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Abstract. We introduce a special class of arcs in PG(r, q) called (t
mod q)-arcs. These are geometric objects whose structure is related to
the extendability of linear codes. We present constructions and general
structure results for (t mod q)-arcs. Based on the characterization of
(3 mod 5)-arcs in PG(2, 5) and PG(3, 5), we prove the nonexistence of
certain Griesmer codes over F5.
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1 Introduction

In this paper we study the connection between the extendability of arcs in finite
projective geometries (resp. the extendability of linear codes over finite fields)
and their divisibility properties. A linear code over Fq is said to be divisible with
divisor ∆ > 1 if the weight of every codeword is a multiple of ∆. It is almost
straightforward that if (∆, q) = 1 then a code of full length (a code in which no
coordinate is identically zero) is a ∆-fold replicated code, i.e. a concatenation of
∆ identical codes [19].

Griesmer codes of minimum weight divisible by the characteristic of the ground
field also have divisibility properties. We quote here the remarkable result by H.
N. Ward from [19].

Theorem 1. Let C be a Griesmer code over Fp, p a prime. Then if pe divides
the minimum weight of C, then pe is a divisor of the code.



A linear [n, k, d]q-code is said to be t-quasidivisible modulo ∆ if d ≡ −t (mod ∆)
and all weights in the code are congruent to −t, . . . ,−1, 0 modulo ∆. Codes ob-
tained by t-fold puncturing of a divisible code with divisor ∆ are t-quasidivisible
modulo ∆. It happens very often, especially for small values of t, that t-quasi-
divisible codes are t-extendable to a divisible code. For instance, the classical
theorem by Hill and Lizak [7,8] says that every linear [n, k, d]-code with weights
0 and d modulo q, where (d, q) = 1, is extendable to a [n + 1, k, d + 1]q-code.
Here the most common case is d ≡ −1 (mod q). Using the notion of a qua-
sidivisible code, this is equivalent to saying that every 1-quasidivisible code is
extendable. Recently Maruta produced a lot of extendability results of this type
[14,15,16,17,20]. The most interesting of them says that if an [n, k, d]q-code with
q ≥ 5 odd, and d ≡ −2 (mod q) has only weights −2,−1, 0 (mod q) then it is
extendable [16]. This is equivalent to the statement that every 2-quasidivisible
code over a field of order q ≥ 5, q odd, is extendable.

An attempt for a unified approach to the question of code extendability was made
in [12], where the problem was tackled from its geometric side. It is well-known
that linear codes over finite fields and arcs in the finite geometries PG(k − 1, q)
are equivalent objects: with every linear [n, k, d]q-code C one can associate an
(n, n−d)-arc KC in PG(k−1, q) (clearly, in a non-unique way) so that two codes
C1 and C2 are isomorphic if and only if the arcs KC1

and KC2
associated with

them are projectively equivalent [3,10,18]. Arcs associated with codes meeting
the Griesmer bound are called Griesmer arcs.

In this paper, we introduce (t mod q)-arcs in PG(r, q). These are geometric
objects whose structure is related to the extendability of certain arcs and codes.
We present structure results on (t mod q)-arcs and prove the nonexistence of
certain Griesmer codes over F5.

2 Quasidivisible Arcs and Extendability

In order to fix the notation, we introduce some basic definitions and facts on
multisets. Consider the geometry Σ = PG(r, q), r ≥ 2, q = ph. Denote by P
be the set of points and by H the set of hyperplanes of Σ. Every mapping
K : P → N0 from the pointset of the geometry to the non-negative integers is
called a multiset in Σ. This mapping is extended additively to every subset Q
of P by K(Q) =

∑
P∈Q

K(P ). The integer n := K(P) is called the cardinality of
K. The support of K is the set of all points of positive multiplicity:

suppK = {P ∈ P|K(P ) > 0}.

Multisets with K(P ) ∈ {0, 1} are called projective. They can be viewed as sets
by identifying them with their support. For every set of points Q ⊂ P we define



its characteristic (multi)set χQ by

χQ(P ) =

{
1 if P ∈ Q,
0 otherwise.

Denote by ai the number of hyperplanes H of Σ with K(H) = i. The sequence
(ai) is called the spectrum of K.

