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Abstract. In this paper we investigate the Gowers U2 norm of order 2 for generalized
Boolean functions, and Z-bent functions. The Gowers U2 norm of a function is a measure
of its resistance to affine approximation. Although nonlinearity serves the same purpose
for the classical Boolean functions, it does not extend easily to generalized Boolean
functions. We first provide a framework for employing the Gowers U2 norm in the context
of generalized Boolean functions with cryptographic significance, in particular we give a
recurrence rule for the Gowers U2 norms, and an evaluation of the Gowers U2 norm of
functions that are affine over spreads. We also give an introduction to Z-bent functions,
as proposed by Dobbertin and Leander [4], to provide a recursive framework to study
bent functions. In the second part of the paper, we concentrate on Z-bent functions and
their U2 norms. As a consequence of one of our results, we give an alternative proof
to a known theorem of Dobbertin and Leander, and also find necessary and sufficient
conditions for a function obtained by gluing Z-bent functions to be bent in terms of the
Gowers U2 norms of its components.
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1 Introduction

Boolean functions are functions mapping binary strings to 0 or 1. Over the years several
generalizations of Boolean functions have been proposed. In this paper we consider such
a generalization for which the domain set remains the same as for classical Boolean
functions but the range is the set of integers modulo a positive integer q ≥ 2. These
generalized Boolean functions have evolved to an active area of research [7, 8, 10, 12–15,
18–23] due to several possible applications in communications and cryptography.

Boolean functions which are maximally resistant to affine approximation have special
significance. The idea of nonlinearity is developed and extensively studied for classical
Boolean functions. In the case of classical Boolean functions on an even number of vari-
ables, the functions with the highest possible nonlinearity are said to be bent functions
[17]. The concept of nonlinearity does not extend easily to the generalized setup. In the
first part of the paper we investigate the Gowers U2 norm as a possible alternative to
nonlinearity for measuring the resistance to affine approximation. As examples we pro-
vide the expressions of the Gowers U2 norms for the generalized bent functions, plateaued
functions, functions that are affine over spreads, and a recurrence rule for the Gowers U2

norms.



Characterization of bent Boolean functions is a longstanding open problem. One of the
roadblocks faced by the researchers has been the absence of recurrence rules within the
set of bent Boolean functions. Dobbertin and Leander [4] introduced the notion of Z-bent
functions in order to put bent functions in a recursive framework at the cost of leaving
the space of Boolean functions, and replacing it with the one of Z-bent functions of
different levels. Here, we further obtain some recurrences of Gowers U2 norms of Z-bent
functions, and a necessary and sufficient condition involving Gowers U2 norms of four
Z-bent functions of level 1 so that bent functions are always obtained by the “gluing”
process proposed by Dobbertin and Leander [4].

2 Preliminaries

2.1 Generalized Boolean functions

Let F2 be the finite field containing two elements; C, R, Z be the fields of complex
numbers, real numbers, and the ring of integers respectively. The cardinality of a set
S is denoted by #S. For any positive integer n, let Fn2 = {(x1, . . . , xn) : xi ∈ F2, 1 ≤
i ≤ n} be a vector space over F2. Let Zq be the ring of integers modulo q, where q is a
positive integer. By ‘+’ and ‘−’ we respectively denote addition and subtraction modulo
q, whereas ‘⊕’ denotes the addition over Fn2 . Any function from Fn2 to F2, respectively,
Zq, q > 2, is a Boolean, respectively, generalized Boolean function, in n variables, and the
set of all such functions is denoted by Bn, respectively, GBqn. The character form of a
generalized Boolean function f ∈ GBqn, χf : Fn2 → C, is defined by χf (x) = ζ

f(x)
q , for all

x ∈ Fn2 , where ζq = e
2π i
q . The algebraic normal form (ANF) of f ∈ Bn is the polynomial

representation f(x) =
⊕
a∈Fn2

µax
a1
1 . . . xann , where x = (x1, . . . , xn), a = (a1, . . . , an), and

µa ∈ F2. If q = 2k for some k ≥ 1 we can associate to any f ∈ GBqn a unique sequence of
Boolean functions ai ∈ Bn, 0 ≤ i < k, such that

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Fn2 .

