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Abstract. In this paper we consider to use the quantum stabilizer codes as se-
cret sharing schemes for classical secrets. We give necessary and sufficient con-
ditions for qualified and forbidden sets in terms of quantum stabilizers. Then we
give a Gilbert-Varshamove-type sufficient condition for existence of secret sharing
schemes with given parameters, and by using that sufficient condition, we show
that roughly 19% of participants can be made forbidden independently of the size
of classical secret, in particular when an 𝑛-bit classical secret is shared among 𝑛
participants having 1-qubit share each. We also consider how much information is
obtained by an intermediate set and express that amount of information in terms
of quantum stabilizers. All the results are stated in terms of linear spaces over
finite fields associated with the quantum stabilizers.
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1 Introduction

Secret sharing is a scheme to share a secret among multiple participants so that only
qualified sets of participants can reconstruct the secret, while forbidden sets have no
information about the secret [32]. A piece of information received by a participant is
called a share. A set of participants that is neither qualified nor forbidden is said to
be intermediate. Both secret and shares are traditionally classical information. There
exists a close connection between secret sharing and classical error-correcting codes
[3,7,10,11,18,20,28].

After the importance of quantum information became well-recognized, secret shar-
ing schemes with quantum shares were proposed [8,14,15,16,33]. A connection be-
tween quantum secret sharing and quantum error-correcting codes has been well-known
for many years [8,14,33]. Well-known classes of quantum error-correcting codes are
the CSS codes [5,34], the stabilizer codes [4,6,13] and their nonbinary generalizations
[2,17,26].

The access structure of a secret sharing scheme is the set of qualified sets, that of
intermediate sets and that of forbidden sets. For practical use of secret sharing, one needs
sufficient (and desirably necessary) conditions on qualified sets and forbidden sets.
⋆ Copyright of this extended abstract is held by the author. The same extended abstract is avail-

able at The Eleventh International Workshop on Coding and Cryptography webpage https:
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It is natural to investigate access structures of secret sharing schemes constructed
from quantum error-correcting codes. For secret sharing schemes with quantum secret
and quantum shares, necessary and sufficient conditions for qualified sets and forbidden
sets were clarified for the CSS codes [33,23] and the stabilizer codes [22].

For classical secret and quantum shares, the access structure was clarified in [23,
Section 4.1] with [30, Theorem 1] for the CSS codes but has not been clarified for secret
sharing schemes based on quantum stabilizer codes, as far as we know.

Advantages of using quantum shares for sharing a classical secret are that we can
have smaller size of shares [14, Section 4], and that we can realize access structures
that cannot be realized by classical shares [21,24]. For example, it is well-known that
the size of classical shares cannot be smaller than that of the classical secret in a per-
fect secret sharing scheme, where perfect means that there is no intermediate set, while
ramp or non-perfect means that there exist intermediate sets [35]. On the other hand, the
superdense coding can be a secret sharing scheme sharing 2 bits by 2 qubits sent to 2
participants [14, Section 4]. Any participant has no information about the secret, while
the 2 participants can reconstruct the secret. We see a perfect threshold scheme sharing
2-bit classical secret by 1-qubit shares. This paper will generalize Gottesman’s secret
sharing to the arbitrary number of participants and the arbitrary size of classical secrets.

In this paper we give necessary and sufficient conditions for qualified and forbidden
sets in terms of the underlying linear spaces over finite fields of quantum stabilizers, and
give sufficient conditions in terms of a quantity similar to relative generalized Hamming
weight [19] of classical linear codes related to the quantum stabilizers. We also consider
how much information is obtained by an intermediate set and express that amount of
information in terms of the underlying linear spaces of quantum stabilizers. Then we
translate our theorems over prime finite fields by the symplectic inner product into ar-
bitrary finite fields, the Euclidean, and the hermitian inner products. Finally we give
a Gilbert-Varshamove-type sufficient condition for existence of secret sharing schemes
with given parameters, and by using that sufficient condition, we show that roughly 19%
of participants can be made forbidden independently of the size of classical secret, which
cannot be realized by classical shares.

