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Abstract. Gröbner basis methods are used to solve systems of poly-
nomial equations over finite fields, but their complexity is poorly un-
derstood. In this work an upper bound on the time complexity of con-
structing a Gröbner basis is proved. A key parameter in this estimate is
the degree of regularity of the leading forms of the polynomials. There-
fore we provide an upper bound on the degree of regularity for a suffi-
ciently overdetermined system of forms over any finite field. The bound
holds with probability tending to 1 and depends only on the number
of variables, the number of polynomials, and their degrees. Our results
imply that sufficiently overdetermined systems of polynomial equations
are solved in polynomial time with high probability.
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1 Introduction

Problems in cryptanalysis may commonly be reduced to solving a system of
multivariate polynomial equations over a finite field Fq:

P1(x1, . . . , xn) = 0, . . . , Pm(x1, . . . , xn) = 0. (1)

Finding solutions of the system in Fq is equivalent to breaking a cryptosystem.
A particularly successful example is due to Faugère and Joux that broke HFE
(Hidden Field Equations) with a Gröbner basis algorithm [FJ03]. The worst
case time-complexity of Gröbner basis methods is known to be bounded by a
double exponential function in the number of variables already for quadratic
systems [MM82]. In some cryptographic applications the problem is reduced
to overdetermined polynomial systems, where the number of equations m is
larger than the number of variables n. For instance, AES (Advanced Encryption
Standard) S-box may be represented by an overdetermined system of quadratic
equations. So the whole cipher is reduced to solving an overdetermined quadratic
equation system [CP02]. Such systems may generally be solved faster when using
algorithms from Gröbner basis or XL families [BFS03; Cou+00]. Hence, time-
complexity of those algorithms for overdetermined polynomial equation systems
is interesting to study.



Let I be an ideal in R = Fq[x1, . . . , xn]/(xq1, . . . , xqn) generated by the leading
forms f1, . . . , fm of the polynomials P1, . . . , Pm. By Id we denote a vector space
over Fq containing all forms in I of degree d. The degree of regularity of I is
the smallest integer d for which dimFq

Id = lq(n, d), the number of monomials of
total degree d.

In Theorem 2 we show that time-complexity of constructing a Gröbner basis
for P1, . . . , Pm (we need to add xqi − xi, i = 1, . . . , n to avoid solutions in the
extensions of the ground field) is polynomial in Lq(n, dreg), where Lq(n, d) is the
number of monomials of total degree ≤ d. One finds a solution to (1) with the
same complexity.

The notion of a semiregular system of polynomials (forms) was introduced
by Bardet, Faugère, and Salvy in [BFS03]. For semiregular polynomials over F2

it was there proved that the degree of regularity only depends on the number
of variables n, the number of equations m, and their degrees. So the degree of
regularity for a particular semiregular polynomial system may be computed by
expanding a Hilbert series defined by those parameters. It was also conjectured
that a random system of polynomials over F2 is semiregular with probability
tending to 1 as n increases. The conjecture, in the way it was presented, was dis-
proved in [HMS17]. Still it is believed that most systems behave like semiregular
ones.

The present work gives an upper bound on the degree of regularity for an
overdetermined system of forms f1, . . . , fm with coefficients in Fq taken uni-
formly at random and of the same degree D. The bound holds with probability
tending to 1. We do not impose any other restrictions on the polynomials as
semiregularity, etc. The following statement is proved.

Theorem 1. Let m ≥ lq(n,D + d)/lq(n, d), where D > d. Then

P(dreg ≤ D + d) ≥ 1− qlq(n,D+d)−mlq(n,d) +O(ndq−n
D

)

as n→∞.

Theorem 1 implies that for sufficiently large m almost all polynomial equation
systems (1) are solved in polynomial time. For instance, let q = 2. Then for
m ≥ (n−1)(n−2)

6 + 1 quadratic polynomials (D = 2, d = 1) a Gröbner basis
may be computed at dreg ≤ 3 with probability tending to 1. Similarly, for m ≥
(n−2)(n−3)(n−4)

60 + 1 cubic polynomials (D = 3, d = 2) a Gröbner basis may be
computed at dreg ≤ 5 with probability tending to 1.