Multisets can be viewed as arcs or blocking sets. A multiset K in Σ is called an
(n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) = n, (2) K(H) ≤ w for every
hyperplane H , and (3) there exists a hyperplane H0 with K(H0) = w. Similarly,
a multiset K in Σ is called an (n,w)-blocking set with respect to the hyperplanes
(or (n,w)-minihyper) if (1) K(P) = n, (2) K(H) ≥ w for every hyperplane H ,
and (3) there exists a hyperplane H0 with K(H0) = w.

An (n,w)-arc K in Σ is called t-extendable, if there exists an (n + t, w)-arc K′

in the same geometry with K′(P ) ≥ K(P ) for every point P ∈ P . An arc is
called simply extendable if it is 1-extendable. Extendable arcs are associated
with extendable codes and vice versa. Similarly, an (n,w)-blocking set K in
Σ is called t-reducible, if there exists an (n − t, w)-blocking set K′ in Σ with
K′(P ) ≤ K(P ) for every point P ∈ P .

An (n,w)-arc K with spectrum (ai) is said to be divisible with divisor ∆ > 1 if
ai = 0 for all i 6≡ n (mod ∆). The (n,w)-arc K with w ≡ n+ t (mod q) is called
t-quasidivisible with divisor ∆ > 1 (or t-quasidivisible modulo ∆) if ai = 0 for
all i 6≡ n, n + 1, . . . , n + t (mod ∆), 1 ≤ t ≤ q − 1. It is easily seen that linear
codes associated with divisible (resp. t-quasidivisible) arcs are divisible (resp.
t-quasidivisible) with the same divisor. The divisors ∆ in this paper are always
powers of the characteristic of the base field Fq.

Given the projective geometry Σ = PG(r, q), we define its dual Σ̃ in the usual
way: we take the hyperplanes of Σ as points, the subspaces of codimension two
as lines, and preserve the incidence. If S is a subspace of Σ of (projective)

dimension s, we shall denote by S̃ the subspace in Σ̃ associated with S. Clearly,
the dimension of S̃ in Σ̃ is r− 1− s. Now for every t-quasidivisible (n,w)-arc K

with divisor q in Σ, t < q, we can define a dual arc K̃ in the geometry Σ̃ by

K̃ :

{
P̃ → {0, 1, . . . , t}

H̃ → K̃(H̃) = n+ t−K(H) (mod q)
, (1)

where P̃ is the set of all points in Σ̃, i.e. the set of hyperplanes in Σ. This means
that hyperplanes of multiplicity congruent to n + a (mod q) become (t − a)-
points in the dual geometry. In particular, maximal hyperplanes are 0-points
with respect to K̃. Let us note that the size of K̃ depends on the spectrum of K
and not just on the parameters of the arc. The following simple result establishes
the basic divisibility properties of K̃.



Theorem 2. [12] Let K be an (n,w)-arc in Σ = PG(r, q) which is t-quasidivisible

modulo q with t < q. For every subspace S̃ of Σ̃, with dim S̃ ≥ 1,

K̃(S̃) ≡ t (mod q).

The above observation justifies the following definition. Let t be a fixed non-
negative integer. An arc F in Σ is called a (t mod q)-arc if for every subspace S
of dimension at least 1, F(S) ≡ t (mod q). By Theorem 2 if K is an arc which is

t-quasidivisible modulo q then its dual K̃, given by (1), is a (t mod q)-arc with
point multiplicities that do not exceed t. Let K be an (n,w)-arc in Σ which is
t-quasidivisible modulo q. The following theorem connects the extendability of
K with the structure of the (t mod q)-arc K̃.

Theorem 3. [12] Let K be an (n,w)-arc in Σ = PG(r, q) which is t-quasidivisible

modulo q with t < q, and let its dual K̃ be defined by (1). If

K̃ =

c∑

i=1

χ
P̃i

+K′

for some multiset K′ in Σ̃ and c not necessarily different hyperplanes P̃1, . . . , P̃c

in Σ̃, then K is c-extendable. In particular, if K̃ contains a hyperplane in its
support, then K is extendable.

3 Structure Results for (t mod q)-Arcs

In this section, we study (t mod q)-arcs as a purely geometric object without
relation to the extendability problem. We start with a straightforward construc-
tion.

Theorem 4. Let F1 and F2 be a (t1 mod q)- and a (t2 mod q)-arc, respec-
tively, in PG(r, q). Then F1 + F2 is a (t mod q)-arc with t = t1 + t2 (mod q).
Similarly, αF1, α ∈ {0, . . . , p− 1} is a (t mod q) arc with t ≡ αt1 (mod q).