2 Notations

Let 𝑝 be a prime number, 𝐅𝑝 the finite field with 𝑝 elements, and 𝐂𝑝 the 𝑝-dimensional
complex linear space. The quantum state space of 𝑛 qudits is denoted by 𝐂⊗𝑛

𝑝 with its
orthonormal basis {|𝑣⟩ ∣ 𝑣 ∈ 𝐅𝑛

𝑝}.
For two vectors 𝑎, 𝑏⃗ ∈ 𝐅𝑛

𝑝, denote by ⟨𝑎, 𝑏⃗⟩𝐸 the standard Euclidean inner product.
For two vectors (𝑎|𝑏⃗) and (𝑎′|𝑏′) ∈ 𝐅2𝑛

𝑝 , we define the standard symplectic inner product
⟨(𝑎|𝑏⃗), (𝑎′|𝑏′)⟩𝑠 = ⟨𝑎, 𝑏′⟩𝐸 − ⟨𝑎′, 𝑏⃗⟩𝐸 .

For an𝐅𝑝-linear space𝐶 ⊂ 𝐅2𝑛
𝑝 ,𝐶⟂𝑠 denotes its orthogonal space in𝐅2𝑛

𝑝 with respect
to ⟨⋅, ⋅⟩𝑠. Throughout this paper we always assume dim𝐶 = 𝑛 − 𝑘 and 𝐶 ⊆ 𝐶⟂𝑠.

For (𝑎|𝑏⃗) ∈ 𝐅2𝑛
𝑝 , define the 𝑝𝑛 × 𝑝𝑛 complex unitary matrix 𝑋(𝑎)𝑍(𝑏⃗) as defined

in [17]. An [[𝑛, 𝑘]]𝑝 quantum stabilizer codes 𝑄 encoding 𝑘 qudits into 𝑛 qudits can be
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defined as a simultaneous eigenspace of all 𝑋(𝑎)𝑍(𝑏⃗) ((𝑎|𝑏⃗) ∈ 𝐶). Unlike [17] we do
not require the eigenvalue of 𝑄 to be one.

It is well-known in mathematics [1, Chapter 7] that there always exists 𝐶 ⊆ 𝐶max ⊆
𝐶⟂𝑠 such that 𝐶max = 𝐶⟂𝑠

max. Note that 𝐶max is not unique and usually there are many
possible choices of 𝐶max. We have dim𝐶max = 𝑛 and have an isomorphism 𝑓 ∶ 𝐅𝑘

𝑝 →

𝐶⟂𝑠∕𝐶max as linear spaces without inner products. Since 𝐶max = 𝐶⟂𝑠
max, 𝐶max defines an

[[𝑛, 0]]𝑝 quantum stabilizer code𝑄0. Without loss of generality we may assume𝑄0 ⊂ 𝑄.
Let |𝜑⟩ ∈ 𝑄0 be a quantum state vector. Since 𝐶max = 𝐶⟂𝑠

max, for a coset 𝑉 ∈ 𝐶⟂𝑠∕𝐶max

and (𝑎|𝑏⃗), (𝑎′|𝑏′) ∈ 𝑉 , 𝑋(𝑎)𝑍(𝑏⃗)|𝜑⟩ and 𝑋(𝑎′)𝑍(𝑏′)|𝜑⟩ differ by a constant multiple
in 𝐂 and physically express the same quantum state in 𝑄. By an abuse of notation, for a
coset 𝑉 ∈ 𝐶⟂𝑠∕𝐶max we will write |𝑉 𝜑⟩ to mean 𝑋(𝑎)𝑍(𝑏⃗)|𝜑⟩ ((𝑎|𝑏⃗) ∈ 𝑉 ).

For a given classical secret 𝑚⃗ ∈ 𝐅𝑘
𝑝 , we consider the following secret sharing scheme

with 𝑛 participants:
1. 𝑓 (𝑚⃗) is a coset of 𝐶⟂𝑠∕𝐶max. Prepare the quantum codeword |𝑓 (𝑚⃗)𝜑⟩ ∈ 𝑄 corre-

sponding to the classical secret 𝑚⃗.
2. Distribute each qudit in the quantum codeword |𝑓 (𝑚⃗)𝜑⟩ to a participant.

We can also consider a secret sharing scheme for a 𝑘-qudit secret |𝑚⃗⟩ with 𝑛 partic-
ipants as follows:
1. Encode a given quantum secret ∑

𝑚⃗∈𝐅𝑘𝑝 𝛼(𝑚⃗)|𝑚⃗⟩ into the quantum codeword
∑

𝑚⃗∈𝐅𝑘𝑝 𝛼(𝑚⃗)|𝑓 (𝑚⃗)𝜑⟩ ∈ 𝑄, where 𝛼(𝑚⃗) ∈ 𝐂 are complex coefficients with
∑

𝑚⃗∈𝐅𝑘𝑝 |𝛼(𝑚⃗)|
2 = 1.

