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Abstract. In this paper we investigate the Gowers Uz norm of order 2 for generalized
Boolean functions, and Z-bent functions. The Gowers Uz norm of a function is a measure
of its resistance to affine approximation. Although nonlinearity serves the same purpose
for the classical Boolean functions, it does not extend easily to generalized Boolean
functions. We first provide a framework for employing the Gowers Us norm in the context
of generalized Boolean functions with cryptographic significance, in particular we give a
recurrence rule for the Gowers Uz norms, and an evaluation of the Gowers Uz norm of
functions that are affine over spreads. We also give an introduction to Z-bent functions,
as proposed by Dobbertin and Leander [4], to provide a recursive framework to study
bent functions. In the second part of the paper, we concentrate on Z-bent functions and
their Uz norms. As a consequence of one of our results, we give an alternative proof
to a known theorem of Dobbertin and Leander, and also find necessary and sufficient
conditions for a function obtained by gluing Z-bent functions to be bent in terms of the
Gowers Uz norms of its components.
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1 Introduction

Boolean functions are functions mapping binary strings to 0 or 1. Over the years several
generalizations of Boolean functions have been proposed. In this paper we consider such
a generalization for which the domain set remains the same as for classical Boolean
functions but the range is the set of integers modulo a positive integer ¢ > 2. These
generalized Boolean functions have evolved to an active area of research [7,8,10,12-15,
18-23] due to several possible applications in communications and cryptography.
Boolean functions which are maximally resistant to affine approximation have special
significance. The idea of nonlinearity is developed and extensively studied for classical
Boolean functions. In the case of classical Boolean functions on an even number of vari-
ables, the functions with the highest possible nonlinearity are said to be bent functions
[17]. The concept of nonlinearity does not extend easily to the generalized setup. In the
first part of the paper we investigate the Gowers Uz norm as a possible alternative to
nonlinearity for measuring the resistance to affine approximation. As examples we pro-
vide the expressions of the Gowers Us norms for the generalized bent functions, plateaued
functions, functions that are affine over spreads, and a recurrence rule for the Gowers Us
norms.



Characterization of bent Boolean functions is a longstanding open problem. One of the
roadblocks faced by the researchers has been the absence of recurrence rules within the
set of bent Boolean functions. Dobbertin and Leander [4] introduced the notion of Z-bent
functions in order to put bent functions in a recursive framework at the cost of leaving
the space of Boolean functions, and replacing it with the one of Z-bent functions of
different levels. Here, we further obtain some recurrences of Gowers Uz norms of Z-bent
functions, and a necessary and sufficient condition involving Gowers Uz norms of four
Z-bent functions of level 1 so that bent functions are always obtained by the “gluing”
process proposed by Dobbertin and Leander [4].

2 Preliminaries

2.1 Generalized Boolean functions

Let Fy be the finite field containing two elements; C, R, Z be the fields of complex
numbers, real numbers, and the ring of integers respectively. The cardinality of a set
S is denoted by #S. For any positive integer n, let F3 = {(z1,...,2n) : ;3 € Fo,1 <
i < n} be a vector space over Fa. Let Z, be the ring of integers modulo ¢, where g is a
positive integer. By ‘+’ and ‘—’ we respectively denote addition and subtraction modulo
q, whereas ‘@’ denotes the addition over F5. Any function from F3 to Fs, respectively,
Zq,q > 2, is a Boolean, respectively, generalized Boolean function, in n variables, and the
set of all such functions is denoted by By, respectively, GBL. The character form of a
generalized Boolean function f € GBZ, x5 : F3 — C, is defined by xf(x) = (5(’{), for all
x € F3, where (; = ¢’ . The algebraic normal form (ANF) of f € B, is the polynomial
representation f(x) = ED taxyt ... xp™, where x = (z1,...,%n), a = (a1,...,an), and
acFy

pa € Fo. If ¢ = 2F for some k > 1 we can associate to any f € GBZ a unique sequence of
Boolean functions a; € B, 0 < i < k, such that

F(x) = ao(x) + 2a1(x) + - - - + 2" ap_1(x), for all x € F5.
The (Hamming) weight of x € F3, denoted by wt(x), is the number of nonzero coordinates
in x, and the (Hamming) weight of a Boolean function f is wt(f) = #{x € Fy : f(x) #
0}. The (Hamming) distance d(f,g) between two functions f,g is the weight of their
sum. The algebraic degree of f is deg(f) = max{wt(a) : a € F3, ya # 0}. The Boolean
functions having algebraic degree at most one are affine functions.

