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Abstract. A new class of tracing traitors schemes with traceability
property which combines ideas of nonbinary IPP-codes and IPP set sys-
tems is proposed. A detailed comparison of the proposed scheme with
previously known traceability schemes is provided.
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1 Introduction

A modern statement of a figerprinting problem for digital content was first stated
in [1]. Ten years later Chor, Fiat and Naor introduced and developed in [2] a
model of digital fingerprinting in the frame of broadcast encryption. A distribu-
tor has some digital content to broadcast and sells the access (decoder) to this
content. To prevent unauthorized users from accessing the data, the distributor
encrypts the data blocks with session keys and gives each authorized user the
corresponding personal decoder, i.e., the personal set of keys to decipher data.
The main problem of such type of data distribution is to make it collusion re-
sistant, i.e., for a given unauthorized decoder (pirate version), the distributor
should be able to identify at least one of the sources of the leakage even if this
unauthorized copy was produced by a group of malicious users.

Indeed, in order to hide their identities, some authorized users can form a
group (coalition of traitors) and, basing on their common knowledge (keys/decoders),
create a forged decoder. Assuming that the cardinality of a possible coalition is
not greater than some integer t, the desired property is that once a forged de-
coder is observed, the distributor can trace it back to at least one traitor from
the corresponding malicious coalition.

The problem of data protection against such collusion attacks has given rise
to the well known concept of tracing traitors [2], and its two particular cases
known as codes with the identifiable parent property (IPP codes) [3] and set sys-
tems with the identifiable parent property (IPP set systems) [5], [4]. The IPP
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codes were extensively studied, see e.g. [6], [7], [8], also a detailed overview can
be found in [9]. As for the IPP set systems, it started with the papers [5], [4]
and the most recent results can be found in [10], [11].

Note that the original idea of [2] was based on usage of the perfect secret
sharing schemes (SSS, for short), which were discovered in [12] [13]. From this
point of view t-IPP codes are based on the simplest (n,n)-threshold SSS. Ex-
tension of this idea to arbitrary (w,n)-threshold SSS was proposed in [4] [5]
under the name of family of IPP schemes or, equivalently, IPP set systems, and
further developed in [11], [10]. A new class of tracing traitors scheme, called g-
ary (or “colored”) IPP set system, has been recently proposed in [14], [15]. This
new class contains nonbinary IPP-codes and IPP set systems as particular cases.

In this paper we extend the “colored” approach of [14], [15] to traceability
property. In fact, first tracing traitors schemes constructed in [2] have the trace-
ability property, namely, the nearest (in Hamming distance) codevector to the
forged vector (decoder) belongs to the malicious coalition. Systematic study of
traceability codes has been started from [8], see also [16]-[22]. An original ap-
proach to contsruction of traceability set systems via constant-weight codes was
proposed in [23]. Unfortunately there are some mistakes in evaluation of error-
correcting codes parameters, which leaded to wrong results as it was remarked
in [24]. The correct version of constructing traceability set systems via binary
constant-weight codes was recently given in [10]. The current paper could be
considered as an extention of the approach and results of [10] from ordinary
Johnson scheme to nonbinary Johnson scheme (see [25]) in order to create a new
class of traceability schemes which generalizes IPP-codes and IPP set systems
with traceability property.

This paper is organized in the following way. In section 2 we describe ba-
sic facts about IPP-type schemes, in particular, we explain how they are based
on underlying threshold secret sharing schemes. In section 3 we give the defini-
tions of g-ary IPP set systems and g-ary set systems with traceability property
and prove a simple sufficient condition for possessing the traceability property.
In section 4 we derive an analog of Gilbert-Varshamov bound for traceability
schemes (codes). Finally in section 5 we make a comparison with previously
known IPP-type schemes and give a concluding remark.