Over F2 the bound on dreg is as predicted in [BFS03] for a semiregular system
with the same parameters (number of variables n, number of equations, and of
degree D). Under a conjecture from commutative algebra a lower bound on the
degree of regularity for homogeneous polynomial systems in Fq[x1, . . . , xn] is
proved in [Die04]. Our result complies with this bound as well.

The sketch of the proof of Theorem 1 is in Section 3, where we show that
a Macaulay matrix of size mlq(n, d) × lq(n,D + d) constructed for the forms
f1, . . . , fm has linearly independent columns with probability tending to 1.



Section 4 contains a combinatorial Theorem 3 used in the proof of the main
Theorem 1. Each monomial xa11 . . . xann of total degree d defines a d-multiset
(a1, . . . , an), where 0 ≤ ai ≤ q − 1 and

∑n
i=1 ai = d. Theorem 3 implies that

the minimum number of monomials of total degree D divisible by monomials of
total degree d from a family of size v is achieved for a family of the first (largest)
v monomials of total degree d taken in a lexicographic order.

Theorem 2 was proved by Semaev. The main idea of the proof of Theorem
1 belongs to Semaev too, who first proved the it for F2 and D = 2, d = 1. The
generalisation to any Fq and D > d is due to Tenti. Also Tenti conjectured the
statement of Theorem 3 for k = k1 = . . . = kn and proved it for k = 1, d = 2.
With a different method presented in Section 4 the theorem in its generality was
proved by Semaev.

2 Complexity of constructing Gröbner bases

We can assume that the polynomials P1, . . . , Pm from (1) are in

Fq[x1, . . . , xn]/(xq1 − x1, . . . , xqn − xn)

and all computations are performed in this ring. Time-complexity of constructing
a Gröbner basis for P1, . . . , Pm is here estimated. Let N = Lq(n, dreg). We have
dreg ≤ (q − 1)n. To compute dreg one gradually triangulates with elimination
Macaulay matrices for d ≤ dreg with at most

d∑
i=1

lq(n, i)lq(n, d− i) ≤ dN2

rows and Lq(n, d) ≤ N columns. The overall cost is O(d2regN
4) operations in Fq.

The result is a system of linearly independent polynomials B = {Q1, . . . , Qr} of
degree ≤ dreg. Exactly lq(n, dreg) polynomials are of degree dreg and their leading
forms are all possible monomials of degree.

Generally, that is not enough. For instance, the polynomial system P1 =
x1x2 + 1, P2 = x1x3, P3 = x2x3 ∈ F2[x1, x2, x3] has dreg = 2 and that is not
a Gröbner basis, as the ideal < P1, P2, P3 > contains the polynomial x3 =
x3P1+x2P2 and its leading term is not divisible by the leading terms of P1, P2, P3.
In order to compute a Gröbner basis one has to work with polynomials of degree
> dreg as well. So the argument in Section 2.2 of [BFS03], on the complexity of
constructing a Gröbner basis is not valid.

The following theorem proves that one can construct a Gröbner basis at
maximum degree ≤ 2dreg. Assume a total degree monomial ordering.

Theorem 2. Time-complexity of constructing a Gröbner basis for P1, . . . , Pm
is polynomial in N .

Proof. We will prove that the construction takes O(N6) operations in Fq. Let’s
consider an application of the Buchberger algorithm, see [CLO13], to the poly-
nomials B. For each Q1, Q2 ∈ B the algorithm computes a residue R of the



S-polynomial S(Q1, Q2) after division by the polynomials B. Each monomial of
degree dreg occurs as a leading monomial of some polynomial in B. Therefore
degR < dreg. If R 6= 0, then B is augmented with R and the step repeats. If
the residue is 0 for each pair, then B is a Gröbner basis. At each step of the
algorithm the polynomials in B are linearly independent.

One has to examine < N2 pairs before finding a non-zero residue or ter-
minating. The number of possible linearly independent residues is < N , so the
number of divisions is at most N3. Each S-polynomial has degree ≤ 2dreg, so it
incorporates at most N2 monomials. Computing its residue takes at most O(N3)
field operations. Overall complexity is the one stated.

A more careful analysis shows that one can work with polynomials of degree
≤ 2dreg − 2 and the time-complexity is

O(N2 L2
q(n, dreg − 1)Lq(n, 2dreg − 2))

operations in Fq.