2. Distribute each qudit in the quantum codeword ∑

𝑚⃗∈𝐅𝑘𝑝 𝛼(𝑚⃗)|𝑓 (𝑚⃗)𝜑⟩ to a partici-
pant.
Let 𝐴 ⊂ {1, . . . , 𝑛} be a set of shares (or equivalently participants), 𝐴 = {1, . . . ,

𝑛}⧵𝐴, and Tr𝐴 the partial trace over 𝐴. For a density matrix 𝜌, col(𝜌) denotes its column
space. When col(𝜌1), . . . , col(𝜌𝑛) are orthogonal to each other, that is, 𝜌𝑖𝜌𝑗 = 0 for 𝑖 ≠ 𝑗,
we can distinguish 𝜌1, . . . , 𝜌𝑛 by a suitable projective measurement with probability 1.
Definition 1. We say 𝐴 to be 𝑐-qualified (classically qualified) if
col(Tr𝐴(|𝑓 (𝑚⃗)𝜑⟩⟨𝑓 (𝑚⃗)𝜑|)) and col(Tr𝐴(|𝑓 (𝑚

′)𝜑⟩⟨𝑓 (𝑚′)𝜑|)) are orthogonal to
each other for different 𝑚⃗, 𝑚′ ∈ 𝐅𝑘

𝑝 . We say 𝐴 to be 𝑐-forbidden (classically forbidden)
if Tr𝐴(|𝑓 (𝑚⃗)𝜑⟩⟨𝑓 (𝑚⃗)𝜑|) is the same density matrix regardless of classical secret 𝑚⃗. By
a classical access structure we mean the set of 𝑐-qualified sets and the set of 𝑐-forbidden
sets.

For a quantum secret, the quantum qualified (𝑞-qualified) sets and the quantum
forbidden (𝑞-forbidden) sets are mathematically defined in [30]. By a quantum access
structure we mean the set of 𝑞-qualified sets and the set of 𝑞-forbidden sets.

Remark 2. When classical shares on 𝐴 is denoted by 𝑆𝐴, the conventional definition of
qualifiedness is 𝐼(𝑚⃗;𝑆𝐴) = 𝐻(𝑚⃗) and that of forbiddenness is 𝐼(𝑚⃗;𝑆𝐴) = 0 [35],
where 𝐻(⋅) denotes the entropy and 𝐼(⋅; ⋅) denotes the mutual information [9]. Let
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𝜌𝐴 =
∑

𝑚⃗∈𝐅𝑘𝑝 𝑝(𝑚⃗)Tr𝐴(|𝑓 (𝑚⃗)𝜑⟩⟨𝑓 (𝑚⃗)𝜑|), where 𝑝(𝑚⃗) is the probability distribution of
classical secrets 𝑚⃗. The quantum counterpart of mutual information for classical mes-
sages is the Holevo information 𝐼(𝑚⃗; 𝜌𝐴) [29, Chapter 12]. 𝐴 is 𝑐-qualified if and only if
𝐼(𝑚⃗; 𝜌𝐴) = 𝐻(𝑚⃗), and is 𝑐-forbidden if and only if 𝐼(𝑚⃗; 𝜌𝐴) = 0. Therefore, Definition
1 is a natural generalization of the conventional definition in [35].
Example 3. We will see how one can express the secret sharing scheme based on su-
perdense coding [14, Section 4] by a quantum stabilizer. Let 𝑝 = 2, 𝑛 = 2 and 𝐶 be
the zero-dimensional linear space consisting of only the zero vector. Then 𝐶⟂𝑠 = 𝐅4

2.
We choose 𝐶max as the space spanned by (1, 1|0, 0) and (0, 0|1, 1). For a classical secret
(𝑚1, 𝑚2) ∈ 𝐅2

2, define the map 𝑓 as 𝑓 (𝑚1, 𝑚2) = (𝑚1, 0|𝑚2, 0) + 𝐶max ∈ 𝐶⟂𝑠∕𝐶max.
We can choose [[2, 0]]2 quantum code 𝑄0 as the one-dimensional complex linear space
spanned by the Bell state

|𝜑⟩ =
|00⟩ + |11⟩

√

2
,

which corresponds to the two-bit secret (0, 0). The secret (𝑚1, 𝑚2) is encoded to

𝑋(𝑚1, 0)𝑍(𝑚2, 0)|𝜑⟩ =
|𝑚10⟩ + (−1)𝑚2

|(1 − 𝑚1)1⟩
√

2
.

