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Abstract. Recently, Skabelund defined a new maximal curve which is
a cyclic extension of the Suzuki curve. In this paper, we consider locally
recoverable codes constructed from this new curve. Locally recoverable
codes allow for the recovery of single symbol by accessing only a few oth-
ers which form what is known as a recovery set. If every symbol has at
least two disjoint recovery sets, the code is said to have availability. Two
constructions are described, as each best fits a particular situation. The
first employs the original construction of locally recoverable codes from
curves by Tamo and Barg. The second yields codes with availability by
appealing to the use of fiber products as described by Haymaker, Malm-
skog, and Matthews. In both instances, we see that the cyclic extension of
the Suzuki code provides codes with smaller locality than those typically
found in the literature.
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1 Introduction

Maximal curves have played a role in a number of applications in coding theory.
For instance, they allow for the construction of long algebraic geometry codes and
yield explicit families of codes with parameters exceeding the Gilbert-Varshamov
bound [16]. More recently, they have proven useful in the construction of codes
with locality. In some applications, it is desirable to recover a single (or small
number of) codeword symbol(s) by accessing only a few, say r, particular symbols
of the received word. This leads to the notion of locally recoverable codes, or
LRCs. In principle, the locality r should be small so as to limit network traffic
though this can adversely impact other code parameters. While an [n, k, d] code
C, meaning a code of length n, dimension k, and minimum distance d, can
recover any d− 1 erasures or correct any

⌊
d−1
2

⌋
errors, this assumes access to all

other symbols of the entire received word. More precisely, the code C is locally
recoverable with locality r if and only if for all j ∈ [n] := {1, . . . , n} there exists

Aj ⊆ [n] \ {j} with |Aj | = r

and
cj = φj(c|Aj

)
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for some function φj : Aj → F for all c ∈ C. The set Aj is called a recovery
set for coordinate j. Tamo and Barg [15] introduced a construction for codes
with locality that is similar to that of algebraic geometry codes. This motivated
much work on locally recoverable codes, including [1], [2], [5], [8], [10]. In [7], we
employ maximal curves to construct LRCs with availability t ≥ 2, meaning each
coordinate j has t disjoint recovery sets. Implementing codes with availability
makes information more available to more users, since recovery of an erasure is
not entirely dependent on a single set of coordinates (which may itself contain
erasures).

In this paper, we define codes with locality from a new maximal curve con-
structed by Skabelund [13] using a cyclic cover of the Suzuki curve. The Suzuki
curve Sq over Fq gets its name from its automorphism group which is the Suzuki
group Suz(q) of order q2(q2+1)(q−1). In [6], Hansen and Stichtenoth considered
this curve and applications to algebraic geometry codes leading to other works
such as [9], [11]. Recently, Eid, Hammond, Ksir, and Peachey [3] constructed an
AG code over Fq4 whose automorphism group is Suz(q). Skabelund considers a
cyclic extension of Sq and proves it is maximal over Fq and Fq4 . The construction
is similar to that of the Giulietti-Korchmáros, or GK, curve, which has already
proven useful in constructing codes with locality. This cyclic extension of the
Suzuki curve has been utilized for algebraic geometry codes and for quantum
codes [12].

This extended abstract is organized as follows. In Section 2, we obtain codes
with locality from the cyclic extension S̃q of the Suzuki curve Sq. The locality is
much smaller relative to the alphabet size and code length than comparable con-
structions. In Section 3, we build upon this to construct codes with availability
from S̃q. Our constructions build on tools found in [15] and [7], and some useful
background may be found there. As we demonstrate, the cyclic extension of the
Suzuki curve introduced by Skabelund offers great flexility in the construction
of codes with locality.

2 Locally recoverable codes

The Suzuki curve Sq may be described by the equation

Sq : yq + y = xq0 (xq + x)

where q0 = 2s, q = 2q20 , and s ∈ N. It is optimal over Fq, having q2+1 Fq-rational
points. Indeed, if a, b ∈ Fq, aq = a and bq = b; since char Fq = 2, bq + b = 0 =
aq0 (aq + a). In addition, there is a unique point at infinity corresponding to
x = z = 0 and y = 1. The genus of Sq is q0 (q − 1) [6]. It is maximal over Fq4 ,
having q4 + 1 + 2q0q

2(q − 1) Fq4 -rational points [3]. Define

S̃q :

{
yq + y = xq0 (xq + x)

tm = xq + x.

where m = q − 2q0 + 1. The curve S̃q has a unique point at infinity, and affine
points will be denoted Pabc := (a : b : c : 1) to mean the unique zero of x − a,
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y − b, and t − c, just as those of Sq will be denoted by Pab. The genus of S̃q is
q3−2q2+q