For a (generalized) Boolean function f : F3 — Z, we define the (generalized) Walsh-
Hadamard transform to be the complex valued function

HO () = > IO =1,
x€Fy

where u - x = ®1<i<n u;z; For ¢ = 2, we obtain the usual Walsh-Hadamard transform
We(u) = Z (=1)7C) (1) The autocorrelation of f € GBY is defined by C}q)(u) =

xEFg
Z O~ We shall use the identity [21]
xng
)y =27" 3" [HP )P~ (1)
x€Fy

A function f : F§ — Zg is called generalized bent (gbent) if \H;q>(u)| = 2"2 for all

u € Fy. Further, we say that f € GB}, is called s-plateaued if |7-[5¢q>(u)| € {0,2(n+)/2}
for all u € F3, for a fixed integer s depending on f. For simplicity of notation, when ¢
is fixed, we sometimes use ¢, Hy, Cy instead of (g, 7-[5?), and C;q>, respectively. We refer
the reader to [7,11,12,15] and references therein for more on generalized bent functions
and their characterizations in terms of their components.



2.2 Gowers U; norm

Let g : V — C be any function on a finite set V and B C V. Then E.cp[g(z)] :=
#% Y wep 9(x) is the average of f over B. If f : Fy — C is a complex-valued function,
we define the Gowers Uz norm by

1/4
1l = (Exny naers [F(0)7(x @ o) Fix @ ha) f(x & b © o))

= (Em oy Exers P T @ B))

It is known (cf. [1, pp. 22-24]) that for f : F5 — R, if there is a polynomial P : F5 — {0, 1}
of degree d such that |Ememgf(m)(fl)P(z)| > ¢, then [|fllv,,, > € for any € > 0. It is

also known that for d = 1 having | f|lv,,, > € implies ‘Exe]}rgf(w)(fl)P@” > e for
some degree 1 Boolean polynomial. It is natural to investigate the Gowers Uz norm as
a possible measure of “nonlinearity” for generalized Boolean functions as well as Z-bent

functions. That is what we aim in this paper.

2.3 Gowers Uz norm for generalized Boolean functions and the
Walsh—Hadamard coefficients

In the remaining part of this section, and the next section we assume ¢ = 2'“, for some
positive integer k. If f : Fy — Z,r is a generalized Boolean function, we define the
Gowers norm of f to be the Gowers norm for the character form x; := ¢ f of f, where
¢= e2m1/2" g a complex root of 1.

The first part of our next theorem shown for generalized Boolean functions can be (some-
what) adapted from Chen [1, pp. 22-24], to which we refer for a detailed discussion (for
the Boolean case).

Theorem 1 If k > 1 and f : FS — Zow, then (with x5 = ¢, where ¢ = 22" s g
2%_complex root of 1) ||Xf||;l]2 =27 Z [He(x)|* < 272" max |Hs(x)|>. Moreover, the
x€Fy
x€Fy
equality holds if and only if f is a bent (k = 1), respectively, gbent (k > 1) function, and,
then, IxsI, = 2.

Proof. 1If f € gBik, using equation (1), we can see that the Gowers Uz norm is

Ixslly, =272 30 >0 > I ) > (TG ¢f (xDudv)

u€ely velFy xeFy veFy
— 9—3n Z Z Cf(X)*f(x@U) Z C*f(y)Jrf(yéBU)
u€efFy \x€eFy y€Fy
=277 N D IHsPEDT | D )P (=D
u€elfy \xeFy y€EFy
—5n 2 2 u-(x —4n 4
=27 NN AP H ) Y (DI =27 N (vt (2)
x€Fy yeFy uelry x€FY
an 4 4 2 2 2n 2
Then, 2" [sll5, = 0 15 GOI* < max [Hp )P 32 [Hp (O = 227 max [Hy ()
z€FY 2 zEFY 2