The (Hamming) weight of x ∈ Fn2 , denoted by wt(x), is the number of nonzero coordinates
in x, and the (Hamming) weight of a Boolean function f is wt(f) = #{x ∈ Fn2 : f(x) 6=
0}. The (Hamming) distance d(f, g) between two functions f, g is the weight of their
sum. The algebraic degree of f is deg(f) = max{wt(a) : a ∈ Fn2 , µa 6= 0}. The Boolean
functions having algebraic degree at most one are affine functions.
For a (generalized) Boolean function f : Fn2 → Zq we define the (generalized) Walsh-
Hadamard transform to be the complex valued function

H(q)
f (u) =

∑
x∈Fn2

ζf(x)q (−1)u·x,

where u · x =
⊕

1≤i≤n uixi For q = 2, we obtain the usual Walsh-Hadamard transform

Wf (u) =
∑
x∈Fn2

(−1)f(x)(−1)u·x. The autocorrelation of f ∈ GBqn is defined by C(q)f (u) =∑
x∈Fn2

ζf(x)−f(x⊕u)
q . We shall use the identity [21]

C(q)f (u) = 2−n
∑
x∈Fn2

|H(q)
f (x)|2(−1)u·x. (1)

A function f : Fn2 → Zq is called generalized bent (gbent) if |H(q)
f (u)| = 2n/2 for all

u ∈ Fn2 . Further, we say that f ∈ GBqn is called s-plateaued if |H(q)
f (u)| ∈ {0, 2(n+s)/2}

for all u ∈ Fn2 , for a fixed integer s depending on f . For simplicity of notation, when q
is fixed, we sometimes use ζ, Hf , Cf instead of ζq, H(q)

f , and C(q)f , respectively. We refer
the reader to [7, 11,12,15] and references therein for more on generalized bent functions
and their characterizations in terms of their components.



2.2 Gowers U2 norm

Let g : V → C be any function on a finite set V and B ⊆ V . Then Ex∈B [g(x)] :=
1

#B

∑
x∈B g(x) is the average of f over B. If f : Fn2 → C is a complex-valued function,

we define the Gowers U2 norm by

‖f‖U2 =
(
Ex,h1,h2∈Fn2 [f(x)f(x⊕ h1) f(x⊕ h2)f(x⊕ h1 ⊕ h2)]

)1/4
=
(
Eh1∈Fn2 |Ex∈Fn2 [f(x)f(x⊕ h1)]|2

)1/4
.

It is known (cf. [1, pp. 22–24]) that for f : Fn2 → R, if there is a polynomial P : Fn2 → {0, 1}
of degree d such that |Ex∈Fn2 f(x)(−1)P (x)| ≥ ε, then ‖f‖Ud+1 ≥ ε, for any ε > 0. It is

also known that for d = 1 having ‖f‖Ud+1 ≥ ε implies |Ex∈Fn2 f(x)(−1)P (x)| ≥ ε for
some degree 1 Boolean polynomial. It is natural to investigate the Gowers U2 norm as
a possible measure of “nonlinearity” for generalized Boolean functions as well as Z-bent
functions. That is what we aim in this paper.

2.3 Gowers U2 norm for generalized Boolean functions and the
Walsh–Hadamard coefficients

In the remaining part of this section, and the next section we assume q = 2k, for some
positive integer k. If f : Fn2 → Z2k is a generalized Boolean function, we define the
Gowers norm of f to be the Gowers norm for the character form χf := ζf of f , where

ζ = e2π i/2
k

is a complex root of 1.
The first part of our next theorem shown for generalized Boolean functions can be (some-
what) adapted from Chen [1, pp. 22–24], to which we refer for a detailed discussion (for
the Boolean case).

Theorem 1 If k ≥ 1 and f : Fn2 → Z2k , then (with χf = ζf , where ζ = e2π i/2
k

is a

2k-complex root of 1) ‖χf‖4U2
= 2−4n

∑
x∈Fn2

|Hf (x)|4 ≤ 2−2n max
x∈Fn2

|Hf (x)|2. Moreover, the

equality holds if and only if f is a bent (k = 1), respectively, gbent (k > 1) function, and,
then, ‖χf‖4U2

= 2−n.

Proof. If f ∈ GB2k

n , using equation (1), we can see that the Gowers U2 norm is

‖χf‖4U2
= 2−3n

∑
u∈Fn2

∑
v∈Fn2

∑
x∈Fn2

ζf(x)ζf(x⊕u)
∑
v∈Fn2

ζf(x⊕v)ζf(x⊕u⊕v)

= 2−3n
∑
u∈Fn2

∑
x∈Fn2

ζf(x)−f(x⊕u)

∑
y∈Fn2

ζ−f(y)+f(y⊕u)


= 2−5n

∑
u∈Fn2

∑
x∈Fn2

|Hf (x)|2(−1)u·x

∑
y∈Fn2

|Hf (y)|2(−1)u·y


= 2−5n

∑
x∈Fn2

∑
y∈Fn2

|Hf (x)|2|Hf (y)|2
∑
u∈Fn2

(−1)u·(x⊕y) = 2−4n
∑
x∈Fn2

|Hf (x)|4. (2)

Then, 24n ‖χf‖4U2
=
∑
x∈Fn2

|Hf (x)|4 ≤ max
x∈Fn2

|Hf (x)|2
∑
x∈Fn2

|Hf (x)|2 = 22n max
x∈Fn2

|Hf (x)|2.