2 [13]. According to [12], the number of Fq4 -rational points on S̃q that
are not Fq-rational is

q5 − q4 + q3 − q2;

see also [13] for a discussion of the points on this curve. Define

g : S̃q → Sq

Pabc 7→ Pab

Let
S := Sq

(
Fq4
)
\ Sq (Fq) . (1)

Then |S| = q4 + 2q0q
2(q − 1)− q2 [3]. Set D :=

∑
P∈D P where

D := g−1 (S) =
{
Pabc ∈ S̃q

(
Fq4
)

: c 6= 0
}
. (2)

For each Pab ∈ S, g−1 (Pab) = {Pabc : cm = aq + a}, so

|g−1 (Pab) | = q − 2q0 + 1. (3)

Recall that given a divisor G on a curve X over a field F, the space of
functions determined by G is

L(G) := {f ∈ F(X) : (f) ≥ −G} ∪ {0}

where F(X) denotes the set of rational functions on X, and (f) denotes the
divisor of the function f ; to say that (f) =

∑
Q∈Z aQQ −

∑
P∈P bPP with

aQ, bP ∈ Z+ means f has a zero of order aQ at Q and a pole of order bP at P .
Let α ∈ Z+, and consider the divisor

G := α

P∞ +
∑

a,b∈Fq

Pab


on Sq. According to [3], a basis for L(G) is given by

B :=


xaybucvd

(xq + x)e
:

aq + b(q + q0) + c(q + 2q0)
+d(q + 2q0 + 1) ≤ α+ eq2

a ∈ {0, . . . , q − 1} , b ∈ {0, 1} ,
c, d ∈ {0, . . . , q0 − 1} , e ∈ {0, . . . , α}

 ⊆ Fq4 (Sq)

where u = x2q0+1 − y2q0 and v = xy2q0 − u2q0 . Set

V :=
〈
fti : i = 0, . . . ,m− 2; f ∈ B

〉
.

Now define

ev : V → F(q−2q0+1)(q4+2q0q
2(q−1)−q2)

q4

f 7→ (f (Pabc))Pabc∈S̃q(Fq4)\S̃q(Fq)
,

and set C(D,G, g) := ev(V ).



4 G. L. Matthews

Theorem 1. Suppose C(D,G, g) is constructed as above where degG < |S|.
Then C(D,G, g) is an [n, k, d] code over Fq4 with locality q − 2q0,

n = (q − 2q0 + 1)
(
q4 + 2q0q

2 (q − 1)− q2
)
,

k = (q − 2q0)
(
α
(
q2 + 1

)
− q0 (q − 1) + 1

)
,

and

d ≥ n− (q − 2q0 + 1) (α− q − 2q0 − 1) .

Proof. The length and bound on the minimum distance can be verified di-
rectly (or using [15]). Indeed, we take the evaluation points for C(D,G, g)
to be the points in the support of D. According to (2) and (3), |suppD| =
(q − 2q0 + 1)

(
q4 + 2q0q

2 (q − 1)− q2
)
. The dimension is given by |V | which fol-

lows from [3, Remark 1]. We claim that R := g−1 (Pab) \ {Pabc} is a recovery
set for the position corresponding to Pabc. Suppose f ∈ V . Then f(x, y, t) =∑m−2

i=0

∑M
j=1 aijf

∗
j t

i. Notice that f(a, b, t) ∈ Fq [t] and deg f(a, b, t) ≤ m − 2.
Hence, f(a, b, t) can be recovered using the m−1 interpolation points: Pabc′ ∈ R.
As a result, f (Pabc) may be recovered using only elements of R.

Example 1. Let q = 8 and q0 = 2, so q4 = 4096. Notice that S8 : y8 + y =
x2
(
x8 + x

)
has 64 F8-rational points and 29120 F4096-rational points. Here, |S| =

5824 and n = 29120. Then C(D,G, g) has locality is 4. We can compare this with
an LRC C ′ from the Hermitian curve y64 + y = x65 over the same field, F4096.
Using a projection onto the x-coordinate gives a code of length 262144 with
locality 63 whereas projection onto the y-coordinate yields locality 64. Hence,
the construction using S̃8 has a smaller ratios of locality to code length and to
alphabet size.

Alternatively, an LRC may be constructed using the projection

g : S̃q → Cm

Pabc 7→ Qac

where Qac denotes the common zero of x−a and t−c. Let S be as in (1), D as in
(2), and G′ := αQ∞ where Q∞ is the point at infinity on Cm. Then a basis for
L (αQ∞) is given by B′ :=

{
tixj : i ≥ 0, j ∈ {0, . . . , q − 1} , qi+mj ≤ α

}
. Use

this to define

V =
〈
fyi : i ∈ {0, . . . , q − 2} , f ∈ B′

〉
.