We will now show that the equality holds if and only if f is a bent function (k = 1),
or a ghent function (k > 1). If f is bent (gbent), then, |H;(x)|? = 2", for all x € F5.
Using (2), we infer

4 —4n 4 —4n n 2n —n —2n 2
Ixsllo, =2 [Hp()[F =277 2727 = 277 = 277 max M (x)[".
x€F
x€FY 2



Suppose now that the equality holds, but f is not gbent (bent). Then, there exists some
o such that [Hs(zo)|* < maxyery [Hs(x)|. Since the equality holds, from (2), we get
that [[xs||o, = 27" Z |Hs(x)[* =272 max |H s (x)|*. Thus, by Parseval’s identity,
xRy
x€FY 2

max [Hy(x)[* - D [Hy(x)* = 2°" max [Hy(x)* > D [Hs(x)[* = 2% max [#; (x) %,
2 2

x€FY
x€Fy x€FD

yielding a contradiction.

We only need to show that, if ||x¢||{,, = 27", the equality holds. Suppose that ||xy|[¢;, =

277, but [Ixsllo, =27 Y (M)l > 27" max [H 7 (x)|*. Then, max [H;(x)|* < 2",
x€FY *=t2 *=ta

contradicting Parseval’s identity. O

We can also obtain the Gowers Uz norm of any plateaued function:

Proposition 2. If f is an s-plateaued generalized Boolean function in GBY, where ¢ = 2F
for some positive integer k, then its Gowers norm is ||xslly, = 2= +)/4 - Iy par-
ticular, the Gowers Uz norm of a semibent generalized Boolean function f is ||x¢lly,
is 20mD/4 ir o is even, and 20V/4 ) if nods odd. In general, if f € GBY with
|Hy(x)| € {0, \1,...,At}, of respective multiplicities a, m1, ..., m¢, the Gowers Uz norm
is [Ixrllp, = 25—y mir 27"

Proof. If f is an s-plateaued generalized Boolean function, then by definition |H(x)| €
{2(n+2)/2 0}. By Parseval’s identity, erﬂfg [Hs(x)|> = 2°™ = a - 2""°, where a is the
multiplicity of 2"%* in |H(x)|. Hence, a = 2"~ *. Then, by equation (2), ||Xf||?]2 =
2—4n er]}‘g |Hf(X)|4 _ 2—4n .a- 22(n+3) — 9—nts Therefore, HXfHU2 — 2(*n+5)/4. By
similar arguments, we can prove the last claim. O

_ 1
It is well known that the nonlinearity of f € B, is ni(f) = 2" ' — 3 m%xﬂ/\/f (x)|, which
x€E g
means that if a function has high nonlinearity, then m%x|7-t #(x)] is small, and therefore
x€FY

lIx¢lly, is upper bounded by a relatively small number.

One can ask whether is it true that ||x/|l;, < l[xglly,, if f,9 € Bn with nl(f) < ni(g).
That is not necessarily true, and we provide an argument below. Let f be a quadratic
Boolean function (so k = 1) of rank 2h [16] (under f(0) = 0), then, by Proposition 2,
Ixslly, = 272" Thus, if f1, f2 are two quadratic Boolean functions of ranks 2h; < 2ha,
respectively, then

nl(f) =277 = 20T <o 2R =i (fy), x| = 270 > 272 = Il

We can certainly find an infinite class of pairs of Boolean functions (f,g) such that
nl(f) < nl(g) and |Ixslly, > lIxglly, - For example, let n be even, g be any bent Boolean
function, and so, by Theorem 1, nl(g) = 2" "1 —2%/271, ||Xg\|;§2 = 27", Let f now be any
semibent Boolean function (with f(0) = 0) for n even, so, by Proposition 2, [xsll,, =

2(=+2)/4 " which implies that ni(f) = 2"~ ' — 2"/2, HXfHZLlJZ =2 max Wi (x)* =
x€Fy

— 2771/4

2 4ng(n+gn=2 _ o=n+2 Thys, nl(f) < nl(g), and x4
o(~n+2)/4.

I, < Ixslle, =

2.4 Gowers U; norm of functions that are affine over spreads

We found in Theorem 1 and Proposition 2 the Gowers Us norm of bent and, more
generally, plateaued functions. It turns out we can precisely find the Gowers norm of a
class of functions that extend in some direction the well-known class of partial spread



bent functions, by allowing the function to be affine, not necessarily constant on the
elements of a spread.

