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Abstract. In this paper we describe a way to exploit decryption failures
in Low Rank Parity Check (LRPC) based IND-CPA encryption schemes.
In particular we focus on Ideal-LRPC codes.
We first describe an algebraic approach that allows to model the fact
that a decryption failure happens.This approach leads to very high com-
plexities but also affects IND-CCA schemes. We then use the fact that
an attacker can manipulate the errors that are sent to the decryption
oracle in the case of IND-CPA schemes to propose an attack in the spirit
of the reaction attack targetting QC-MDPC codes by Guo, Johansson
and Stankovski, adapted to the rank metric. We provide examples of
parameters that are broken by this attack in an attack model where the
number of calls to the decryption oracle is not limited to 264.

Keywords: Rank metric, Low Rank Parity Check codes, Reaction attack

1 Introduction

Recently code-based cryptography has received a lot of attention, especially since
the start of the NIST post-quantum standardization process. Instances of the
McEliece cryptosystem in the Hamming metric, using Goppa or MDPC codes,
have the disadvantage of having relatively large public keys. A solution to solve
this problem is change the metric and use the rank metric, as in the LAKE [1]
and LOCKER [2] proposals.

These proposals are based on the Low Rank Parity Check (LRPC) codes [5],
which are good candidates for the McEliece cryptosystem because of their low
algebraic structure. While the combinatorial attacks ([6], [4]) and the algebraic
attacks have already been studied, there is currently no attack exploiting the fact
that the decoding algorithm of LRPC codes is probabilistic and can therefore
lead to decryption failures.

In this paper we propose a new attack exploiting these decryption failures,
in the spirit of [7] targeting the QC-MDPC codes [9] in the Hamming metric.



2 Generalities on the rank metric

We use the same definitions the rank metric and rank metric codes available in
LAKE [1] and LOCKER [2] as well as in [3].

In particular, in the following, we will consider Fqm -linear codes embedded
with the rank metric. The rank weight of a vector x = (x1, . . . , xn) ∈ Fnqm is
denoted ‖x‖.

We recall the notion of support of a word :

Definition 1 (Support of a word). Let x = (x1, . . . , xn) ∈ Fnqm . The support
E of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates
of x:

E = 〈x1, . . . , xn〉Fq

and we have dimE = ‖x‖.

The codes used in the following section are ideal codes. We recall the defini-
tion here :

Definition 2 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n
and g1, g2 ∈ Fnqm . Let G1(X) =

∑n−1
i=0 g1iX

i and G2(X) =
∑n−1
j=0 g2jX

j the
polynomials associated respectively to g1 and g2.

By definition, the [2n, n]qm ideal code C of generator (g1, g2) is the code with
generator matrix

G =


G1(X) mod P G2(X) mod P
XG1(X) mod P XG2(X) mod P

...
...

Xn−1G1(X) mod P Xn−1G2(X) mod P


More concisely, we have C = {(xg1 mod P,xg2 mod P ),x ∈ Fnqm}. We will
often omit to precise the polynomial P if there is no ambiguity.

If g1 is invertible, under systematic form, C = {(x,xg),x ∈ Fnqm} with
g = g−1

1 g2 mod P .

3 Ideal-LRPC encryption scheme

3.1 High level overview

The LRPC cryptosystem described in [5] is an instantiation of the McEliece
setting using the LRPC codes. The most recent use of the ideal LRPC codes as
an encryption scheme is described in LOCKER [2]. We recall the key exchange
version in figure 1.

This scheme can easily be converted into an encryption scheme by encoding
the message m into the error vector (e1, e2).



Alice Bob

choose random F of dimension d
(h1,h2)

$← F k × F k s.t. h1 invertible
mod P

Supp(h1,h2) = F, h← h−1
1 h2 mod P

s = h1c = h1e1 + h2e2 mod P
E ← Decode(s, (h1,h2))

G (E)

h−−−−−−→

c←−−−−−

Shared
Secret

choose random E of dimension r
(e1, e2)

$← Ek × Ek, Supp(e1, e2) = E
c = e1 + e2h mod P

G (E)

Fig. 1. Key exchange version of the Ideal-LRPC based cryptosystem

3.2 Decoding algorithm

Definition 3. Product space
The product space two vector space of U and V , of respective dimensions d1

and d2, denoted < U.V > is the vector space spanned by {u1.v1, . . . , u1.vd2 , u2.v1, . . . , ud1 .vd2}.