2 Threshold Secret Sharing Schemes as a base for
IPP-type schemes

Consider the following broadcasting scenario where the distributor delivers some
digital content x to M users. In order to prevent illegal redistribution, the distrib-
utor transmits the content x in an encrypted form y = ¢(z, k) obtained by using
some secret key k € K, which serves as a session key and should be changed for
distributing another portion of digital content. Firstly the key k is “splitted” into
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shares sq,. .., s, according to a chosen Secret Sharing Scheme (SSS). Then each
share s; is transmitted to all users as some blocks of information e; 1,...,e;q,
where €;; = (s;, fi1), ¥ is some encryption map, F* = {fi1,..., fiq} is the
set of corresponding encryption keys, I = 1,...,q and ¢ > 1 - integer num-
ber. As the result of encryption the distributor has N = ng encrypted shares
{e11,-..,€14,- -+, €n1,...,Enq} Which are transmitted along with y, i.e. together
with the encrypted digital content x. The j-th user receives (during the initial-
ization phase) a decoder consisting of the corresponding set of decryption keys
Dj, which allows the user to find k and hence to reveal x. A secret sharing
scheme is called a perfect (w,n)-threshold secret sharing scheme if any w users
of n can recover the secret and any less number of users gains from their shares
no a posteriori information about the secret.

Below we make this definition more precise for two particular and most pop-
ular tracing traitors schemes. Let us make this description more precise for two
particular types of tracing traitors schemes, namely t-IPP codes and ¢-IPP set
systems.

IPP codes are based on the simplest (n,n)-threshold SSS. We assume that
the session key k belongs to a g-ary alphabet, which can be considered as an
Abelian group G of size g, for instance, the group Z, of residues modulo g. The
corresponding shares si,...,s, are random uniformly distributed variables on
G with the following property

S1+...+s, =k (1)

where summation is taken in the group G. The distributor encrypts every share
s; on q different keys from the set F¢. Denote by D° the set of the corresponding
decryption keys and enumerate them by symbols of g-ary alphabet. The set D;
of decryption keys for j-th user should contain one key from every D?, since
then the user can find each share s; for i = 1,...,n and hence recover the key k
by (1). Let cgj ) =Din D, be the corresponding element of the g-ary alphabet.
Consider g-ary code C = {cM), ..., ¢M)} which we call a fingerprinting code,
where () = (ng ), ceey cgf )) is an n-dimensional g-ary vector corresponding to
the j-th user.

If a coalition of malicious users (traitors) U C {1,...,M} wants to cre-
ate a “device” (“decoder”) which will be able to decrypt every transmitted
encrypted portion of digital content, then the coalition have to create a new
set Y = {y1,...,yn} of decryption keys with the property that y; € D? for all
ie{l,2,...,n} and y; € P;(U), where P,(U) = UueUch), i.e., the coalition can
choose keys only from the set of the coalition’s keys. Hence, the resulting prob-
lem can be formulated in the language of codes as it was done in [3]. Namely,
denote by < U > the set of all false fingerprints (also called descendants [3])
that the coalition U can create, i.e.,

<U>={x=(v1,...,7,) € GF} :Vjx; € P;(U)} (2)
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Let for a fingerprinting code C' denote by U a coalition of traitors as well as
the set of codevectors corresponding to them.

Definition 1. [3]. A code C has the identifiable parent property of order t, or
C' is t-IPP code for short, if for all z € GF(q)™ either

N U#0 (3)

U:ze<U>, |U|<t
or there is mo coalition that can produce z.

Hence, if the fingerprints form a code possessing the Identifiable Parent Property
(IPP), then from any false fingerprint z created by a coalition U, |U| < ¢, at least
one user from U will be identified without any doubt.

It is easy to see that nontrivial g-ary t-IPP codes do not exist for ¢ > gq.
In particular, there are no nontrivial binary ¢-IPP codes even for coalitions of
size 2. On the other hand, for ¢ < ¢ there exist families of ¢-IPP codes with
non-vanishing rate, i.e., with a number of codewords growing exponential in n,

see [6,7].

The above described tracing traitors scheme based on the simplest n-out-of-
n threshold perfect secret sharing scheme. General case of w-out-of-n threshold
perfect SSS ([12],[13]) was used for constructing the following tracing traitors
scheme, called the t-IPP family of sets [4,5]. Each share is encrypted on only
single key and the dealer distributes to j-th user the corresponding set of decryp-
tion keys D;, consisting of w keys, what allows the user to recover w shares and
hence reveal the secret k and finally decipher the transmitted digital content. A
malicious coalition U can create a fraud “decoder” by arranging together at least
w different keys Ej which belong to members of U. Thus the set of descendants
of the coalition U equals to

<U>,={Bc{l,..,n}: BC UDu’ |B| = w} 4)
uelU

Now the Identifiable Parent Property can be reformulated for a family of sets
in the following way.