We will now show that the equality holds if and only if f is a bent function (k = 1),
or a gbent function (k > 1). If f is bent (gbent), then, |Hf (x)|2 = 2n, for all x ∈ Fn2 .
Using (2), we infer

||χf ||4U2
= 2−4n

∑
x∈Fn2

|Hf (x)|4 = 2−4n · 2n · 22n = 2−n = 2−2n max
x∈Fn2

|Hf (x)|2.



Suppose now that the equality holds, but f is not gbent (bent). Then, there exists some
x0 such that |Hf (x0)|2 < maxx∈Fn2 |Hf (x)|2. Since the equality holds, from (2), we get

that ||χf ||4U2
= 2−4n

∑
x∈Fn2

|Hf (x)|4 = 2−2n max
x∈Fn2

|Hf (x)|2. Thus, by Parseval’s identity,

max
x∈Fn2

|Hf (x)|2 ·
∑
x∈Fn2

|Hf (x)|2 = 22n max
x∈Fn2

|Hf (x)|2 >
∑
x∈Fn2

|Hf (x)|4 = 22n max
x∈Fn2

|Hf (x)|2,

yielding a contradiction.
We only need to show that, if ||χf ||4U2

= 2−n, the equality holds. Suppose that ||χf ||4U2
=

2−n, but ||χf ||4U2
= 2−4n

∑
x∈Fn2

|Hf (x)|4 > 2−2n max
x∈Fn2

|Hf (x)|2. Then, max
x∈Fn2

|Hf (x)|2 < 2n,

contradicting Parseval’s identity. ut

We can also obtain the Gowers U2 norm of any plateaued function:

Proposition 2. If f is an s-plateaued generalized Boolean function in GBqn, where q = 2k

for some positive integer k, then its Gowers norm is ‖χf‖U2
= 2(−n+s)/4. In par-

ticular, the Gowers U2 norm of a semibent generalized Boolean function f is ‖χf‖U2

is 2(−n+2)/4 , if n is even, and 2(−n+1)/4, if n is odd. In general, if f ∈ GBqn with
|Hf (x)| ∈ {0, λ1, . . . , λt}, of respective multiplicities a,m1, . . . ,mt, the Gowers U2 norm
is ‖χf‖4U2

=
∑t
j=1mjλj2

−4n.

Proof. If f is an s-plateaued generalized Boolean function, then by definition |Hf (x)| ∈
{2(n+s)/2, 0}. By Parseval’s identity,

∑
x∈Fn2

|Hf (x)|2 = 22n = a · 2n+s, where a is the

multiplicity of 2n+s in |Hf (x)|. Hence, a = 2n−s. Then, by equation (2), ‖χf‖4U2
=

2−4n∑
x∈Fn2

|Hf (x)|4 = 2−4n · a · 22(n+s) = 2−n+s. Therefore, ‖χf‖U2
= 2(−n+s)/4. By

similar arguments, we can prove the last claim. ut

It is well known that the nonlinearity of f ∈ Bn is nl(f) = 2n−1 − 1

2
max
x∈Fn2
|Wf (x)|, which

means that if a function has high nonlinearity, then max
x∈Fn2
|Hf (x)| is small, and therefore

‖χf‖U2
is upper bounded by a relatively small number.

One can ask whether is it true that ‖χf‖U2
< ‖χg‖U2

, if f, g ∈ Bn with nl(f) < nl(g).
That is not necessarily true, and we provide an argument below. Let f be a quadratic
Boolean function (so k = 1) of rank 2h [16] (under f(0) = 0), then, by Proposition 2,
‖χf‖U2

= 2−2h. Thus, if f1, f2 are two quadratic Boolean functions of ranks 2h1 < 2h2,
respectively, then

nl(f1) = 2n−1 − 2n−h1−1 < 2n−1 − 2n−h2−1 = nl(f2), ‖χf1‖
4 = 2−2h1 > 2−2h2 = ‖χf2‖

4 .