It is clear that the share set {1, 2} is 𝑐-qualified. When 𝐴 = {1} or 𝐴 = {2}, we have

Tr𝐴(|𝑓 (𝑚⃗)𝜑⟩⟨𝑓 (𝑚⃗)𝜑|) =
1
2

(

1 0
0 1

)

,

which means {1}, {2} and ∅ are 𝑐-forbidden. We have determined the classical access
structure completely, and we see that this scheme is perfect [35] in the sense that there
is no intermediate set.

3 Necessary and sufficient conditions on classically qualified and
classically forbidden sets

Let 𝐴 ⊂ {1, . . . , 𝑛}. Define 𝐅𝐴
𝑝 = {(𝑎1, . . . , 𝑎𝑛|𝑏1, . . . , 𝑏𝑛) ∈ 𝐅2𝑛

𝑝 ∣ (𝑎𝑖, 𝑏𝑖) = 0 for 𝑖 ∉ 𝐴}.
Let 𝑃𝐴 to be the projection map onto 𝐴, that is, 𝑃𝐴(𝑎1, . . . , 𝑎𝑛|𝑏1, . . . , 𝑏𝑛) = (𝑎𝑖|𝑏𝑖)𝑖∈𝐴.
Theorem 4. For the secret sharing scheme described in Section 2, 𝐴 is 𝑐-qualified if
and only if

dim𝐶max∕𝐶 = dim𝐶max ∩ 𝐅𝐴
𝑝 ∕𝐶 ∩ 𝐅𝐴

𝑝 . (1)
𝐴 is 𝑐-forbidden if and only if

0 = dim𝐶max ∩ 𝐅𝐴
𝑝 ∕𝐶 ∩ 𝐅𝐴

𝑝 . (2)
Proof. See [25]. ⊓⊔

Example 5. Consider the situation in Example 3. For 𝐴 = {1} or 𝐴 = {2}, we see that
𝐶max ∩ 𝐅𝐴

2 and 𝐶 ∩ 𝐅𝐴
2 are the zero linear space and that Eq. (2) holds. For 𝐴 = {1, 2},

Eq. (1) is clearly true.
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Example 6. In this example, we show that a different choice of 𝐶max gives a different
access structure. Let 𝐶 be as Example 5, and 𝐶max be the linear space generated by
(0, 0|1, 0) and (0, 0|0, 1). A classical secret (𝑚1, 𝑚2) is now encoded to |𝑚1𝑚2⟩. For
𝐴 = {1} or 𝐴 = {2}, both (1) and (2) are false and both 𝐴 = {1} and 𝐴 = {2} are
intermediate sets. This example shows that the choice of 𝐶max is important.

Next we give sufficient conditions in terms of the coset distance [11] or the first
relative generalized Hamming weight [19]. To do so, we have to slightly modify them.
For (𝑎|𝑏⃗) = (𝑎1, . . . , 𝑎𝑛|𝑏1, . . . , 𝑏𝑛) ∈ 𝐅𝑛

𝑝, define its symplectic weight swt(𝑎|𝑏⃗) = |{𝑖 ∣
(𝑎𝑖, 𝑏𝑖) ≠ (0, 0)}|. For 𝑉2 ⊂ 𝑉1 ⊂ 𝐅2𝑛

𝑝 , we define their coset distance as 𝑑𝑠(𝑉1, 𝑉2) =
min{swt(𝑎|𝑏⃗) ∣ (𝑎|𝑏⃗) ∈ 𝑉1 ⧵ 𝑉2}.
Theorem 7. If |𝐴| ≤ 𝑑𝑠(𝐶max, 𝐶)−1 then𝐴 is 𝑐-forbidden. If |𝐴| ≥ 𝑛−𝑑𝑠(𝐶⟂𝑠, 𝐶max)+
1 then 𝐴 is 𝑐-qualified.

Proof. See [25]. ⊓⊔

Example 8. Consider the situation in Example 5. We have 𝑑𝑠(𝐶⟂, 𝐶max) = 1, which
implies that 2 shares is a 𝑐-qualified set. We also have 𝑑𝑠(𝐶max, 𝐶) = 2, which implies
that 1 share is a 𝑐-forbidden set.