Let {F1, . . . Fd} be a basis of F , the support of the secret parity-check matrix,
and {E1, . . . , Er} be a basis of E, the support of the error vector.

We recall the basic decoding algorithm of LRPC codes from [5] :

Algorithm 1: Basic decoding algorithm of LRPC codes
Data: The syndrome s, the low rank parity-check matrix H
Result: The error vector e

1 Compute the syndrome space S = 〈s1, ..., sn−k〉
2 Define Si = F−1

i .S
3 Compute S1 ∩ ... ∩ Sd. With a high probability, S1 ∩ ... ∩ Sd = E

4 Solve the system Het = s by writing ei =
n∑

i=1

eijEj

Theorem 1. The probability of failure of algorithm 1 is q−(n−k+1−rd), the prob-
ability that the coordinates of the syndrome do not span the whole product space
〈E.F 〉.

4 A key recovery attack using decryption failures based
on algebraic equations

In this section we describe a new attack against the schemes based on the LRPC
codes exploiting decryption failures. We consider Ideal-LRPC codes, in particular
we assume that the secret parity check matrix H is derived from its first row
(h1,h2), denoted h in the following.



We know from theorem 1 that if a decryption failure occurs, the vector space
spanned by the syndrome coordinates is a subspace of the product space 〈E.F 〉
(more details are given about this in [5]).

The syndrome not spanning the whole product space 〈E.F 〉 is equivalent to
its associated matrix not being of rank rd, which can be put in equations by
using the fact that all of its rd× rd minors are null.

Formal product

Even if we never have access to the syndrome associated with the secret
matrix when attacking these schemes, we can use a formal product (that was
described in [5] in order to reduce the decoding complexity) to write the coordi-
nates of the syndrome in a formal basis of 〈E.F 〉. This gives us an (n− k)× rd
matrix over Fq that only depends of the coordinates of the secret vector h writ-
ten in a basis of F , and of the coordinates of the error written in a basis of E.

For example if we consider the first coordinate of the syndrome s1 =
n∑
j=1

hjej ,

then by unfolding hj in a basis {F1, . . . , Fd} of F and ej in a basis {E1, . . . , Er}

of E, we can write s1 =
n∑
j=1

d∑
u=1

r∑
v=1

hjuFuejvEv. We can view this relation as a

linear system with nd unknowns (the hju) and rd equations in the base field Fq
:



h11 0 0 h21 0 0 hn1 0 0

0
. . . 0 0

. . . 0 · · · 0
. . . 0

0 0 h11 0 0 h21 0 0 hn1
h12 0 0 h22 0 0 hn2 0 0

0
. . . 0 0

. . . 0 · · · 0
. . . 0

0 0 h12 0 0 h22 0 0 hn2
...

...
...

h1d 0 0 h2d 0 0 hnd 0 0

0
. . . 0 0

. . . 0 · · · 0
. . . 0

0 0 h1d 0 0 h2d 0 0 hnd





e11
e12
...
e1r
e21
...
e2r
...
en1
...
enr



=



s111
...

s1d1
s112
...

s1d2
...

s11r
...

s1dr



(1)

By doing that for each of the syndrome coordinates si, we obtain an (n −
k) × rd matrix in Fq. In our case the number of unknowns is nd since we are
considering ideal codes. In the general case, the number of unknowns would grow
to nd(n− k).

Complexity and queries analysis

We can try to solve a system in those nd unknowns. We do not give details in
this extended abstract, by since each decryption failures allows to obtain

(
n−k
rd

)
equations of degree rd, the complexity of solving this system by linearization



is ((nd)rd)ω, where ω is the linear algebra constant. The number of queries to
the decryption oracle is (nd)rd

(n−k
rd )
× 1
DFR where DFR is the decryption failure rate.

Here is an example on a parameter set from [5] :

n k q r d DFR Security parameter Complexity Oracle calls
94 47 2 5 5 2−23 128 2525 2201

5 A more efficient approach based on the form of the
error

5.1 Attack overview

In this section, we consider an attack model in which the attacker can manipulate
the errors sent to the decryption oracle (the case of IND-CPA schemes).

The idea is as follows : if we consider an error vector consisting of l non-

null coordinates followed by zeros, the equation 1 becomes s1 =
l∑

j=1

hjej =

l∑
j=1

d∑
u=1

r∑
v=1

hjuFuejvEv.

By making guesses on parts of the secret key, we can find error vectors such
that they set coordinates of the syndrome to 0, hence increasing the DFR. The
framework of our attack is described figure 2.