Let ¢ = 2. Let n = 2m, and let {Fy, ..., Eam } be a spread of F}, that is, E;’s, 0 < i < 2™,
are m-dimensional subspaces of Fy with trivial intersection. Note that Uf:o E; =TF3 [3].
Theorem 3. Let {Ey,...,Eom} be a spread, and f € GBYL. Then:

(3) If f is defined by f(x) = ci, X € Bf

with arbitrary c,c; € Zq, 1 <1 < m, then
c, x=0,

o
Ixlig, =27 (@7 = 1)1¢° = Al +1¢° + (2" = DAI') , where 4 =3 ¢*.
1=0

(#1) If f is defined by f(x) = da; - x, x € E;, where {ao,...,azm} are distinct arbitrary
vectors in Fy, then ||Xf||U2 = (22 + 1) .

Proof. To show (i), we first write

2’771
He(u) =Y IO =" (=) 4 ¢
x€FY = 0x€E*
2'7L 2””. 2MA uiO
D I I N A T
x€EE; 1=0

Then
Iuslld, =27 32 s Gol = 27" (@ = 1)1 — A"+ ¢+ (27~ DATY) , and the

x€Fy
first claim is shown.

gm

To show (ii), we write Hs(u Z Z CFRF(—1)UX = Z Z (—1)(@itwx — om
i=0 x€E; i=0 x€E;

if there exists ¢ such that u = a;, and 0 if u # a;,Vi. Therefore, we get HXfH%JZ =

27 Z Hy(x)[* =272 (2™ 1) = 277" (2% + 1) , and the theorem is shown. 0O

x€FY

Note that, from the proof of (i), it is easy to generalize this result to allow for repeated
vectors. However, we do not state this result here, as it is notationally cumbersome.

3 Recurrences for Gowers U; norms of generalized Boolean
functions

We start this section with a lemma, which will be used to derive a formula for the Gowers
Uz norms of concatenations of Boolean functions. Its proof is not shown here due to space
restrictions, and will be available in the full paper.

Lemma 4. Let fi, f2 € GBL, ¢ = 2%, be n- va’r’z’ables genemlized Boolean functions and

¢ a g-complex root of 1. Then Z [y (%) Hpy (%) =27 Z Cy, (W)Cyy(W).

x€F} wEFy

We now derive a recurrence for Gowers Us norms of concatenations of generalized Boolean
functions. We use R(a + bi) = a for the real part of the complex argument.

Theorem 5 Let f : Fo x FY — Z,, where g = 27, be the concatenation f = [fi||f2] of
two n-variables generalized Boolean functions, fi, f2, that is, f(x1,x) = (1 —z1) f1(x) +
z1 f2(x). The Gowers Uz norm of f is given recursively by

4
2% |Ix¢llg,



= lhen s, + Ixrallt, +27 37 1 () P () 427472 37 02 (M, () Hi, (w))

ueky uerFy

= lhen I, + Ixnlit, +2757 3 Cru)Cn () +27472 37 82 (Mg, (w)Hz W)

u€efFy uefFy

- 1+R%(0)
If fa = fis then Xsllu, = IXailloy- I f2 = fr, then lIxslly, = ——=— Ixsllu, -

Proof. If f : Fo x F§ — Z, is given by f(z1,x) = (1 — z1) f1(x) + 1 f2(x), then, it is
known (and easy to show) that Hy(ui,u) = Hy, (u) + (—1)“*H, (u). The Gowers norm
of f is then (below, we split the sums into u; = 0, u; = 1.)

