n ´ dimqpKer(L)q, where KerpLq is the set of roots of Lpxq in GF pqnq. It is readily
seen that the rank of a linearized polynomial Lpxq of q-degree k satisfies RankpLq ě

n ´ k since KerpLq has at most qk elements. The following proposition characterizes
an interesting property of the Dickson matrix associated with a linearized polynomial,
which is important for the decoding approach in this paper.

Proposition 1. [14] Assume a linearized polynomial Lpxq “
řn´1

i“0 lix
qi P LpGF pqnqq

has rank k. Then its associated Dickson matrix

D “

”

lq
i

i´j pmodnq

ı

nˆn
“

»

—

—

—

—

–

l0 lqn´1 ¨ ¨ ¨ lq
n´1

1

l1 lq0 ¨ ¨ ¨ lq
n´1

2
...

...
. . .

...
ln´1 lqn´2 ¨ ¨ ¨ lq

n´1

0

fi

ffi

ffi

ffi

ffi

fl

(2)

also has rank k. Moreover, any k ˆ k submatrix that is formed by k consecutive rows
and k consecutive columns in D is invertible.

2.2 Maximum Rank Distance (MRD) Codes

Let n and m be two positive integers. A rank norm of a vector pa1, a2, . . . , anq P

GF pqmqn is defined as the maximal number of linear independent coordinates ai over
GF pqq. The rank distance between two vectors is defined as the norm of the difference
of these vectors.

Definition 1. A rank metric pn,M, dq-code over GF pqq is a subset of GF pqmqn with
size M and minimum rank distance d. Furthermore, it is called a maximum rank dis-
tance (MRD) code if it attains the Singleton-like bound M ď qmintnpm´d`1q,mpn´d`1qu.

Throughout what follows we will restrict our discussion to the case that n “ m.
Evaluations of a linearized polynomial Lpxq “

řn´1
i“0 lix

qi at points a1, . . . , an P

GF pqnq can be expressed as pl0, . . . , ln´1qM, where M “

”

aq
j

i`1

ı

nˆn
with 0 ď

i, j ă n, is the Moore matrix generated from a1, . . . , an. It’s well-known that a Moore
square matrix M generated from n elements ai’s in GF pqnq is non-singular if and
only if a1, a2, . . . , ar are linearly independent over GF pqq. Hence, for n elements
a1, a2, . . . , an in GF pqnq that are linearly independent over GF pqq, one easily obtains
a one-to-one correspondence between LnpGF pqnqq and GF pqnqn.

In the sequel we assume n “ m, a1, a2, . . . , an are linearly independent evaluation
points and will recall the known MRD codes in terms of their corresponding linearized
polynomials in LnpGF pqnqq.

The Gabidulin code G over GF pqnq with length n and dimension k is defined by

G “

!

l0x ` l1x
q ` ¨ ¨ ¨ ` lk´1x

qk´1

: li P GF pqnq

)

. (3)
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The Gabidulin codes are MRD codes [3] and have found applications in random linear
coding [5], [20] and cryptography [2]. In the following we recall a family of MRD
codes proposed by Otal and Özbudak [11].

Proposition 2. [11] Let n, k, s, h P Z` satisfying ps, nq “ 1 and k ă n. Let q “ qu0

and η P GF pqnq such that η
qsn´1
qs0´1 ‰ p´1qnku. Then the set

Hk,s,q0pη, hq “

!

l0x ` l1x
qs ` ¨ ¨ ¨ ` lk´1x

qspk´1q
` ηl

qh0
0 xqsk : li P GF pqnq

)

(4)

is an GF pq0q-linear (but does not need to be GF pqq-linear) MRD code of size qnk and
distance n ´ k ` 1.