1. Choose a subset of l coordinates (∈ Fq) in the secret key unfolded in a basis of F
2. Enumerate every possibility for these l coordinates
3. For each guess :

(a) Compute every error vector such that a subset of the coordinates of s1 is set
to 0

(b) Send all of these errors to the decryption oracle, and count the number of
failures nfail

4. The highest value of nfail corresponds to the correct guess of the secret key
5. Repeat steps 2 to 5 until all coordinates are covered

Fig. 2. Overview of our reaction attack

Then, after recovering the coordinates of h, we can recover the secret parity-
check matrix H :

Proposition 1. The knowledge of the coordinates of the vector h written in a
basis of its support F allows to recover the whole secret parity-check matrix H.

Proof. (Sketch)
We know that h is a row of a parity check matrix of the LRPC code, hence

Ght = 0, where G is a generator matrix of the code. When both the support



and the coordinates are unknown, this system is bilinear in the Fjl (basis of the
support) and the hi (coordinates).

The knowledge of the coordinates leads to a linear system of dm unknowns
in Fq (the Fjl) and nm equations.

5.2 Description of the attack

A first idea is to find error vectors such that s1 = 0 : if we guess all the hju,
we obtain a system of lr unknowns (the ejv) and rd equations, one for each
coordinate of s1 written in a basis of 〈E.F 〉. It means that in the case lr > rd,
we are able to forge errors that fix a coordinate of the syndrome.

Proposition 2. If λ coordinates of s are set to 0, then the decoding failure
probability becomes q−(n−k+1−rd)+λ.

Proof. As in [5] we evaluate the probability that the syndrome coordinates do
not span the whole vector space 〈E.F 〉, which is now q−(n−k+1−λ−rd) because
of the λ null coordinates. ut

If the number of errors sent to the oracle is high enough, we should be able to
tell if the DFR follows the probability given in theorem 1 or in proposition 2. If
the DFR is higher than excepted, then the corresponding h is a good candidate
for the l first coordinates of the secret key.

The problem with this approach is that we need to enumerate ld coordinates
of the secret key at a time, which makes the numbers of errors we have to send
to the decryption oracle very high in order to distinguish the correct guess from
the qld − 1 others.

We now present an improvement of this approach that allows to enumerate
only l coordinates at a time, leading to a smaller complexity.

Setting one coordinate of s1 to 0

The idea is now to enumerate all the possibilities for the coordinates hj1,
that is to say the coordinates corresponding to the vector F1 of the basis of F
(this has to be repeated for other coordinates to recover the full secret key). For
each of these guesses we can find error vectors such that s111 = 0.

Decryption failure analysis

In order to exploit the fact that s111 = 0, we need to know by how much
the decryption failure rate is affected by setting a coordinate of the (n− k)× rd
matrix associated to the syndrome to 0.

Proposition 3. The probability that a random n ×m matrix M , with n > m,
is of rank m knowing that one of its coordinates is fixed to 0, is :

(qn−1 − 1)
m−1∏
i=1

(qn − qi)

qnm−1



Proof. We start by counting the number of n×mmatrices of rankm, considering
a coordinate is fixed to 0. We have (qn−1 − 1) possible choices for the column
containing the fixed coordinate. Then for each of the remaining columns, we
have qn choices minus every linear combination of the precedent columns. From

that we have (qn−1 − 1)
m−1∏
i=1

(qn − qi) possible matrices.

We then divide by the total number of possible matrices in order to obtain
the probability.

ut

Proposition 4. Given the probabilities p1 and p2 :

– p1 the probability that a random (n− k)× rd matrix has rank rd
– p2 the probability that a random (n − k) × rd matrix has rank rd knowing

that one coordinate is fixed to 0

When n− k > rd, we have p1 − p2 = 1
qn−k +O(q

rd−2(n−k)
q−1 ).

Proof. We have p1 =

rd−1∏
i=0

(qn−k−qi)

q(n−k)rd and p2 =
(qn−k−1−1)

m−1∏
i=1

(qn−k−qi)

q(n−k)rd−1 from 3,
hence :

p1 − p2 =

rd−1∏
i=1

(qn−k − qi)

q(n−k)rd

A calculation shows that, when n− k > rd :

rd−1∏
i=1

(qn−k − qi)

q(n−k)rd
=

1

qn−k
+O(q

rd−2(n−k)
q−1 )

ut
We now want to estimate how many non-null coordinates are needed in the

error vector in order to obtain enough samples to distinguish between two prob-
abilities of failure.