4 Amount of information possessed by an intermediate set

Let 𝐴 ⊂ {1, . . . , 𝑛} with 𝐴 ≠ ∅ and 𝐴 ≠ {1, . . . , 𝑛}. In this section we study the amount
of information possessed by 𝐴.
Proposition 9. Let {(𝑎1|𝑏⃗1)+𝐶∩𝐅𝐴

𝑝 , . . . , (𝑎𝓁|𝑏⃗𝓁)+𝐶∩𝐅𝐴
𝑝 } be a basis of 𝐶max∩𝐅𝐴

𝑝 ∕𝐶∩
𝐅𝐴
𝑝 . The number of density matrices in Λ = {Tr𝐴(|𝑓 (𝑚⃗1)𝜑⟩⟨𝑓 (𝑚⃗)𝜑|) ∣ 𝑚⃗ ∈ 𝐅𝑘

𝑝} is 𝑝𝓁 .
For a fixed density matrix 𝜌 ∈ Λ, the number of classical secrets 𝑚⃗ such that 𝜌 =

Tr𝐴(|𝑓 (𝑚⃗1)𝜑⟩⟨𝑓 (𝑚⃗)𝜑|) is exactly 𝑝𝑘−𝓁 .

Proof. See [25]. ⊓⊔

Definition 10. In light of Proposition 9, the amount of information possessed by a set
𝐴 of participants is defined as

log2 𝑝 × dim𝐶max ∩ 𝐅𝐴
𝑝 ∕𝐶 ∩ 𝐅𝐴

𝑝 . (3)
Remark 11. When the probability distribution of classical secrets 𝑚⃗ is uniform, the
quantity in Definition 10 is equal to the Holveo information [29, Chapter 12] counted in
log𝑝. Firstly, the set Λ in Proposition 9 consists of non-overlapping projection matrices
and each matrix commutes with every other matrices in Λ. So the Holevo information
is just equal to the classical mutual information [9] between random variable 𝑋 on 𝐅𝑘

𝑝
and random variable 𝑌 on 𝐅𝓁

𝑝 , where 𝑌 is given as a surjective linear function of 𝑋.
Therefore 𝐼(𝑋; 𝑌 ) = 𝐻(𝑌 ) −𝐻(𝑌 |𝑋)

⏟⏞⏟⏞⏟
=0

= 𝓁.
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We say that a secret sharing scheme is 𝑟𝑖-reconstructible if |𝐴| ≥ 𝑟𝑖 implies 𝐴 has
𝑖 log2 𝑝 or more bits of information [12]. We say that a secret sharing scheme is 𝑡𝑖-private
if |𝐴| ≤ 𝑡𝑖 implies 𝐴 has less than 𝑖 log2 𝑝 bits of information [12]. In order to express
𝑟𝑖 and 𝑡𝑖 in terms of combinatorial properties of 𝐶 , we introduce a slightly modified
version of the relative generalized Hamming weight [19].
Definition 12. For two linear spaces 𝑉2 ⊂ 𝑉1 ⊂ 𝐅2𝑛

𝑝 , define the 𝑖-th relative generalized
symplectic weight

𝑑𝑖𝑠(𝑉1, 𝑉2) = min{|𝐴| ∣ dim𝐅𝐴
𝑝 ∩ 𝑉1 − dim𝐅𝐴

𝑝 ∩ 𝑉2 ≥ 𝑖}. (4)

Note that 𝑑1𝑠 = 𝑑𝑠. The following theorem generalizes Theorem 7.
Theorem 13.

𝑡𝑖 ≥ 𝑑𝑖𝑠(𝐶max, 𝐶) − 1,

𝑟𝑘+1−𝑖 ≤ 𝑛 − 𝑑𝑖𝑠(𝐶
⟂𝑠, 𝐶max) + 1.

Proof. See [25]. ⊓⊔

Example 14. Consider the situation of Example 8. We have 𝑑1𝑠 (𝐶max, 𝐶) =
𝑑2𝑠 (𝐶max, 𝐶) = 2, and 𝑑1𝑠 (𝐶

⟂𝑠, 𝐶max) = 𝑑2𝑠 (𝐶
⟂𝑠, 𝐶max) = 1. Unlike the relative gen-

eralized Hamming weight, we do not have the strict monotonicity in 𝑖 of 𝑑𝑖𝑠.