We can certainly find an infinite class of pairs of Boolean functions (f, g) such that
nl(f) < nl(g) and ‖χf‖U2

> ‖χg‖U2
. For example, let n be even, g be any bent Boolean

function, and so, by Theorem 1, nl(g) = 2n−1−2n/2−1, ‖χg‖4U2
= 2−n. Let f now be any

semibent Boolean function (with f(0) = 0) for n even, so, by Proposition 2, ‖χf‖U2
=

2(−n+2)/4, which implies that nl(f) = 2n−1 − 2n/2, ‖χf‖4U2
= 2−4n max

x∈Fn2
Wf (x)4 =

2−4n22(n+2)2n−2 = 2−n+2. Thus, nl(f) < nl(g), and ‖χg‖U2
= 2−n/4 < ‖χf‖U2

=

2(−n+2)/4.

2.4 Gowers U2 norm of functions that are affine over spreads

We found in Theorem 1 and Proposition 2 the Gowers U2 norm of bent and, more
generally, plateaued functions. It turns out we can precisely find the Gowers norm of a
class of functions that extend in some direction the well-known class of partial spread



bent functions, by allowing the function to be affine, not necessarily constant on the
elements of a spread.
Let q = 2k. Let n = 2m, and let {E0, . . . , E2m} be a spread of Fn2 , that is, Ei’s, 0 ≤ i ≤ 2m,

are m-dimensional subspaces of Fn2 with trivial intersection. Note that
⋃2m

i=0Ei = Fn2 [3].

Theorem 3. Let {E0, . . . , E2m} be a spread, and f ∈ GBqn. Then:

(i) If f is defined by f(x) =

{
ci, x ∈ E?i
c, x = 0,

with arbitrary c, ci ∈ Zq, 1 ≤ i ≤ m, then

‖χf‖4U2
= 2−4n

(
(2n − 1) |ζc −A|4 + |ζc + (2m − 1)A|4

)
, where A :=

2m∑
i=0

ζci .

(ii) If f is defined by f(x) = q
2
ai · x, x ∈ Ei, where {a0, . . . ,a2m} are distinct arbitrary

vectors in Fn2 , then ‖χf‖4U2
= 2−2n

(
2
n
2 + 1

)
.

Proof. To show (i), we first write

Hf (u) =
∑
x∈Fn2

ζf(x)(−1)u·x =

2m∑
i=0

∑
x∈E?i

ζci(−1)u·x + ζc

=

2m∑
i=0

ζci
∑
x∈Ei

(−1)u·x + ζc −
2m∑
i=0

ζci = ζc −A+

{
2mA ,u = 0
0 ,u 6= 0.

Then
‖χf‖4U2

= 2−4n
∑
x∈Fn2

|Hf (x)|4 = 2−4n
(

(2n − 1) |ζc −A|4 + |ζc + (2m − 1)A|4
)
, and the

first claim is shown.

To show (ii), we write Hf (u) =

2m∑
i=0

∑
x∈Ei

ζ
q
2
ai·x(−1)u·x =

2m∑
i=0

∑
x∈Ei

(−1)(ai+u)·x = 2m,

if there exists i such that u = ai, and 0 if u 6= ai,∀i. Therefore, we get ‖χf‖4U2
=

2−4n
∑
x∈Fn2

|Hf (x)|4 = 2−4n24m(2m + 1) = 2−2n
(

2
n
2 + 1

)
, and the theorem is shown. ut

Note that, from the proof of (ii), it is easy to generalize this result to allow for repeated
vectors. However, we do not state this result here, as it is notationally cumbersome.

3 Recurrences for Gowers U2 norms of generalized Boolean
functions

We start this section with a lemma, which will be used to derive a formula for the Gowers
U2 norms of concatenations of Boolean functions. Its proof is not shown here due to space
restrictions, and will be available in the full paper.

Lemma 4. Let f1, f2 ∈ GBqn, q = 2k, be n-variables generalized Boolean functions and

ζ a q-complex root of 1. Then
∑
x∈Fn2

|Hf1(x)|2|Hf2(x)|2 = 2n
∑

w∈Fn2

Cf1(w)Cf2(w).

We now derive a recurrence for Gowers U2 norms of concatenations of generalized Boolean
functions. We use <(a+ bi) = a for the real part of the complex argument.