Proposition 5. Suppose we have :

– S incorrect guesses with probability of failure p1
– 1 correct guess with probability of failure p2 = p1 + ε

If we denote by N the number of calls to the decryption oracle for each guess,
then in order to distinguish with a good probability the correct guess from the S
incorrect ones, N must satisfy the following inequality :

1

S
>

Np1

(N(p2−p1)
2 )2



Proof. The sequence of calls to the decryption oracle for a fixed guess can be
seen as a Bernoulli process with N trials of parameter either p1 if the guess
was incorrect or p2 if the guess was correct. The number of decryption errors
can thus be seen as a binomial distribution. We denote X1 (respectively X2)
the random variable following the binomial distribution of parameters N and p1
(respectively p2).

For any incorrect guess, the expected value E(X1) is equal to Np1, and the
variance V (X1) is Np1(1− p1), which is very close to E(X) in our case. In the
following we consider that V (X) = E(X).

We want to estimate the probability that the distance from the expected
value does not exceed E(X2)−E(X1)

2 : this way we should be able to distinguish
between the S − 1 wrong guesses from the correct one.

We use the Chebyshev’s inequality :

Pr(|X − E(X)| > a) 6
V (X)

a2

By applying this inequality to our values we get :

Pr

(
|X1− E(X1)| >

E(X2)− E(X1)

2

)
6

Np1

(N(p2−p1)
2 )2

Since we want to distinguish between S different guesses, we need this prob-
ability to be lower than 1

S , hence the result.
ut

We tested this formula by trying to distinguish between 2×6 random matrices
from the same matrices with a fixed 0 in the first row. We fixed S = 29 and
N = 217. The results are presented figure 3.
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Fig. 3. Results of the distinguisher simulation



5.3 Complexity analysis

To analyze the complexity of this attack, we need to choose a value of l such
that the number of queries to the decryption oracle, N , is enough to verify the
condition from proposition 5.

When fixing s111 to zero we have :

– S = ql, the number of coordinates of h for which we need to enumerate every
possibility

– N = qrl−1 : when setting s111 to 0, we need to solve a system consisting of
lr unknowns (the coordinates of {e1, . . . , el} written in a basis of E) and 1
equation, hence the result

– p1, the DFR for an incorrect guess, is q−(n−k+1−rd) from theorem 1
– p2, the DFR for a correct guess, is p1+ 1

qn−k +O(q
rd−2(n−k)

q−1 ) from proposition
4. In our case we will consider that p2 = p1 +

1
qn−k .

Proposition 6. The total complexity of our attack is :

S ×N × dnd
l
e × 4r2d2m

Proof. The total number of queries to the decryption oracle of our reaction
attack is :

ql × qrl−1 × dnd
l
e = S ×N × dnd

l
e

We know from [5] that the complexity of recovering the support of the error
in the decoding algorithm is 4r2d2m : we consider this is the cost of a query to
the oracle, hence the result. ut

5.4 Scope of the attack

To analyze the impact of our attack on concrete parameters, we consider an
attack model where the number of calls to the decryption oracle is not limited.

Impact on parameters Even though the LAKE [1] cryptosystem is not affected by
our attack because it uses ephemeral keys, we are going to study the complexity
of our attack if these parameters were used in our attack model.

Parameter n m k q r d l S N DFR Security parameter Oracle queries Attack complexity
LAKE-I-like 94 67 47 2 5 6 17 217 284 2−30 128 2106 2124

LAKE-II-like 106 89 53 2 6 7 17 217 2101 2−32 192 2123 2143

LAKE-III-like 118 107 59 2 6 8 20 220 2119 2−36 256 2145 2164

As we can see, for these parameters, our attack would reduce the security
parameter, but still requires more than 264 calls to the decryption oracle.

However, if we choose other rates than 1
2 along with a relatively small de-

cryption failure rate, the complexity of this attack can be very small :

n m k q r d l S N DFR Complexity of [4] Oracle queries Attack complexity
87 89 58 2 4 4 6 26 223 2−13 2143 235 251



6 Conclusion

In this paper we presented a reaction attack that can be seen as an adaptation of
[7] in the rank metric. This attack can break parameters of IND-CPA encryption
schemes in an attack model where the number of calls to the decryption oracle
is unlimited.

The two proposals based on ideal LRPC submitted to the NIST standard-
ization process are not affected by our attack : LAKE [1] uses ephemeral keys
and would require more than 264 queries to achieve the attack, and LOCKER
[2] uses the HHK [8] CCA conversion.
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