This theorem has a nice corollary for the case t = 0 when q = p is a prime.

Corollary 1. Let F and G be (0 mod p)-arcs in PG(r, p), where p is a prime.
Then F +G and αF , α ∈ {0, . . . , p− 1}, are also (0 mod p)-arcs. In particular,
the set of all (0 mod p)-arcs in PG(r, p) is a vector space over Fp.

The next construction is less obvious.



Theorem 5. Let F0 be a (t mod q)-arc in a hyperplane H ∼= PG(r − 1, q) of
Σ = PG(r, q). For a fixed point P ∈ Σ \H, define the arc F in Σ as follows:

– F(P ) = t;

– for each point Q 6= P : F(Q) = F0(R) where R = 〈P,Q〉 ∩H.

Then the arc F is a (t mod q)-arc of size q|F0|+ t.

We call the (t mod q)-arc obtained by Theorem 5 a lifted arc from F0 and
the point P – lifting point. We can generalize slightly the notion of a lifted
arc replacing the point P by a subspace U . Let F0 be a (t mod q)-arc in the
subspace V of Σ = PG(r, q) and let U be a complementary subspace in Σ with
dimU + dim V = r − 1, U ∩ V = ∅. The arc F in Σ defined by

– F(P ) = t for every point P ∈ U ;

– for each point Q 6= P : F(Q) = F0(R) where R = 〈U,Q〉 ∩H

is called an arc lifted from the subspace U . Obviously F is also a (t mod q)-arc.
Let us note that if an arc is lifted from a subspace then it can be considered as
lifted from any point of that subspace. We have also a partial converse of this
observation.

Lemma 1. Let F be a (t mod q)-arc in PG(r, q) which is lifted from the points
P and Q, P 6= Q. Then F is also lifted from the line PQ. In particular, the
lifting points of a (t mod q)-arc form a subspace S of PG(r, q).

From this point on, we consider only geometries Σ = PG(r, p) over prime fields
Fp. Denote by V the set of all (0 mod p) arcs in PG(r, p). The following obser-
vation is similar to the one made in Theorem 4 and Corollary 1.

Lemma 2. Let F and G be (0 mod p)-arcs in PG(r, p) that are lifted from the
same subspace U , dimU ≥ 0. Then F + G and αF , α ∈ {0, 1, . . . , p − 1}, are
also (0 mod p)-arcs lifted from U . In particular, the (0 mod p)-arcs lifted from
U form a subspace of V .

Now let us denote by A the points-by-lines incidence matrix of PG(r, p), p prime,
for some fixed order of the points. Let F be an arc in PG(r, p) with point
multiplicities not exceeding p− 1. Then the arc F is represented by a vector x
over Fp:

x = (F(P1), . . . ,F(P pr+1
−1

p−1

)),



where the point multiplicities are viewed as elements of Fp. It is obvious that F
is a (0 mod p)-arc if and only if

xA = 0, (2)

where 0 is the zero vector. Hence

dimV =
qr+1 − 1

q − 1
− rkp A.

The rank of A is known from the celebrated theorem by Hamada [6] which is
stated below in its general form.

Theorem 6. The rank over Fph of the incidence matrix of points and d-flats in
PG(r, ph) is equal to

Rd(r, p
h) =

∑

s0

. . .
∑

sh−1

h−1∏

j=0

L(sj+1,sj)∑

i=0

(−1)i
(
r + 1

i

)(
r + sj+1p− sj − ip

i

)
,

where sh = s0, the summations are taken over all integers sj, j = 0, . . . , h− 1,
such that d+ 1 ≤ sj ≤ r+ 1, 0 ≤ sj+1p− sj ≤ (r+ 1)(p+ 1), and L(sj+1, sj) is
the greatest integer not exceeding (sj+1p− sj)/p, i.e.

L(sj+1, sj) = ⌊
sj+1p− sj

r
⌋.

Let us note that in Hamada’s notation A = R1(r, p). The formula above is not
very handy. For the special case of d = 1, i.e. a points-by-lines incidence matrix,
and h = 1, i.e. a prime field, we have a closed formula for the rank found by van
Lint. It is stated below as a corollary and can be found in [2].