5 Translations to arbitrary finite fields and to the ordinary
Hamming weight

5.1 Translation to arbitrary finite fields

Let 𝑞 = 𝑝𝜇 with 𝜇 ≥ 1, and {𝛾1, . . . , 𝛾𝜇} be a fixed 𝐅𝑝-basis of 𝐅𝑞 . Ashikhmin and Knill
[2] proposed the following translation from 𝐅𝑞 to 𝐅𝑝 for quantum stabilizer codes. Let
𝑀 be an 𝜇×𝜇 invertible matrix over 𝐅𝑝 whose (𝑖, 𝑗) element is Tr𝑞∕𝑝[𝛾𝑖𝛾𝑗], where Tr𝑞∕𝑝
is the trace map from 𝐅𝑞 to 𝐅𝑝. Let 𝜙 be an 𝐅𝑝-linear isomorphism from 𝐅2𝜇𝑛

𝑝 to 𝐅2𝑛
𝑞sending (𝑎1,1, . . . , 𝑎1,𝜇, 𝑎2,1, . . . , 𝑎𝑛,𝜇|𝑏1,1, . . . , 𝑏1,𝜇, 𝑏2,1, . . . , 𝑏𝑛,𝜇) to

( 𝜇
∑

𝑗=1
𝑎1,𝑗𝛾𝑗 ,… ,

𝜇
∑

𝑗=1
𝑎𝑛,𝑗𝛾𝑗|

𝜇
∑

𝑗=1
𝑏′1,𝑗𝛾𝑗 ,… ,

𝜇
∑

𝑗=1
𝑏′𝑛,𝑗𝛾𝑗

)

,

where (𝑏′𝑖,1, . . . , 𝑏′𝑖,𝜇) = (𝑏𝑖,1, . . . , 𝑏𝑖,𝜇)𝑀−1 for 𝑖 = 1, . . . , 𝑛.
Ashikhmin and Kinill proved the following.

Proposition 15. [2] Let 𝐶 ⊂ 𝐅2𝑛
𝑞 . Then dim𝐅𝑝 𝜙

−1(𝐶) = 𝜇 dim𝐅𝑞 𝐶 , and 𝜙−1(𝐶)⟂𝑠 =
𝜙−1(𝐶⟂𝑠), where dim𝐅𝑞 is the dimension of a linear space considered over 𝐅𝑞 .
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Let 𝐶 ⊂ 𝐶max = 𝐶⟂𝑠
max ⊂ 𝐶⟂𝑠 ⊂ 𝐅2𝑛

𝑞 with dim𝐅𝑞 𝐶 = 𝑛−𝑘. Then we have 𝜙−1(𝐶) ⊂

𝜙−1(𝐶max) = 𝜙−1(𝐶max)⟂𝑠 ⊂ 𝜙−1(𝐶)⟂𝑠 ⊂ 𝐅2𝜇𝑛
𝑝 and we can construct a secret sharing

scheme by 𝜙−1(𝐶) ⊂ 𝜙−1(𝐶max). It encodes 𝑘𝜇 log2 𝑝 = 𝑘 log2 𝑞 bits of classical secrets
𝑚⃗ ∈ 𝐅𝑘

𝑞 into 𝜇𝑛 qudits in 𝐂𝑝, which can also be seen as 𝑛 qudits in 𝐂𝑞 , where 𝐂𝑞 is the 𝑞-
dimensional complex linear space. Let 𝐴 ⊂ {1, . . . , 𝑛}. By abuse of notation, by 𝐅𝐴

𝑝 we
mean {(𝑎1,1, . . . , 𝑎1,𝜇, 𝑎2,1, . . . , 𝑎𝑛,𝜇|𝑏1,1, . . . , 𝑏1,𝜇, 𝑏2,1, . . . , 𝑏𝑛,𝜇) ∈ 𝐅2𝜇𝑛

𝑝 ∣ 𝑎𝑖,𝑗 = 𝑏𝑖,𝑗 = 0
for 𝑖 ∉ 𝐴 and 𝑗 = 1, . . . , 𝜇}.

We consider each qudit in 𝐂𝑞 of the quantum codeword as a share, and examine the
property of a share set 𝐴. We have

dim𝐅𝑞 𝐶max ∩ 𝐅𝐴
𝑞 ∕𝐶 ∩ 𝐅𝐴

𝑞 = 𝜇 dim𝐅𝑝 𝜙
−1(𝐶max) ∩ 𝐅𝐴

𝑝 ∕𝜙
−1(𝐶) ∩ 𝐅𝐴

𝑝 . (5)
Equation (5) together with Theorem 4 imply

– 𝐴 is qualified if and only if dim𝐅𝑞 𝐶max ∩ 𝐅𝐴
𝑞 ∕𝐶 ∩ 𝐅𝐴

𝑞 = dim𝐅𝑞 𝐶max∕𝐶 , and
– 𝐴 is forbidden if and only if dim𝐅𝑞 𝐶max ∩ 𝐅𝐴

𝑞 ∕𝐶 ∩ 𝐅𝐴
𝑞 = 0.