Theorem 5 Let f : F2 × Fn2 → Zq, where q = 2k, be the concatenation f = [f1‖f2] of
two n-variables generalized Boolean functions, f1, f2, that is, f(x1,x) = (1− x1)f1(x) +
x1f2(x). The Gowers U2 norm of f is given recursively by

23 ‖χf‖4U2



= ‖χf1‖
4
U2

+ ‖χf2‖
4
U2

+ 2−4n+1
∑
u∈Fn2

|Hf1(u)|2|Hf2(u)|2 + 2−4n+2
∑
u∈Fn2

<2
(
Hf1(u)Hf2(u)

)
= ‖χf1‖

4
U2

+ ‖χf2‖
4
U2

+ 2−3n+1
∑
u∈Fn2

Cf1(u)Cf2(u) + 2−4n+2
∑
u∈Fn2

<2
(
Hf1(u)Hf2(u)

)
.

If f2 = f1, then ‖χf‖U2
= ‖χf1‖U2

. If f2 = f̄1, then ‖χf‖U2
=

1 + <2(ζ)

2
‖χf1‖U2

.

Proof. If f : F2 × Fn2 → Zq is given by f(x1,x) = (1 − x1)f1(x) + x1f2(x), then, it is
known (and easy to show) that Hf (u1,u) = Hf1(u) + (−1)u1Hf2(u). The Gowers norm
of f is then (below, we split the sums into u1 = 0, u1 = 1.)

24(n+1) ‖χf‖4U2
=

∑
(u1,u)∈F2×Fn2

|Hf (u1,u)|4 =
∑

(u1,u)∈F2×Fn2

|Hf1(u) + (−1)u1Hf2(u)|4

=
∑

(u1,u)∈F2×Fn2

(
|Hf1(u)|2 + (−1)u1

(
Hf1(u)Hf2(u) +Hf2(u)Hf1(u)

)
+ |Hf1(u)|2

)2
=

∑
(u1,u)∈F2×Fn2

(
|Hf1(u)|4 +

(
Hf1(u)Hf2(u) +Hf2(u)Hf1(u)

)2
+ |Hf2(u)|4

+2|Hf1(u)|2|Hf2(u)|2 + 2(−1)u1 |Hf1(u)|2
(
Hf1(u)Hf2(u) +Hf2(u)Hf1(u)

)
+2(−1)u1 |Hf2(u)|2

(
Hf1(u)Hf2(u) +Hf2(u)Hf1(u)

))
=

∑
(u1,u)∈F2×Fn2

(
|Hf1(u)|4 + 4(−1)u1H3

f1(u)Hf2(u)

+6H2
f1(u)H2

f2(u) + 4(−1)u1Hf1(u)H3
f2(u) + |Hf2(u)|4

)
= 2

∑
u∈Fn2

(
|Hf1(u)|4 + |Hf2(u)|4 + 2|Hf1(u)|2|Hf2(u)|2 + 4<2

(
Hf1(u)Hf2(u)

))
= 24n+1 ‖χf1‖

4
U2

+ 24n+1 ‖χf2‖
4
U2

+ 4
∑
u∈Fn2

(
|Hf1(u)|2|Hf2(u)|2 + 2<2

(
Hf1(u)Hf2(u)

))
,

and by using Lemma 4, we infer the first claim. The second claim for f2 = f1 is easily

obtained, since then |Hf2(u)|2 = |Hf1(u)|2, <2
(
Hf1(u)Hf2(u)

)
= |Hf1(u)|4 and, so,∑

u∈Fn2

|Hf1(u)|2|Hf2(u)|2 =
∑
u∈Fn2

<2
(
Hf1(u)Hf2(u)

)
= 24n ‖χf1‖U2

. If f2 = f̄1, then

Hf2 = ζHf1 and so, <2
(
Hf1(u)Hf2(u)

)
= |Hf1(u)|4<2 (ζ), which, when used above

renders the last claim. ut

We now look at functions f : Fn2 → Z4, where f = a0 + 2a1, with a0, a1 ∈ Bn and
find the Gowers U2 norm of f in terms of those of the components a0, a0 ⊕ a1. Using a
decomposition result of [19] we can show the next theorem.

Theorem 6 Let f ∈ GB4
n, f = a0 + 2a1, a0, a1 ∈ Bn. Then

24 ‖χf‖4U2
= ‖χa1‖

4
U2

+ ‖χa0⊕a1‖
4
U2

+ 2−4n+1
∑
x∈Fn2

W2
a1(x)W2

a0⊕a1(x)

= ‖χa1‖
4
U2

+ ‖χa0⊕a1‖
4
U2

+ 2−3n+1
∑

w∈Fn2

Ca1(w)Ca0⊕a1(w).

We can certainly derive an expression for the Gowers U2 norm for a generalized f ∈ GB2k

n .
but the result is rather quite complicated, unfortunately. We will reserve it for the full
paper.