The code defined by (4) is called additive generalized twisted Gabidulin code or AGTG
code for short. From the definitions in (3) and (4), the relations of the existing MRD
codes (except for the further generalized twisted Gabidulin codes lately discussed by
Puchinger et.al [13]) can be summarized as follows [12]:

– If u|h, an AGTG code is a GTG (generalized twisted Gabidulin) code [8].
– If u|h and s “ 1, an AGTG code is a TG (twisted Gabidulin) code [19].
– If η “ 0, an AGTG code is a GG (generalized Gabidulin) code [6].
– If η “ 0 and s “ 1, an AGTG code is a Gabidulin code.
– If q “ 2, the AGTG, GTG and TG codes all reduce to GG codes since any nonzero

element η P GF p2nq has norm 1. Furthermore, when s “ 1, they reduce to the
original Gabidulin codes.

3 Interpolation decoding of AGTG codes

Throughout what follows we will consider the decoding of AGTG codes over finite
fields in characteristic 2 and denote ris :“ qsi, i “ 0, . . . , n ´ 1 for simplicity.

3.1 The error interpolation polynomial

With an AGTG code, the encoding of a message f “ pf0, . . . , fk´1q is the evaluation

of the linearized polynomial fpxq “
řk´1

i“0 fix
ris ` ηf

qh0
0 xrks at points a1, . . . , an in

GF pqnq, which are linearly independent over GF pqq.

Let f̃ “ pf0, . . . , fk´1, ηf
qh0
0 , 0, . . . , 0q be an n-dimensional vector over GF pqnq

and M “

”

a
rjs
i`1

ı

nˆn
be the Moore matrix generated by ai’s, where 0 ď i, j ă n.

Then the encoding of AGTG codes can be expressed as

pf0, . . . , fk´1q ÞÑ c “ pfpa1q, . . . , fpanqq “ f̃MT , (5)

where MT is the transpose of M. The interpolation-based decoding approach in this
paper is described in the following.
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For a received word r “ c ` e with Rankpeq “ t ď tn´k
2 u, suppose gpxq “

řn´1
i“0 gix

ris is a polynomial in LnpGF pqnqq satisfying gpaiq “ ei “ ri ` ci for i “

1, . . . , n. It is clear that the error vector e is uniquely determined by the polynomial
gpxq, which is termed the error interpolation polynomial in this paper. Denoting g “

pg0, . . . , gn´1q, we easily obtain r “ c ` e “ pf̃ ` gq ¨ MT . This is equivalent to

r ¨ pMT q´1 “ pf0 ` g0, . . . , fk´1 ` gk´1, f
qh0
0 ` gk, gk`1, . . . , gn´1q. (6)

By letting r “ pr0, . . . , rn´1q “ r ¨ pMT q´1, we derive

pgk`1, . . . , gn´1q “ prk`1, . . . , rn´1q and ηg
qh0
0 ` gk “ ηr

qh0
0 ` rk (7)

since ηf
qh0
0 ` gk “ rk, and f0 ` g0 “ r0.

Therefore, the task of interpolation decoding is to reconstruct gpxq from the avail-
able information characterized in (7). This reconstruction process will be discussed in
Subsection 3.2 in detail.

3.2 Reconstructing the error interpolation polynomial

This subsection describes how the error interpolation polynomial gpxq can be recon-
structed from (7) by applying the property of the associated Dickson polynomial of
gpxq in Proposition 1.

From the definition in (2), the Dickson matrix associated with gpxq is given by

G “

”

g
rjs

i´j pmod nq

ı

nˆn
“

“

G0 G1 . . . Gn´1

‰

(8)

where the indices i, j run through t0, 1, ¨ ¨ ¨ , n ´ 1u and Gj is the j-th column of G.
From Proposition 1 it follows that G has rank t and any t ˆ t matrix formed by t

successive rows and columns in G is nonsingular. Hence the pn ´ pk ` tqq-th column
Gn´pk`tq can be expressed as Gn´pk`tq “ λ0Gn´pk`tq`1 ` λ1Gn´pk`tq`2 ` ¨ ¨ ¨ `