2V gl = Y Hetww)t= YT M () + ()" Ay ()

(u1,u)€F2 xFy (u1,u)€Fy XFY

= (AP )" (M ()P () + My ()P, (@) + M () )

(u1,u)€Fy XFY

D> (|Hf1<u>|4+(ﬂfl< VPL7a (0) + Hpy ()P, (W) + [P, ()]

(u1,u)€Fy XFY

+20H g, (W, ()] + 2(= 1) [, ()] (P, (), () + M (), ()
+2(=1)" [y (W) (Hpy () Hg () + Hpo (W) P, (W) )
=Y (MA@ A ) HE (WA ()

(u1,u)€Fy XFY
FO, () HF, (W) + 4(= 1) Hpy (WHE, () + M, (w)]*)
=23 (I I + g W + 2015, P My (W] + 4% (Hpy (W (W) )
ueky
=2 i, + 27 e, +4 3 (1 (@) (@) 4+ 28° (R (W (W) )
u€elFy

and by using Lemma 4, we infer the first claim. The second claim for fo = f; is easily
obtained, since then |’Hf2 (W) = [Hp (), ®2 (Hfl (w)Hy, (u)) = |Hys (u)|* and, so,

> Ha@PH@P = 3 % (Ha@Hu@) = 2" nlly, I fo = fi, then
ung uEF”

Hs, = (Hy, and so, R? (Hfl (w)Hy, (u)) = |Hs, (W)[*R? (¢), which, when used above
renders the last claim. O

We now look at functions f : Fy — Za, where f = ao + 2a1, with ap,a1 € B, and
find the Gowers Uz norm of f in terms of those of the components ao, ao & a1. Using a
decomposition result of [19] we can show the next theorem.

Theorem 6 Let f € GB:, f=ao+2a1, as,a1 € By. Then

4 4 4 4 —4n+1 2 2
24 Ixs N, = Ixar I, + IXao@an [l +27"F1 D WE, ()Wega, (%)
x€FY

4 4 —3n+1
= lIXa1 I, + Xaooarlltr, +27°" > Cay (W)Cagwar (W)
weFy

We can certainly derive an expression for the Gowers Uz norm for a generalized f € ngLk.
but the result is rather quite complicated, unfortunately. We will reserve it for the full

paper.



4 Gowers U, norm and Z-bent functions

4.1 Z-bent functions

In this section, if f is an integer valued function, we will work with the Fourier transform
f(u)=2""/? Z Ff(x)(—=1)". The Gowers norm of f given by

x€Fy

£ 117, = Ex.hynoery [f(x)f(x @ h1) f(x ® ha) f(x ® 1 @ ho)]
will render |15, = 272" Y F)".
Prompted by the observation that given two bent functions g, h in n = 2k variables,
k > 1, the function

fo) = XeLITX0) g g gy (3)

2
for all x € F5 will also have its Fourier transform given by ]?(u) = Xo(1) + Xn(u) €

{—1,0,1}, for all u € F3, Dobbertin and Leander [4] defined the notion of Z-bent function
in the following way. Let Wo = {~1,1}, W, = {£{ € Z: -2""' <£ <27 '}, forr > 1.A
function f : Fy — W, C Z is a Z-bent function of size k level r if f(x) € W,, for all
x € 5. The set of all Z-bent functions of size k level r is denoted by BEF. Any function
belonging to |, BEY is said to be a Z-bent function of size k. If a Z-bent function of
level 1 can be written as in (3) then it is said to be splitting, otherwise it is said to be
non-splitting. As Dobbertin and Leander did in [4], we refer to a £1 function as bent
(when we want to point that out we call it +1-bent) even though it is the signature of a
classical bent Boolean function.

Now, suppose that h € BFP® is the concatenation h = [hoolhot||h1o]|h11], where he, e, (x) =
h(e1, e2,%), for all (€1, e2,%x) € Fo x Fo x F5 ™2, that is, h(y, z,x) = (y®1)(z® 1) hoo(x) +
(y @ 1)zho1(x) + y(z ® 1)h1o(x) + yzhi1(x). We define the functions fc,c, by using the
following equations:

foo fio 11 hoo h1o
1. > 1: = 4
Case 1. For r > <f01 fi1 1-1 ho1 h11 ®

foo fio 1/11 hoo hio
2. F = U: = —
Case orr =10 <f01 n 5011 hoy by (5)

Dobbertin and Leander [4, Proposition 2] showed that if h is a Z-bent function of size k
and level r, then the functions fc,c, are Z-bent functions of size k — 1 and level r 4 1,
for all €1,ez € Fy. In other words, if h € BE®, then feres € BFf;ll, for all €1,e2 € Fa.
Conversely, suppose we have fe e, € BFf:ll, for all €1, €2 € Fa. If h = [hoo||ho1]|hio]|h11],
then we say that h is obtained by gluing fe,c,, where €1,€e2 € Fo. Although the gluing
process in general may not yield a Boolean function, it is known [4, Proposition 2] that
all functions in BE¥ are obtained by gluing functions in BFf_;ll. We derive the following
condition connecting the Z-bent functions of level 1 to (classical) bent functions as a

special case of [4, Theorem 3].