4 Gowers U2 norm and Z-bent functions

4.1 Z-bent functions

In this section, if f is an integer valued function, we will work with the Fourier transform

f̂(u) = 2−n/2
∑
x∈Fn2

f(x)(−1)u·x. The Gowers norm of f given by

‖f‖4U2
= Ex,h1,h2∈Fn2 [f(x)f(x⊕ h1)f(x⊕ h2)f(x⊕ h1 ⊕ h2)]

will render ‖f‖4U2
= 2−2n∑

x∈Fn2
f̂(x)

4
.

Prompted by the observation that given two bent functions g, h in n = 2k variables,
k > 1, the function

f(x) =
χg(x) + χh(x)

2
∈ {−1, 0, 1}, (3)

for all x ∈ Fn2 will also have its Fourier transform given by f̂(u) =
χ̂g(u) + χ̂h(u)

2
∈

{−1, 0, 1}, for all u ∈ Fn2 , Dobbertin and Leander [4] defined the notion of Z-bent function
in the following way. Let W0 = {−1, 1}, Wr = {` ∈ Z : −2r−1 ≤ ` ≤ 2r−1}, for r ≥ 1.A

function f : Fn2 → Wr ⊆ Z is a Z-bent function of size k level r if f̂(x) ∈ Wr, for all
x ∈ Fn2 . The set of all Z-bent functions of size k level r is denoted by BF kr . Any function
belonging to

⋃
r≥0 BF

k
r is said to be a Z-bent function of size k. If a Z-bent function of

level 1 can be written as in (3) then it is said to be splitting, otherwise it is said to be
non-splitting. As Dobbertin and Leander did in [4], we refer to a ±1 function as bent
(when we want to point that out we call it ±1-bent) even though it is the signature of a
classical bent Boolean function.
Now, suppose that h ∈ BF kr is the concatenation h = [h00‖h01‖h10‖h11], where hε1ε2(x) =
h(ε1, ε2,x), for all (ε1, ε2,x) ∈ F2×F2×Fn−2

2 , that is, h(y, z,x) = (y⊕1)(z⊕1)h00(x)+
(y ⊕ 1)zh01(x) + y(z ⊕ 1)h10(x) + yzh11(x). We define the functions fε1ε2 by using the
following equations:

Case 1. For r ≥ 1:

(
f00 f10
f01 f11

)
=

(
1 1
1 −1

)(
h00 h10

h01 h11

)
(4)

Case 2. For r = 0:

(
f00 f10
f01 f11

)
=

1

2

(
1 1
1 −1

)(
h00 h10

h01 h11

)
(5)

Dobbertin and Leander [4, Proposition 2] showed that if h is a Z-bent function of size k
and level r, then the functions fε1ε2 are Z-bent functions of size k − 1 and level r + 1,
for all ε1, ε2 ∈ F2. In other words, if h ∈ BF kr , then fε1ε2 ∈ BF k−1

r+1 , for all ε1, ε2 ∈ F2.

Conversely, suppose we have fε1ε2 ∈ BF k−1
r+1 , for all ε1, ε2 ∈ F2. If h = [h00‖h01‖h10‖h11],

then we say that h is obtained by gluing fε1ε2 , where ε1, ε2 ∈ F2. Although the gluing
process in general may not yield a Boolean function, it is known [4, Proposition 2] that
all functions in BF kr are obtained by gluing functions in BF k−1

r+1 . We derive the following
condition connecting the Z-bent functions of level 1 to (classical) bent functions as a
special case of [4, Theorem 3].

Theorem 7 Let four Z-bent functions f00, f01, f10 and f11 of level 1 and size k be given
such that

f00(x) ≡ f01(x) + 1 (mod 2); f10(x) ≡ f11(x) + 1 (mod 2);

f̂00(x) ≡ f̂10(x) + 1 (mod 2); f̂01(x) ≡ f̂11(x) + 1 (mod 2).
(6)

Then the function h : F2×F2×Fn2 → {−1, 1} defined by h(y, z,x) = hyz(x) for all x ∈ Fn2 ,
where hij , fij, 0 ≤ i, j ≤ 1 satisfy (5), is a ±1-bent function (of level 0).

Due to normalization of the Walsh–Hadamard (Fourier) coefficients of f : Fn2 → R,

Parseval’s identity takes the form
∑

x∈Fn2
f̂(x)2 =

∑
x∈Fn2

f(x)2.



4.2 Recurrences for Gowers U2 norms of Z-bent functions

Here, we will obtain some recurrences for the Gowers U2 norms of Z-bent functions
h ∈ BF kr in terms of the U2 Gowers norms of fij ∈ BF k−1

r+1 , where h is obtained by gluing
fij , 0 ≤ i, j ≤ 1. Due to space restrictions, we state it without a proof, which will be
available in the full paper.