λt´1Gn´k, where λ0, . . . , λt´1 are elements in GF pqnq and they cannot be all equal
to zero (since Gt “ 0 implies gpxq “ 0). This yields the following recursive equations:

g
rn´pk`tqs

k`t`i “ λ0g
rn´pk`tq`1s

k`t`i´1 ` λ1g
rn´pk`tq`2s

k`t`i´2 ` ¨ ¨ ¨ ` λt´1g
rn´ks

k`i (9)

for i “ 0, 1, . . . , n ´ 1. The above recurrence equation is the key equation for the
decoding algorithm in this paper. It enables us to reconstruct gpxq in two steps:

Step 1. derive the coefficients λ0, . . . , λt´1 from (7) and (9);
Step 2. use λ0, . . . , λt´1 to compute gk´1, . . . , g0 recursively from (9).

The following discussion shows how the procedure of Step 1 works.
Recall from (7) that the elements gk`1, . . . , gn´1 are known. This gives the follow-

ing pn ´ 1q ´ k ´ t linear equations in variables λ0, . . . , λt´1:

g
rn´pk`tqs

k`t`i “ λ0g
rn´pk`tq`1s

k`t`i´1 ` λ1g
rn´pk`tq`2s

k`t`i´2 ` ¨ ¨ ¨ ` λt´1g
rn´ks

k`i (10)
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for i “ 1, . . . , n ´ 1 ´ pk ` tq. As the rank t satisfies Rankpeq “ t ď tn´k
2 u, i.e.,

2t ` k ď n, we divide the discussion into two cases.
Case 1: 2t`k ă n. In this case, the n´k´t´1 ě t equations in variables λ0, . . . , λt´1

given in (10) have rank t. Thus one can uniquely determine the elements λ0, . . . , λt´1.
The modified Berlekamp-Massey algorithm [15] will be employed here for efficient
implementation.
Case 2: 2t ` k “ n. In this case (10) gives n ´ k ´ t ´ 1 “ t ´ 1 linear equations
in variables λ0, . . . , λt´1. For such an under-determined system of linear equations, we
will have a set of solutions pλ0, . . . , λt´1q that has dimension 2 over GF pqnq. Namely,
the solutions pλ0, . . . , λt´1q will be of the form

λ ` ωλ1 “ pλ0 ` ωλ1
0, . . . , λt´1 ` ωλ1

t´1q,

where λ, λ1 are fixed elements in GF pqnqt and ω runs through GF pqnq. Next we will
show how the element ω is determined from the other available information in (7).

Observe that in (9), by taking i “ t and i “ 0, one gets the following two equations

g
rts
0 “ λ0g

rt`1s
n´1 `λ1g

rt`2s
n´2 ` ¨ ¨ ¨ ` λt´1g

r2ts
n´t,

g
rts
k`t “ λ0g

rt`1s

k`t´1 `λ1g
rt`2s

k`t´2 ` ¨ ¨ ¨ ` λt´1g
r2ts
k .

These are equivalent to

g0 “ λ
rn´ts
0 g

r1s
n´1 `λ

rn´ts
1 g

r2s
n´2 ` ¨ ¨ ¨ ` λ

rn´ts
t´1 g

rts
n´t,

gk`t “ λ
rn´ts
0 g

r1s

k`t´1 `λ
rn´ts
1 g

r2s

k`t´2 ` ¨ ¨ ¨ ` λ
rn´ts
t´1 g

rts
k .

Substituting λ ` ωλ1 into these two equations and re-arranging them gives
#

g0 ` c0 ` c1ω
qspn´tq

“ 0

pc2 ` c3ω
qspn´tq

qgk ` pc4 ` c5ω
qspn´tq

q “ 0,
(11)

where c0, . . . , c5 are derived from λ, λ1 and the known gi’s. Furthermore, using the fact

ηg
qh0
0 ` gk “ ηr

qh0
0 ` rk “ c6, one can reduce (11) as

pc2 ` c3ω
qspn´tq

qpc6 ` ηpc0 ` c1ω
qspn´tq

qq
h
0 q ` pc4 ` c5ω

qspn´tq
q “ 0.