The above observation shows that Theorems 4 and 7 also hold for 𝐅𝑞 . In addition, Eq. (5)
means that a share set 𝐴 has (log2 𝑞×dim𝐅𝑞 𝐶max∩𝐅𝐴

𝑞 ∕𝐶∩𝐅𝐴
𝑞 )-bits of information about

the secret 𝑚⃗ ∈ 𝐅𝑘
𝑞 , also generalizes the proof argument of Theorem 13, and implies that

Theorem 13 also holds for 𝐅𝑞 . In the sequel we consider a qudit in 𝐂𝑞 as each share, and
dim means the dimension over 𝐅𝑞 .

5.2 Translation to the Hamming distance and the hermitian inner product

Many of results in the symplectic construction of quantum error-correcting codes over
𝐅𝑞 are translated to 𝐅𝑞2 -linear codes with the hermitian inner product [2,17,26]. For
𝑥⃗ ∈ 𝐅𝑛

𝑞2
define 𝑥𝑞 as the component-wise 𝑞-th power of 𝑥⃗. For two vectors 𝑥⃗, 𝑦 ∈ 𝐅𝑞2 ,

define the hermitian inner product as ⟨𝑥⃗, 𝑦⟩ℎ = ⟨𝑥𝑞 , 𝑦⟩𝐸 . For 𝐷 ⊂ 𝐅𝑛
𝑞2

, 𝐷⟂ℎ denotes the
orthogonal space of 𝐷 with respect to the hermitian inner product.

Only in Sections 5.2 and 5.3, for 𝐴 ⊂ {1,. . . , 𝑛}, define 𝐅𝐴
𝑞 = {(𝑎1, . . . , 𝑎𝑛) ∈ 𝐅𝑛

𝑞 ∣
𝑎𝑖 = 0 for 𝑖 ∉ 𝐴}, and define 𝑃𝐴 to be the projection map onto 𝐴, that is, 𝑃𝐴(𝑎1, . . . ,
𝑎𝑛) = (𝑎𝑖)𝑖∈𝐴.
Theorem 16. Let 𝐷 ⊂ 𝐅𝑛

𝑞2
be an 𝐅𝑞2 -linear space. We assume dim𝐷 = 𝑘′ and there

exists 𝐷max such that 𝐷 ⊂ 𝐷max ⊂ 𝐷⟂ℎ and 𝐷max = 𝐷⟂ℎ
max, which implies dim𝐷max =

𝑛∕2. Then 𝐷 defines a secret sharing scheme based on the quantum stabilizer defined
by 𝐷 encoding 𝑛 − 2𝑘′ symbols in 𝐅𝑞 . A set 𝐴 ⊂ {1, . . . , 𝑛} is 𝑐-qualified if and only if
dim𝐷max∕𝐷 = dim𝐷max∩𝐅𝐴

𝑞2
∕𝐷∩𝐅𝐴

𝑞2
. A set 𝐴 ⊂ {1, . . . , 𝑛} is 𝑐-forbidden if and only

if 0 = dim𝐷max ∩ 𝐅𝐴
𝑞2
∕𝐷 ∩ 𝐅𝐴

𝑞2
. If |𝐴| ≥ 𝑛 − 𝑑𝐻 (𝐷⟂ℎ, 𝐷max) + 1 then 𝐴 is 𝑐-qualified,

and if |𝐴| ≤ 𝑑𝐻 (𝐷max, 𝐷) − 1 then 𝐴 is 𝑐-forbidden, where 𝑑𝐻 is the coset distance
[11], or equivalently, the first relative generalized Hamming weight [19].

Proof. The proof is almost the same as [17]. ⊓⊔
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5.3 Translation to the Hamming distance and the Euclidean inner product

Let 𝐶2 ⊂ 𝐶1 ⊂ 𝐅𝑛
𝑞 . A method to construct 𝐶 is to use {(𝑎|𝑏⃗) ∣ 𝑎 ∈ 𝐶2, 𝑏⃗ ∈ 𝐶⟂𝐸

1 } [6,17],
where “⟂ 𝐸” denotes the Euclidean dual. We have 𝐶⟂𝑠 = {(𝑎|𝑏⃗) ∣ 𝑎 ∈ 𝐶1, 𝑏⃗ ∈ 𝐶⟂𝐸