Theorem 8 Let h : F2 × F2 × Fn2 → Z be the concatenation h = [h00‖h01‖h10‖h11] of
four n-variables integer valued functions hij (0 ≤ i, j ≤ 1), satisfying equations (4)–(5),
for some integer valued functions fij. Then, with γ = 1

2
, 1, if r ≥ 1, respectively, r = 0,

we have

γ−4 ‖h‖4U2
= 2−3

(
‖f00‖4U2

+ ‖f01‖4U2
+ ‖f10‖4U2

+ ‖f11‖4U2

)
+ 3 · 2−2(n+1)

∑
u∈Fn2

(
f̂00

2
(u)f̂10

2
(u) + f̂01

2
(u)f̂11

2
(u)
)
.

We can easily get a proof for Theorem 7 of Dobbertin-Leander [4].

Corollary 9. If fij in the theorem above are Z-bent functions and satisfy also equa-
tion (6), then the function h obtained from gluing fij is bent.

4.3 An alternative proof of a theorem by Dobbertin and Leander

In Dobbertin-Leander Theorem 7, sufficient conditions on fij for the bentness of h are
proposed. Using the above recurrence we can now easily get necessary and sufficient
conditions for the bentness of h. Although, the next result is shown using Theorem 8, we
shall call it a theorem, due to its importance.

Theorem 10 Let hij , fij, 0 ≤ i, j ≤ 1, be as in the theorem above and h obtained from
gluing the Z-bent functions fij of level 1. Then h is bent if and only if ‖f00‖4U2

+‖f01‖4U2
+

‖f10‖4U2
+ ‖f11‖4U2

+ 3 · 2−2n+1
∑
u∈Fn2

(f̂00
2
(u)f̂10

2
(u) + f̂01

2
(u)f̂11

2
(u)) = 2−n+1.

The next theorem uses a result of Kolomeec and Pavlov [9] who showed that d(g, h) ≥ 2
n
2 ,

for any two bent functions in n variables.

Theorem 11 If f is a splitting Z-bent function of level 1 such that f(x) =
χg(x)+χh(x)

2

where g, h are bent functions, the U2 Gowers norm is ‖f‖4U2
=

2n−d(ĝ,ĥ)
22n

= 2n−d(g,h)
22n

.
If f is a splitting Z-bent function of level 1 in n variables and not a bent function then

‖f‖4U2
≤ 2n−2

n
2

22n
.

While we were able to compute the U2 Gowers norm of any bent function in Theorem 1
and give some necessary conditions for splitting Z-bents in Theorem 11, it is a natural
question about the norm of a Z-bent of any level. In our next result, we are able to com-
pute the Gowers norms of Z-bent functions of any level, under some technical conditions.
In particular, we note that the next theorem implies that the norm of two types of Z-bent
functions of level 1 is not a function of n only, as it was the case for level 0.
Two Boolean functions g, h ∈ Bn are called disjoint spectra functions if χ̂g(u)·χ̂h(u) = 0,
for any u ∈ Fn2 . Equivalently, χ̂g(u) = 0 if and only if χ̂h(u) 6= 0, since if n is odd then
for any semibent, its Fourier spectrum has 2n−1 nonzero coefficients. In Theorem 3.2
of [6] it is claimed that a Z-bent function of level 1 constructed by using two disjoint



spectra semibent functions in n variables, where n is even, is non-splitting. The proof of
this theorem contains a serious flaw, and therefore proving the existence of non-splitting
Z-bent functions of level 1 is still an open problem. We shall be using below Theorem
3.5 of [6] below, which states: Let n be even, and f1, f2 ∈ Bn be s1-, respectively,
s2-plateaued functions that are neither bent nor both semibent, and so, Spec(χfi) =
{0,±21+ri}, ri := si

2
− 1 ≥ 0 (i = 1, 2). Let α, β be arbitrary nonzero integers with

α ≡ β (mod 2). If r1 = 0, r2 = 1, α = ±1 (or r2 = 0, r1 = 1, β = ±1), we assume
2βε2+αε1 /∈ {−1, 1} (respectively, 2αε1+βε2 /∈ {−1, 1}), for at least one value of x ∈ Fn2 ;
if r1 > 0, r2 > 0, we assume that αχ̂f1(x) + βχ̂f2(x) /∈ {0,±2}, for at least one value

x ∈ Fn2 . Then, f(x) =
αχf1 (x)+βχf2 (x)

2
is a Z-bent function of level l := dlog2Me, where

M = maxu∈Fn2 {|αχ̂f1(u) + βχ̂f2(u)|}, which cannot be split into two bent functions.