This equation can be re-arranged as

u0ω
q
i1
0 `q

i2
0 ` u1ω

q
i1
0 ` u2ω

q
i2
0 ` u3 “ 0, (12)

where i1 “ h ` uspn ´ tq, i2 “ uspn ´ tq, u0, . . . , u3 are derived from c0, . . . , c5 and
η. Furthermore, letting x “ ωq

i2
0 and v “ i1 ´ i2, we obtain

u0x
qv0 `1 ` u1x

qv0 ` u2x ` u3 “ 0. (13)

Since any vector e with t errors, where t “ n´k
2 , can be uniquely decoded, the polyno-

mial
P pxq “ u0x

qv0 `1 ` u1x
qv0 ` u2x ` u3
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should have exactly one zero. Furthermore, the unique solution x “ ωq
i2
0 lead to a

unique solution λ`ωλ1 in (10). With a unique solution λ0, . . . , λt´1 in Step 1, one can
recursively compute g0, . . . , gk´1 according to (9) in Step 2.

From the above discussion, it is clear that the remaining part of the decoding task is
to solve the equation P pxq “ 0 when it has exactly one solution. This will be addressed
in the next subsection.

3.3 Solving the equation P pxq “ 0 over finite fields of characteristic 2

This subsection will solve the equation

P pxq “ u0x
qv0 `1 ` u1x

qv0 ` u2x ` u3 “ 0 (14)

when it has only one solution in GF pqnq.
In the case of u0 “ 0, (14) is reduced to an affine equation u1x

qv0 ` u2x ` u3 “ 0.
When u1 “ 0, u2 ‰ 0 or u1 ‰ 0, u2 “ 0, this affine equation has a unique solution
x “ u3{u2 or x “ pu3{u1qq

un´v
0 , respectively. Let d “ gcdpv, unq. When u1u2 ‰ 0,

if u2{u1 is a pqd0 ´ 1q-th power of an element in GF pqnq, then P pxq “ 0 has either qd0
solutions or no solution in GF pqnq; otherwise P pxq “ 0 has a single solution x “ 0 if
u3 “ 0 and x “ γ if u3 ‰ 0.

In the case that u0 ‰ 0, the equation P pxq “ 0 is equivalent to

Qpxq “ xqv0 `1 ` a1x
qv0 ` a2x ` a3 “ 0, (15)

where ai “ ui{u0 for i “ 1, 2, 3. The polynomial Qpxq is closely related to the polyno-
mial Fapxq “ x2l`1`x`a discussed by Kolosha and Helleseth in [4] over a finite field
of characteristic 2. The following theorem extends the result in [4] to a general form,
which enables us to directly determine the single solution of the equation Qpxq “ 0.

Theorem 1. Let l and m be two positive integers with l ă m and m1 “ m{ gcdpl,mq.
Define two sequencea of polynomials derived from the recurrences: C1pxq “ C2pxq “

Z1pxq “ 1 and

Ci`2pxq “ Ci`1pxq ` x2ilCipxq, Zipxq “ Ci`1pxq ` xC2l

i´1pxq (16)

for i “ 1, 2, ¨ ¨ ¨ ,m1 ´ 1. Then the polynomial Gpxq “ x2l`1 ` a1x
2l ` a2x ` a3

has exactly one zero in GF p2mq if and only if one of the following conditions holds:
(i) a2 “ a2

l

1 and a3 “ a2
l`1

1 ; or (ii) a2 “ a2
l

1 , a3 ‰ a2
l`1

1 and m1 is odd; or (iii)
a2 ‰ a2

l

1 , Zm1
paq “ 0 and Cm1

paq ‰ 0 for a “ pa1a2 ` a3q
L

pa1 ` a2
m´l

2 q2
l`1.