Definition 2. [4, 5] Family F of w-subsets of an n-set {1,...,n} has the Identi-
fiable Parent Property of order t, or ¥ is t-IPP set system for short, if for any
set A C {1,...,n} such that |A| > w either

N U 0, (5)

U: AE<U>,, |UI<t

or there is no U such that [U| <t and A €< U >,
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Informally, a family F of w-subsets of a n-set {1,...,n} is a t-IPP set system if
for any w-subset which belongs to the union of some ¢ sets of F at least one of
these sets can be uniquely determined. In particular, it means that no one set
of F belongs to the union of ¢ other sets of F. Such families of sets are called
nowadays as cover-free families, thanks to [26], but they appeared in coding
theory twenty years before as superimposed codes [27].

Now let us define a new, more general type of IPP schemes introduced in
[14],[15]. Consider w-out-of-n SSS. In the original model of IPP set systems each
share is encrypted using only one key, i.e. ¢ = 1 and each user receives the w-
subset of such keys. In order to define a g-ary (g-“colored”) IPP set system let
us encrypt each share via ¢ keys. Then the set D, of decryption keys for j-th
user should contain w (at least) keys from the union of all D¢, since then the
user can find w shares and hence can recover the key k. It leads to the following
definitions [14],[15].

Let P (U) := P;(U)U{0}. A coalition U can produce the following set of forged
decoders (vectors):

<U>y={yeP(U)x..xP;(U)| wt(y) > w}

Definition 3. [14],/15].

A (g + 1)-ary code C C {0,1,...,q}"™ of constant weight w has q-ary IPP
property of order t, or, for short, C is q-ary t-IPP set system, if for any y €
{0,1,...,¢}"™ and wit(y) > w either

N U#0, (6)

U: |U|<t.ye<U>*,
or there is no U such that |U| <t and y e< U >%.

Remark 1. For ¢ = 1 this definition coincides with the definition of ordinary t-
IPP set systems, and for w = n coincides with the definition of ¢g-ary ¢t-IPP codes
(symbol 0 disappears because of the demand that a forgery vector y should have
Hamming weight at least n).

3 “Colored” IPP set systems with traceability

A notion of traceability was firstly considered in [2] in order to construct traitor
tracing schemes (in the context of IPP codes), especially with efficient tracing
algorithm. The traceability property is a particular case of IPP property that
makes the search of malicious users easier. Traceability makes IPP property
stronger in the following way: given the forged vector (“decoder”) the distribu-
tor can find a malicious user by searching for the closest (in some “metric”, to
be precised later) decoder (vector).

Let us give formal definitions in a historical order, i.e., we start with IPP
codes.
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Definition 4. A g-ary code C is said to have t-traceability property if for any
coalition U C C, |U| <t, anyy €< U > and any v € C'\ U, it holds

dg(y,v) > gg(r}dH(y,u%

where dp(x,y) = |{¢ | ; # yi}| is the Hamming distance.

This definition means that for a given a forged vector (decoder) y the dis-
tributor calculates the distance between y and all code vectors and then takes
as a traitor the vector that deliver the minimum (of the Hamming distance). It
was shown in [2] that if the minimal distance dg(C) of a code C' is bigger than
n(1 —t=2) then C has the t-traceability property.

For the IPP set systems there is the following analogous definition:

Definition 5. A family F = {Fy,..., Fyr} of w-subsets of {1,...,n} is called a
t-traceability set system (t-TSS) if for any coalition U C F, |U| < t and any
S €< U >get, it holds |SNF| < maxyuey |S Nu| for any F € F\U.

In this case t-traceability property means that the search of malicious user(s)
reduces to the search of “closest” sets which in this case means the maximum car-
dinality of intersection, or, since we deal with constant weight code, the minimal
Hamming distance.

The notion of ¢-TSS was introduced in [4] and further studied in [5], [11].
These papers provide results about upper bounds as well as about lower bounds
on the size of traceability set systems. The most recent result concerning lower
bound can be found in [10].

In order to formulate the traceability concept for the new type of tracing
traitors schemes, i.e., g-ary IPP set systems, we need the following notion. Define
function s(a,b) in the following way: s(a,b) = 1 if a = b # 0 and s(a,b) = 0
otherwise. And define

n

S(x,y) = Zs(xi,yi) =i |z =y; # 0},

i=1
i.e., S(x,y) is the number of coinciding non-zero coordinates.