2 }.
Theorem 17. Let 𝐸 ⊂ 𝐅𝑛

𝑞 be the 𝐅𝑞-linear space. We assume dim𝐸 = 𝑘′ and there
exists 𝐸max such that 𝐸 ⊂ 𝐸max ⊂ 𝐸⟂𝐸 and 𝐸max = 𝐸⟂𝐸

max, which implies dim𝐸max =
𝑛∕2. Then 𝐸 defines a secret sharing scheme based on the quantum stabilizer defined
by 𝐸 encoding 𝑛 − 2𝑘′ symbols in 𝐅𝑞 . A set 𝐴 ⊂ {1, . . . , 𝑛} is 𝑐-qualified if and only if
dim𝐸max∕𝐸 = dim𝐸max ∩𝐅𝐴

𝑞 ∕𝐸 ∩𝐅𝐴
𝑞 . A set 𝐴 ⊂ {1, . . . , 𝑛} is 𝑐-forbidden if and only

if 0 = dim𝐸max ∩ 𝐅𝐴
𝑞 ∕𝐸 ∩ 𝐅𝐴

𝑞 . If |𝐴| ≥ 𝑛 − 𝑑𝐻 (𝐸⟂𝐸 , 𝐸max) + 1 then 𝐴 is 𝑐-qualified,
and if |𝐴| ≤ 𝑑𝐻 (𝐸max, 𝐸) − 1 then 𝐴 is 𝑐-forbidden.

Proof. The proof is almost the same as [17]. ⊓⊔

6 Gilbert-Varshamov-type existential condition

In this section, we give a sufficient condition for existence of 𝐶 ⊂ 𝐶max = 𝐶⟂𝑠
max ⊂

𝐶⟂𝑠 ⊂ 𝐅2𝑛
𝑞 .

Theorem 18. If positive integers 𝑛, 𝑘, 𝛿𝑡, 𝛿𝑟 satisfy

𝑞𝑛+𝑘 − 𝑞𝑛

𝑞2𝑛 − 1

𝛿𝑟−1
∑

𝑖=1

(

𝑛
𝑖

)

(𝑞2 − 1) +
𝑞𝑛 − 𝑞𝑘

𝑞2𝑛 − 1

𝛿𝑡−1
∑

𝑖=1

(

𝑛
𝑖

)

(𝑞2 − 1) < 1, (6)

then there exist 𝐶 ⊂ 𝐶max = 𝐶⟂𝑠
max ⊂ 𝐶⟂𝑠 ⊂ 𝐅2𝑛

𝑞 such that dim𝐶 = 𝑛 − 𝑘,
𝑑𝑠(𝐶⟂𝑠, 𝐶max) ≥ 𝛿𝑟 and 𝑑𝑠(𝐶max, 𝐶) ≥ 𝛿𝑡.

Proof. See [25]. ⊓⊔

We will derive an asymptotic form of Theorem 18.
Theorem 19. Let 𝑅, 𝜖𝑡 and 𝜖𝑟 be nonnegative real numbers ≤ 1. Define ℎ𝑞(𝑥) =
−𝑥 log𝑞 𝑥 − (1 − 𝑥) log𝑞(1 − 𝑥). For sufficiently large 𝑛, if

ℎ𝑞(𝜖𝑡) + 𝜖𝑡 log𝑞(𝑞2 − 1) < 1, (7)
ℎ𝑞(𝜖𝑟) + 𝜖𝑟 log𝑞(𝑞2 − 1) < 1 − 𝑅, (8)

then there exist 𝐶 ⊂ 𝐶max ⊂ 𝐶⟂𝑠 ⊂ 𝐅2𝑛
𝑞 such that dim𝐶 = 𝑛 − ⌊𝑛𝑅⌋, 𝑑𝑠(𝐶⟂𝑠, 𝐶max) ≥

⌊𝑛𝜖𝑡⌋ and 𝑑𝑠(𝐶max, 𝐶) ≥ ⌊𝑛𝜖𝑡⌋.

Proof. Proof can be done by almost the same argument as [27, Section III.C]. ⊓⊔

Theorem 19 has a striking implication that we can construct a secret sharing scheme
with a fraction ℎ−1𝑞 (1∕ log𝑞(𝑞2 − 1)) of participants being forbidden independently of
the size (i.e. 𝑅 in Theorem 19) of classical secrets for large 𝑛. For the smallest 𝑞 = 2,
ℎ−1𝑞 (1∕ log𝑞(𝑞2 − 1)) is close to 0.19, and we can make roughly 19% of participants
forbidden. Such properties cannot be realized by classical shares.
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