Moreover, for Cases (i) and (ii), the unique zero of Qpxq is given by x “ a1 ` pa1a2 `

a3q
1

2l`1 , and for Case (iii), the unique zero is given by x “ paC2l´1
m1

paqq2
m´1

.

Proof. It is readily seen that if a2 “ a2
l

1 , the polynomial Gpxq “ x2l`1`a1x
2l `a2x`

a3 can be rewritten as Gpxq “ px`a1q2
l`1 `a2

l`1
1 `a3. Thus the statements in Cases

i) and ii) follow from the fact gcdp2l ` 1, 2m ´ 1q “ 1 if m1 is odd. If a2 ‰ a2
l

1 , the
polynomial Gpxq can be reduced to a polynomial of the form Fapxq “ y2

l`1 ` y ` a
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by the following substitution: we take a nonzero element s P GF p2mq such that s “

pa2
l

1 ` a2q2
m´l

“ pa1 ` a2
m´l

2 q, and substitute x “ sy ` a1 in Gpxq. Then we obtain

Qpsy ` a1q “psy ` a1q2
l`1 ` a1psy ` a1q2

l

` a2psy ` a1q ` a3

“ps2
l`1y2

l`1 ` a1s
2ly2

l

` a2
l

1 sy ` a2
l`1

1 q

` pa1s
2ly2

l

` a2
l`1

1 q ` a2psy ` a1q ` a3

“s2
l`1y2

l`1 ` spa2
l

1 ` a2qy ` a1a2 ` a3

“s2
l`1py2

l`1 ` y ` aq,

where
a “

a1a2 ` a3

s2l`1
“

a1a2 ` a3

pa1 ` a2
m´l

2 qp2l`1q
.

It is clear that in this case y is a zero of Fapyq “ y2
l`1`y`a if and only if x “ sy`a1

is a zero of Gpxq. The claim in Case iii) thus follows from Proposition 4 in [4]. ■

By taking q0 “ 2w, l “ vw, and m “ wun, the zero of the polynomial Gpxq “

xqv0 `1 ` a1x
qv0 ` a2x ` a3 can be immediately derived from Theorem 1.

Remark 1. Theorem 1 characterizes an explicit criteria for checking whether the equa-
tion Qpxq “ xqv0 `1 ` a1x

qv0 ` a2x ` a3 “ 0 has exactly one solution in GF pqnq

or not. Moreover, the unique solution of Qpxq “ 0 is given by a formula in terms of
the coefficients a1, a2, a3. Despite their complicatedness, the criteria and the formula in
Theorem 1 can be directly computed in the order of Oplq multiplications, and negligible
cyclic shifts and addition in GF pqnq.

3.4 The decoding algorithm of AGTG codes over finite fields of characteristic 2

With the discussion in Subsections 3.1-3.3, we summarize the interpolation polynomial
decoding algorithm of AGTG codes in Algorithm 1.

Remark 2. From the summary of known MRD codes in Subsection 2.2, we know that
the AGTG codes includes the original Gabidulin codes, GG codes, TG codes and GTG
codes as sub-families. Algorithm 1 can be used to decode up to tn´k

2 u errors for all
AGTG codes. Hence it can be applied to the aforementioned MRD codes. In this paper
we further investigate the zero of the polynomial P pxq for the case of characteristic
2. This is our major contribution in Algorithm 1, and is the key difference between
Algorithm 1 and the one sketched in [14].

Remark 3. It can be seen from each step in Algorithm 1 that errors in the AGTG codes
can be efficiently decoded, especially when a low-complexity self-dual normal basis
is used if it exists. To be more specific, Line 1 can be calculated by the q-transform
with complexity Opn3q over GF pqq when a low-complexity self-dual normal basis is
used; the modified Berlekamp-Massey algorithm in Line 4 has complexity Oppn´kq2q

over GF pqnq; Line 8 can be performed by the modified Berlekamp-Massey algorithm,
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Algorithm 1: Interpolation decoding of AGTG codes