Corollary 2. For the points-by-lines incidence matrix of PG(r, q) we have

rkp R1(r, p) =
pr+1 − 1

p− 1
−

(
p+ r − 1

r

)
.

Corollary 3. The dimension of the vector space of all (0 mod p)-arcs is dimV =(
p+ r − 1

r

)
.

Now we can characterize the vector space V of all (0 mod p)-arcs.

Theorem 7. [11] The vector space of all (0 mod p)-arcs in PG(r, p) is gener-
ated by the complements of the hyperplanes.



Now since the arc associated with j − χT is lifted from every point of the hy-
perplane T , we have the following corollary.

Corollary 4. Every (0 mod p)-arc in PG(r, p) is a sum of lifted arcs.

Corollary 5. Every (t mod p)-arc in PG(r, p) is a sum of lifted arcs.

In the plane case we can prove even more. A (t mod p)-arc can be represented
as the sum of at most p lifted arcs.The proof relies on a result by Blokhuis and
Moorhouse on the p-rank of certain incidence matrices obtained from ovals in
PG(2, p) [1].

Theorem 8. [11] Let P1, . . . , Pp be p points from a conic in PG(2, p). Denote
by Vi the vector space of all (0 mod p)-arcs lifted from Pi, i = 1, . . . , p, and by
V the vector space of all (0 mod p)-arcs. Then

V = V1 + V2 + · · ·+ Vp.

Corollary 6. Every (t mod p)-arc in PG(2, p) can be represented as the sum
of at most p lifted arcs.

Recall that the (t mod q)-arcs obtained from t-quasidivisible arcs have the ad-
ditional property that the point multiplicities are upperbounded by t.

In the plane case, non-trivial (t mod q)-arcs can be constructed as σ-duals of
certain blocking sets. Let K be a multiset in Σ. Consider a function σ such that
σ(K(H)) is a non-negative integer for all hyperplanes H . The multiset

K̃σ :

{
H → N0

H 7→ σ(K(H))
(3)

in the dual space Σ̃ is called the σ-dual of K. If σ is a linear function, the param-
eters of K̃σ, as well as its spectrum, are easily computed from the parameters
and the spectrum of K [13].

Theorem 9. [12] A (t mod q)-arc in PG(2, q) of size mq+ t and with maximal
point multiplicity t exists if and only if there exists a blocking set in PG(2, q)
with parameters ((m − t)q + m,m − t) and with line multiplicities in the set
{m− t,m− t+ 1, . . . ,m}.



4 (3 mod 5)-arcs in PG(3, 5) and the nonexistence of
some Griesmer codes

First, we classify some small (3 mod 5)-arcs in PG(2, 5). Due to Theorem 9, the
classification of such arcs is equivalent to the classification of certain blocking
sets with an additional restriction on the line multiplicities.

Arcs of cardinality 18

These arcs correspond to (3,0)-blocking sets with lines of multiplicity 0, 1 2, 3.
Such blocking sets correspond to three (not necessarily different) points. These
correspond to the sum of three not necessarily different lines in various mutual
positions. It is an easy check that there exist four (3 mod 5)-arcs of cardinality
18.

Arcs of cardinality 23

These arcs correspond to (9, 1)-blocking sets with lines of multiplicity 1, 2, 3, 4.
Hence blocking sets containing a full line do not lead to (3 mod 5)-arcs. Thus
the only possibility is the projective triangle. Dualizing we get a (3 mod 5-
arc in which the 2-points form a complete quadrangle, the intersections of the
diagonals are 3-points and the intersections of the diagonals with the sides of
the quadrangle are 1-points.

Arcs of cardinality 28

These arcs are obtained from (15,2)-blocking sets with lines of multiplicity 2,
3, 4, or 5. If such a blocking set does not have multiple points it is obtained
as the complement of a (16,4)-arc. Such an arc should not have external lines
since the maximal multiplicity of a line with respect to the blocking set is 5. The
classification of the (16,4)-arcs is well-known. There exists exactly one such arc
without external lines obtained by deleting the common points of six lines in
general position from the plane. It is also easily checked that a (15,2)-blocking
set having points of multiplicity greater than 1 always has a line of multiplicity
6 and hence does not give a (3 mod q)-arc with point multiplicity at most 3.

Arcs of cardinality 33

If F is such an arc then Fσ is a (21, 3)-blocking set with line multiplicities
3, 4, 5, 6. Again such a blocking set cannot have points of multiplicity 3 or larger
since this would impose lines of multiplicity larger than 6 in F .