Theorem 7 Let four Z-bent functions foo, fo1, fio and fi1 of level 1 and size k be given
such that

foo(x) = for(x) +1 (mod 2); fio(x) = fuu(x) +1 (mod 2);
Foo(x) = fio(x) + 1 (mod 2); for(x) = fir(x) +1 (mod 2).

Then the function h : FaxFoxFy — {—1,1} defined by h(y, z,X) = hy.(x) for all x € F3,
where hij, fij, 0 < 1,7 <1 satisfy (5), is a £1-bent function (of level 0).

(6)

Due to normalization of the Walsh-Hadamard (Fourier) coefficients of f : F3 — R,
Parseval’s identity takes the form erng f(x)? = erw f(x)%



4.2 Recurrences for Gowers U norms of Z-bent functions

Here, we will obtain some recurrences for the Gowers Uz norms of Z-bent functions
h € BEY in terms of the Us; Gowers norms of f;; € BFT’:EII, where h is obtained by gluing
fij, 0 < 4,7 < 1. Due to space restrictions, we state it without a proof, which will be

available in the full paper.

Theorem 8 Let h : Fo x Fy x Fy — Z be the concatenation h = [hool|ho1||hio||h11] of
four n-variables integer valued functions hi; (0 <i,7 < 1), satisfying equations (4)—(5),
for some integer valued functions fi;. Then, with v = %, 1, if r > 1, respectively, r = 0,
we have

—4 4 -3 4 4 4 4
VRN, =27 (Ioollf, + Worlll, + ol + 11l )

+3- 27200 3 (foo (@) o (w) + For” () fin (W)

ueky

We can easily get a proof for Theorem 7 of Dobbertin-Leander [4].

Corollary 9. If fi; in the theorem above are Z-bent functions and satisfy also equa-
tion (6), then the function h obtained from gluing fi; is bent.

4.3 An alternative proof of a theorem by Dobbertin and Leander

In Dobbertin-Leander Theorem 7, sufficient conditions on f;; for the bentness of h are
proposed. Using the above recurrence we can now easily get necessary and sufficient
conditions for the bentness of h. Although, the next result is shown using Theorem 8, we
shall call it a theorem, due to its importance.

Theorem 10 Let hij, fij, 0 < 1,5 <1, be as in the theorem above and h obtained from

gluing the Z-bent functions f;; of level 1. Then h is bent if and only if Hfoo||?]2 +|| for H?,Z +
Com —2, —2 ~2, 2 n

If10llg, + Il 4327271 > (foo (W) fio () + for (w)fun (w)) =27"F4

uelfy

The next theorem uses a result of Kolomeec and Pavlov [9] who showed that d(g, h) > 2%,
for any two bent functions in n variables.

. . . _ (x)+xp(x)
Theorem 11 If f is a splitting Z-bent function of level 1 such that f(x) = %

. . 2" —d(g,h v
where g, h are bent functions, the Us Gowers norm is Hf||zlj2 = 22&? ) = dg.h)

If f is a splitting Z-bent function of level 1 in n variables and not a bent function then

I1£1ly, < *5z2

While we were able to compute the Uz Gowers norm of any bent function in Theorem 1
and give some necessary conditions for splitting Z-bents in Theorem 11, it is a natural
question about the norm of a Z-bent of any level. In our next result, we are able to com-
pute the Gowers norms of Z-bent functions of any level, under some technical conditions.
In particular, we note that the next theorem implies that the norm of two types of Z-bent
functions of level 1 is not a function of n only, as it was the case for level 0.