Input: A received word r with t ď tn´k
2 u errors and linearly independent

evaluation points a1, . . . , an
Output: The correct codeword c P GF pqnqn or “Decoding Failure”

1 Calculate r “ pr0, . . . , rn´1q “ r ¨ pMT q´1 in (6);

2 Set pgk`1, . . . , gn´1q “ prk`1, . . . , rn´1q and ηg
qh0
0 ` gk “ ηr

qh0
0 ` rk;

3 for t P t1, . . . , tn´k
2 uu do

4 Applying the modified Berlekamp-Massey algorithm in determination of
pλ0, . . . , λt´1q from (10);

5 end
6 if a unique pλ0, . . . , λt´1q is not found then
7 Set t “ tn´k

2 u;
8 Solve the under-determined system in (10) and set its solution as λ ` ωλ1;
9 Calculate the polynomial P pxq “ u0x

qv0 `1 ` u1x
qv0 ` u2x ` u3 in (14);

10 if u0 “ 0 then
11 Calculate the zero to P pxq if one of the conidtions after (14) are satisfied
12 else
13 Calculate the zero to P pxq by Cases i)-iii) in Theorem 1
14 end
15 Set pλ0, . . . , λt´1q “ λ ` ωλ1 with ω as the zero of P pxq;
16 end
17 Calculate gi for i “ 0, . . . , k ´ 1 from the recursive equation (9);
18 if g0, . . . , gn´1 is sucessfully determined then
19 Return the codeword c “ r ` gM
20 else
21 Return “Decoding Failure”
22 end

which has Oppn ´ kq2q over GF pqnq; Lines 9, 11 can be done with constant opera-
tions in GF pqnq; Step 13 can be done with linear complexity in GF pqnq; the recursive
calculation of g0, . . . , gk´1 in Line 17 takes Opktq operations in GF pqnq; Line 19 can
be calculated by the q-transform with complexity Opn3q over GF pqq. To sum up, the
overall complexity of Algorithm 1 is dominated by the modified Berlekamp-Massey
algorithm, which has quadratic complexity in GF pqnq.

4 Conclusion

This paper presents the first decoding algorithm for additive generalized twisted
Gabidulin codes that covers almost all the known linear maximum rank distance codes.
The main contribution of this paper, which is different from the work in [14] is the de-
tailed investigation of zeros of the polynomial P pxq “ u0x

qv0 `1`u1x
qv0 `u2x`u3 “ 0.



10 C. Li et al.

References

1. Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. Journal of
Combinatorial Theory, Series A 25(3), 226 – 241 (1978)

2. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and
their application in cryptology. In: Davies, D.W. (ed.) Advances in Cryptology — EURO-
CRYPT ’91. pp. 482–489. Springer Berlin Heidelberg, Berlin, Heidelberg (1991)

3. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Infor-
matsii 21(1), 3–16 (1985)

4. Helleseth, T., Kholosha, A.: x2l ` 1 ` x ` a and related affine polynomials over GF p2kq.
Cryptography and Communications 2(1), 85–109 (2010)

5. Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding.
IEEE Transactions on Information Theory 54(8), 3579–3591 (Aug 2008)

6. Kshevetskiy, A., Gabidulin, E.: The new construction of rank codes. In: Information Theory,
2005. ISIT 2005. Proceedings. International Symposium on. pp. 2105–2108. IEEE (2005)

7. Loidreau, P.: A Welch–Berlekamp like algorithm for decoding Gabidulin codes. In: Ytrehus,
Ø. (ed.) Coding and Cryptography. pp. 36–45. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2006)

8. Lunardon, G., Trombetti, R., Zhou, Y.: Generalized twisted Gabidulin codes. Journal of
Combinatorial Theory, Series A 159, 79–106 (2018)

9. Lusina, P., Gabidulin, E., Bossert, M.: Maximum rank distance codes as space-time codes.
IEEE Transactions on Information Theory 49(10), 2757–2760 (Oct 2003)
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