Denote by Λi the number of points of multiplicity i. Constructions are possible
only for Λ2 = 0, 1, 2. In such case, Fσ is one of the following:



(1) the complements of the seven non-isomorphic (10, 3)-arcs; Λ2 = 0;

(2) the complement of the (11, 3)-arc with four external lines and a double point
a point not on an external line, Λ2 = 1;

(3) one double point which forms an oval with five of the 0-points; the tangent
in the 2-point is a 3-line, Λ2 = 1;

(4) PG(2, 5) minus a triangle with vertices of multiplicity 2, 2, 1; Λ2 = 2.

Based on the classification for small (3 mod 5)-arcs one can prove that (3
mod 5)-arcs in PG(3, 5) of small cardinality are always lifted. We have the fol-
lowing theorem.

Theorem 10. Every (3 mod 5)-arc F in PG(3, 5) with |F| ≤ 168 is a lifted
arc. In particular, if |F| ≤ 168 then |F| = 93, 118, 143, or 168.

This result enables us to rule out the non-existence of some hypothetical Gries-
mer codes of dimension k = 4 over q = 5.

Theorem 11. There exists no (204, 42)-arc in PG(3, 5). Equivalently, there ex-
ists no [204, 4, 162]5 code.

Sketch of proof. Assume K is a (204, 42)-arc in PG(3, 5). The restriction of K to
a maximal plane is one of the following: (a) two copies of the plane minus three
non-concurrent lines minus two points (extendable to (44, 9)-arc); (b) twelve 2-
points and a 0-point with all lines containing four 2-points passing also through
the 0-point; (c) two copies of the plane minus an (11, 3)-arc. In particular a
maximal plane does not have 0- or 1-lines.

If (ai) is the spectrum K then

42∑

i=0

(
42− i

2

)
ai = −732 + 25λ2, (4)

where λ2 is the number of the 2-points. Using this as well as the structure of
the restriction to the maximal planes one can rule out the existence of planes of
multiplicity ≤ 28.

Based on the classification of the arcs with parameters (32, 7)-, (37, 8) and (38, 8)
which is known, we rule out the existence of 32-, 37- and 38-planes. This implies
that K̃ is a (3 mod 5)-arc with maximal point multiplicity 3. Furthermore, there

is no 18-plane (with respect to K̃) which is a line of 3-points. This uses the fact



that 0-points of K̃ correspond to maximal planes of K. By Theorem 10 and by the
classification of the small (3 mod 5)-arcs we get |K̃| > 168. This fact together
with (4) is used then to rule out the possibility of 42-planes of the types (a) and
(b). We shall demonstrate this argument on the case of a 42-plane π for which
K|π0

is a (42, 9)-arc of type (a) with spectrum b9 = 18, b8 = 10, b4 = 2, b2 = 1.

Consider a line L in π0 and denote by πi, i = 1, . . . , 5, the other planes through
L. The table below gives the maximal contributions of the planes through L to
the left-hand side of (4).

|K̃(L)| 3 8 13
|K(L)|

9 3 No No
8 28 7 No
4 No 156 112
2 No 211 187

Denote by x the number of 8-lines L in π0 with |K̃(L)| = 3, by y the number

of 4-lines L in π0 with |K̃(L)| = 8, and by z the number of 2-lines L in π0 with

|K̃(L)| = 8. From |K̃| > 168 we get

18 · 3 + 3x+ 8 · (10− x) + 8y + 13 · (2− y) + 8z + 13 · (1− z) > 168,

which implies x+ y + z < 1, i.e. x = y = z = 0. Now from (4) we get

18 · 3 + 10 · 7 + 2 · 112 + 1 · 187 ≥ −732 + 25λ2,

whence λ2 ≤ 50. This is a contradiction since π0 has four 0-points which implies
λ2 ≥ 52. The other (42, 9)-arcs of type (a) and (b) are ruled out in a similar
fashion.

Since a (205,42)-arc does not exist every point is contained in a maximal plane.
Hence K does not have 0-points. This implies that the 2-points form a set of 48
points no four of which a colinear. This is impossible since the maximal size of
a (n, 3)-cap in PG(3, 5) is 43 [4]. ⊓⊔

This leaves just two undecided cases for the optimal length of a four-dimensional
code over F5: d = 81 and d = 161.
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