The code C(D,G′, g) has locality q − 1 and dimension (q − 1) |B|. It is worth

noting that L
(
.α
(
P∞ +

∑
a,b∈Fq

Pab

))
∼= L

(
α
(
q2 + 1

)
P∞
)
.

In the next section, we will see how these two approaches can be combined
to give LRCs with availability.
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3 Locally recoverable codes with availability

If every coordinate j has t disjoint recovery sets, then C is said to have availability
t to reflect that information is more available to more users in the presence of
erasure. In [7], fiber products of curves are used to construct locally recoverable
codes with availability. We review the construction in the case t = 2 below.

Suppose X = Y1 ×Y Y2 where Y1, Y2, and Y are curves over a finite field
F with rational, separable maps hi : Yi → Y . The Fq-rational points of X
are {(P1, P2) : Piis Fq − rational point on Yi, h1(P1) = h2(P2)}. Thus, there are
projection maps gi : X → Yi defined by gi(P1, P2) = Pi; a rational, separa-
ble map g : X → Y given by g = h1 ◦ g1 = h2 ◦ g2; maps of function fields
h∗i : F(Y ) → F(Y1) given by h∗i (f) := f ◦ hi; and primitive elements xi of the
extensions F (Yi) /h

∗
i (F (Y )) . Let S be a set of rational points on Y , and take

D :=
∑

P∈g−1(S) P . Choose an effective divisor G on Y of degree ` < |S|, and

take a basis {f1, . . . , ft} for L(G). Set

V := Span {(fi ◦ g)x∗e11 x∗e22 : 1 ≤ i ≤ t, 0 ≤ ei ≤ deg hi − 2} .

Then the code C(D,G, g) has length |D| = deg g|S|, dimension

t (deg h1 − 1) (h2 − 1) ,

and minimum distance bounded below according to [7]. For i = 1, 2, g−1i (gi (Q))\
{Q} serves as a recovery set for Q ∈ S. Hence, C(D,G, g) has locality 2. Next
we apply this construction to S̃q.

Because S̃q is the fiber product of covers Sq → P1
x and Cm → P1

x where Cm :
tm = xq + x, we may apply this construction to obtain a code with availability
2 and localities m and q; that is, every coordinate has 2 disjoint recovery sets,
one of cardinality q − 2q0 and one of cardinality q − 1. To do this, consider the
projection maps g1 : S̃q → Cm, g2 : S̃q → Sq, and g : S̃q → P1

x. We take S as in
(1), D as in (2), and G := αP∞ where P∞ is the unique point at infinity on P1

x.
Fix a basis B of L(G), and

V :=
〈
fyitj : f ∈ B

〉
.

Theorem 2. Suppose C(D,G, g) is constructed as above. Then C(D,G, g) is
an [n, k, d] code over Fq4 with availability 2 and recovery sets for each coordinate
of sizes q − 2q0 and q − 1, where

n = (q − 2q0 + 1)
(
q4 + 2q0q

2 (q − 1)− q2
)
,

k = (q − 2q0)
(
α
(
q2 + 1

)
− q0 (q − 1) + 1

)
,

and

d ≥ n− (q − 2q0 + 1) (α− q − 2q0 − 1) .
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g

Fig. 1. Cyclic extension of Suzuki curve viewed as a fiber product

Proof. The parameters can be verified directly. We claim that

R(1) := g−12 (g2 (Pabc)) \ {Pabc} =
{
Pab′c : b′ ∈ Fq4 \ {b}

}
and

R(2) := g−11 (g1 (Pabc)) \ {Pabc} =
{
Pabc′ : c′ ∈ Fq4 \ {c}

}
are recovery sets for the position corresponding to Pabc. Suppose f ∈ V . Then
f(x, y, t) =

∑m−2
i=0

∑M
j=1 aijf

∗
j t

i. Notice that f(a, b, t) ∈ Fq [t] and deg f(a, b, t) ≤
m − 2. Hence, f(a, b, t) can be recovered using the m − 1 interpolation points:
Pabc′ ∈ R. As a result, f (Pabc) may be recovered using only elements of R.

Observe the functions in the set V are modified from the construction in Sec-
tion 2 in order to obtain multiple recovery sets for each position, thus impacting
the dimension of the code.

One might compare this with the code found in [7, Theorem 6.1], which has
availability 2 with recovery sets of size q−1, length n = q(q−1)(q2+2qq0+q+1)
and dimension k = (q − 1)(q − 2)(q2 + 2qq0 + q + 1). Notice that the new codes
defined using S̃q give the option of using a smaller recovery set (cardinality
q − 2q0 compared with q − 1).
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