Two Boolean functions g, h € B, are called disjoint spectra functions if x4 (u)-x»(u) =0,
for any u € F3. Equivalently, X4(u) = 0 if and only if X4 (u) # 0, since if n is odd then
for any semibent, its Fourier spectrum has 2"~! nonzero coefficients. In Theorem 3.2
of [6] it is claimed that a Z-bent function of level 1 constructed by using two disjoint



spectra semibent functions in n variables, where n is even, is non-splitting. The proof of
this theorem contains a serious flaw, and therefore proving the existence of non-splitting
Z-bent functions of level 1 is still an open problem. We shall be using below Theorem
3.5 of [6] below, which states: Let n be even, and fi, fo € B, be si-, respectively,
sp-plateaued functions that are neither bent nor both semibent, and so, Spec(xy,) =
{0,£2"*"} ri ;= % —1 >0 (i = 1,2). Let a, B be arbitrary nonzero integers with
a=p0 (mod2).Ifrr =0,7r2=1a==1(orrs =0,m =1, 8 = £1), we assume
2Bea+aer ¢ {—1,1} (respectively, 2ae1 + Bex ¢ {—1,1}), for at least one value of z € F5;
if 1 > 0, 72 > 0, we assume that axp, (x) + 8Xf (x) € {0,+2}, for at least one value
z € Fy. Then, f(x) = w is a Z-bent function of level [ := [log, M|, where
M = maxuery {|aX7, (0) + BX s, (u)]}, which cannot be split into two bent functions.

Theorem 12 Let f be a Z-bent function of level r, and write f(x) = w
(i) If g,h are disjoint spectra functions that fulfill the conditions of [6, Theorem 3.5],

then ||f||?‘]2 =27"" (a2 + g2,
(i1) In general, if g, h are not necessarily disjoint spectra functions, then
Ifllp, =27 (@27 + p*2°2) + 27" aB(a”2"! + 5°2°2)(2" — 2d(g, b))
+272 720?322 {x Xy (x) - Xn(x) # O}

Proof. If g, h are not necessarily disjoint spectra functions, we obtain

||f||?]2 _9-2n Z f4(x) _9-2n Z (045(\9(11) gﬂfh(u)) — 924 Z (a5

xE]Fg xe]Fg xe]Fg

+ 40’ B (%) Rn (x) + 60”825 ()% (%) + 408X (x)%0 (%) + 5% (%))

=27} U{ueF}:xy(u) = 27, %u(u) =
51 52 ~
2 Xp(u) = =23} U {u € F3 : Xy(u) =

LetA:#({ueF3~>?g():22 )
-27%}), B #({u € Ff : Ry(u) = 2
—27, R (u ) =27%}).

By Parseval’s identity, » . f(x) (Ra (3)+2% ()Xn () +X7.(x) = > £3(

xeﬂ*‘g xe]F2 xE]F”

277 ) (%) + 2x9()xn (%) + X (x)). Further, 37, con X5(%) = Yeny X5 (%), and

x€Fy

I
™
(V]

~2 2 SHSQ

ZXEFQ Xn(x) = er]}‘g X7 (x), which implies that Z o (X)X (x) = (A—B) =
x€Fy

S ) = 2t w0 A = 2

xe]Fg

C := A+ B is the number of positions where both X, and ¥} are nonzero. Then,

S2

(2™ — 2d(g,h)). Notice that

LER(x) =272 27 (4 - B) = 27 (2" - 2d(g, ),
ng Rx) =227 (A B) = 22(2" — 2d(g, h).

Finally, Y %5(x)X7(x) = 2172 (A4 B) = C2°1%°2 Then, | f|}, = 272" *(a*2*" ||gl|y, +
xE]F"

B2 ||hlly, +4(a”B27 + af’27) - (2" = 2d(g, b)) + 60°B7C27 T2 = 27" (a2 4

B12°2) 4272 20?2 + 5%2°2)(2" — 2d(g, h)) + 272" 20’ B%2°1 120, where C = |{x :

Xg(x) - Xn(x) # 0}]. The second claim is similar. O



Corollary 13. If h: Fo X Fa X F§ — Z is the concatenation h = [hoollho1||h10]|h11] of
four n-variables integer valued functions hij (0 < i,j < 1), satisfying equations (4)—(5),
for some integer valued Z-bent functions fi; of level r +1 > 2 of constant norm, say
Hfij||?]2 = K, such that both pairs foo, f10, respectively, foi, fi1 have disjoint spectra,
then the Uz Gowers norm of the Z-bent function h of level r is HhH4U2 =27°K.
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