Theorem 12 Let f be a Z-bent function of level r, and write f(x) =
αχg(x)+βχh(x)

2
.

(i) If g, h are disjoint spectra functions that fulfill the conditions of [6, Theorem 3.5],
then ‖f‖4U2

= 2−n−4(α42s1 + β42s2).

(ii) In general, if g, h are not necessarily disjoint spectra functions, then

‖f‖4U2
= 2−n−4(α42s1 + β42s2) + 2−2n−2αβ(α22s1 + β22s2)(2n − 2d(g, h))

+ 2−2n−3α2β22s1+s2 |{x : χ̂g(x) · χ̂h(x) 6= 0}|.

Proof. If g, h are not necessarily disjoint spectra functions, we obtain

‖f‖4U2
= 2−2n

∑
x∈Fn2

f̂ 4(x) = 2−2n
∑
x∈Fn2

(
αχ̂g(u) + βχ̂h(u)

2

)4

= 2−2n−4
∑
x∈Fn2

(α4χ̂4
g(x)

+ 4α3βχ̂3
g(x)χ̂h(x) + 6α2β2χ̂2

g(x)χ̂2
h(x) + 4αβ3χ̂g(x)χ̂3

h(x) + β̂4χ̂4
h(x)).

Let A = #({u ∈ Fn2 : χ̂g(u) = 2
s1
2 , χ̂h(u) = 2

s2
2 } ∪ {u ∈ Fn2 : χ̂g(u) = −2

s1
2 , χ̂h(u) =

−2
s2
2 }), B = #({u ∈ Fn2 : χ̂g(u) = 2

s1
2 , χ̂h(u) = −2

s2
2 } ∪ {u ∈ Fn2 : χ̂g(u) =

−2
s1
2 , χ̂h(u) = 2

s2
2 }).

By Parseval’s identity,
∑
x∈Fn2

f̂2(x) = 2−2
∑
x∈Fn2

(χ̂2
g(x)+2χ̂g(x)χ̂h(x)+χ̂2

h(x)) =
∑
x∈Fn2

f2(x) =

2−2
∑
x∈Fn2

(χ2
g(x) + 2χg(x)χh(x) + χ2

h(x)). Further,
∑

x∈Fn2
χ̂2
g(x) =

∑
x∈Fn2

χ2
g(x), and

∑
x∈Fn2

χ̂2
h(x) =

∑
x∈Fn2

χ2
h(x), which implies that

∑
x∈Fn2

χ̂g(x)χ̂h(x) = 2
s1+s2

2 (A − B) =

∑
x∈Fn2

χg(x)χh(x) = 2n − 2d(g, h), so A − B = 2−
s1+s2

2 (2n − 2d(g, h)). Notice that

C := A+B is the number of positions where both χ̂g and χ̂h are nonzero. Then,∑
x∈Fn2

χ̂3
g(x)χ̂h(x) = 2

3s1
2 2

s2
2 (A−B) = 2s1(2n − 2d(g, h)),

∑
x∈Fn2

χ̂g(x)χ̂3
h(x) = 2

s1
2 2

3s2
2 (A−B) = 2s2(2n − 2d(g, h)).

Finally,
∑
x∈Fn2

χ̂2
g(x)χ̂2

h(x) = 2s1+s2(A+B) = C2s1+s2 . Then, ‖f‖4U2
= 2−2n−4(α422n ‖g‖4U2

+

β422n ‖h‖4U2
+ 4(α3β2s1 + αβ32s1) · (2n − 2d(g, h)) + 6α2β2C2s1+s2 = 2−n−4(α42s1 +

β42s2)+2−2n−2αβ(α22s1 +β22s2)(2n−2d(g, h))+2−2n−3α2β22s1+s2C, where C = |{x :
χ̂g(x) · χ̂h(x) 6= 0}|. The second claim is similar. ut



Corollary 13. If h : F2 × F2 × Fn2 → Z is the concatenation h = [h00‖h01‖h10‖h11] of
four n-variables integer valued functions hij (0 ≤ i, j ≤ 1), satisfying equations (4)–(5),
for some integer valued Z-bent functions fij of level r + 1 ≥ 2 of constant norm, say
‖fij‖4U2

= K, such that both pairs f00, f10, respectively, f01, f11 have disjoint spectra,

then the U2 Gowers norm of the Z-bent function h of level r is ‖h‖4U2
= 2−5K.
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functions, Inf. Proc. Letters 121 (2017), 1–5.
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