Then, the traceability property can be formulated as follows:

Definition 6. A (¢ + 1)-ary code C is said to have t-traceability property of
order t if for any coalition U C C, |[U| < t and any y €< U >%, it holds
S(y,v) < maxyey S(y,u) for any v e C'\ U.

The following lemma establishes a sufficient condition on a g-ary set system
to have t-traseability property which is similar to the original approach of [2]):

Lemma 1. If for a (qg+1)-ary code C holds that S(u,v) < w/t? for anyu,v € C,
then C' has t-traceability property of order t.
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Proof. Consider any coalition U C C, |[U| <t and any y €< U >¥. Then,
maxyey S(u,y) > w/t since wt(y) > w. On the other hand, for any v € C'\ U,

S(y) < Y S(v,u) <t.tﬂ2:3

t
uelU

Proved lemma gives us a hint how to estimate the maximum number of
codewords in a code with t-traceability property. In next section we will establish
the Gilber-Varshamov type of bound for such estimation.

4 Gilbert-Varshamov bound for nonbinary IPP set
systems

Let A(n,q,w,d) denote the maximum number of codewords in a (¢ + 1)-ary
constant weight w code C' of length n with S(z,y) < d for any z,y € C. To es-
tablish the lower bound for A(n, ¢, w, d) we propose to derive Gilbert-Varshamov
type bound. Define the “ball” B,(n,d,w) with center at v as the all constant
weight vectors B, (n,d,w) = {z : S(z,v) > d, wt(x) = w}. Then the standard
Gilbert-type arguments show that

-
Aln, g w,d) 2 Tt =T =

= (m)a” §
o (D)) (WG ) (g = Degems
> (w)a”
n? maxs [(1:) (“’M_S) (wf(_sj‘:u)) (q — 1)qu75,u}

To apply Lemma we set d = nt~2 and hence we are interested in the following

value
1 (m)a”

M(n,q,t) = max min — ————————" ——
w su n? (s)( u )(wf(eru))(q_l)qu o

where ¢, > 2 -integers , w > 7, s,u >0 and s +u < w.
For fixed value w we can find the maximum of

Gl g, fw) = @) <wu S) <w f(siu)) (¢—1)"g—>™"

or, asymptotically it means

(7)

maxzH (y) + x(1 —y)H (1zy) +(1—2)H <x(1yz)> 4

s,u

+azlogy(q — 1) — x(y + 2) logy q
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where H(x) = —(zlogyx + (1 — x)log,(1 — x)) is binary entropy function. Let
w = 2xn,s = yw,u = zw. For the most interesting case when ¢ = 2 (and easy to
analyse) we get the following optimization problem

R; = maxmin H(z) + z(y + z)—

x Y,z

- (xH(Z/) +a(l—y)H <1iy> +(—o)H <x(11_—ym_2)>>

subject to x,z > 0, y > t~2, q,t are integers greater than 1,
where R; is a rate of corresponding code, i.e., R = n~!log, M(n,2,t).
The corresponding calculations give for ¢ = 2 that for ¢ = 2

Ry > 0.0360178851,

which is achieved for = 0.1156, i.e. for w/n = 0.1156,
and for t =3
R3 > 0.0063140344

which is achieved for x = 0.0.048.

5 How to compare tracing traitors schemes?

In order to compare different tracing traitors schemes we need to return to the
origin of this subject, namely to [2], where it was suggested to consider the total
number N = nq of transmitted “blocks” containing encrypted shares, i.e., con-
sider IV as a “block length” and correspondingly calculate the effective code rate
as R* = N~ 1log, M. It means that for g-ary IPP-codes and for g-ary IPP-set
systems we need to muptiple their ordinary rate on b%q. In the case of IPP set
systems the effective rate equals to the ordinary rate.

Let us compare numerically the new traceability scheme with the known
ones in the particular case of coalitions of size 2. Our binary 2-IPP set systems
with traceability have the effective rate R5_,., = 0.0180 what outperformes
significantly the best known traceability ternary codes with their effective rate
Ri = %, see [21], and slightly worse than the effective rate of the best known

IPP-set systems Rj_,., = 0.0181, see [10].

How the effective rate of the best ¢-IPP systems with traceability behaves
for t — oo is the open question and the subject of our future work.
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