3 Analysis of the probability

The sketch of Theorem 1 proof is here presented. We consider a system of m
homogeneous polynomials f1, . . . , fm of degree D. Let d be a natural number.
The degree d Macaulay matrix of the system is the matrix M = M(n,m, d),
whose rows are labelled by pairs (r, fi), where r are all monomials of degree d, and
columns are labelled by the monomials t of degree D+d. The entry of the matrix
M in the row (r, fi) and the column t is equal to the coefficient at the monomial
t in rfi computed in R. The size of the matrix M is mlq(n, d)× lq(n,D+ d). If
the columns of M are linearly independent, then dreg ≤ D + d.

Let the homogeneous polynomials f1, . . . , fm of degree D be taken uniformly
at random. By p we denote the probability that the columns of M are linearly
dependent. We prove that if d < D and m ≥ lq(n,D + d)/lq(n, d), then

p ≤ qlq(n,D+d)−mlq(n,d) +O(ndq−n
D

)

as n tends to infinity. That will prove Theorem 1.
The matrix M can be divided into m blocks M1, . . . ,Mm, each with lq(n, d)

rows. The matrix Mj is the Macaulay matrix for the single polynomial fj . Let
u be a vector of length lq(n,D + d). Its entries can be indexed by the multisets
XD+d, where X is defined in Section 4 with k1 = . . . = kn = q − 1.

Let u be a column vector of length lq(n,D+d) over Fq. Since the polynomials
fj are chosen independently, the probability pu = P(Mu = 0) is equal to pm1u,
where pju = P(Mju = 0). We deduce p ≤

∑
u6=0 pu =

∑
u6=0 p

m
1u, as the presence

of linear dependencies of the columns in M is equivalent to a nontrivial kernel.
Let c denote a vector of length lq(n,D), whose entries cL are indexed by

the multisets in XD. They are the coefficients at the monomials of f1. Let mJI

denote the entry of M1 in the row J ∈ X d and the column I ∈ XD+d. Then



mJI = cI\J if J ⊆ I and mJI = 0 otherwise. So M1u = 0 is equivalent to the
following equalities which hold for every J ∈ X d:∑

I∈XD+d

mJI uI =
∑
J⊆I

cI\J uI =
∑

L+J∈XD+d

cL uL+J = 0,

where the second sum is over I ∈ XD+d such that J ⊆ I, and the third sum is
over L ∈ XD such that L+ J ∈ XD+d.

Let Y (u) be a matrix of size lq(n, d)× lq(n,D), whose rows and columns are
labelled by the elements of X d and XD respectively. The entries of Y (u) are
defined by

Y
(u)
J,L =

{
uJ+L if J + L ∈ XD+d,

0 otherwise.

So M1u = 0 is equivalent to Y (u)c = 0, so pu1 = q− rk(Y (u)). Therefore,

p ≤
∑
u6=0

q−m rk(Y (u)) =

lq(n,d)−1∑
v=0

Nvq
−m(lq(n,d)−v), (2)

where Nv denotes the number of vectors u such that rk(Y (u)) = lq(n, d)−v. The
value Nv is upper bounded by the size of the set

Sv =
{
u| rk(Y (u)) ≤ lq(n, d)− v

}
.

In particular, u ∈ Sv if and only if there exists a subspace V ⊆ Flq(n,d)q of dimen-
sion v in the kernel of Y (u). Let B = (b1, . . . , bv) be a basis for this space. We
label the coordinates of bi with elements J of X d according to the lexicographic
order from left to right. Then biY (u) = 0 is equivalent to the following equality
which holds for every L ∈ XD:∑

J+L∈XD+d

bi,JuJ+L = 0, (3)

where the sum is over J ∈ X d such that J + L ∈ XD+d. The basis B may be
represented as a matrix of size v × lq(n, d) in a row echelon form, where every
leading coefficient is 1.

B =

0 . . . 0 1 ∗ . . . ∗ 0 ∗ . . .
0 . . . 0 0 0 . . . 0 1 ∗ . . .
. . .

 .

For every 0 < i ≤ v we define the matrix Ai by the following.

– Ai has lq(n,D+d) rows and lq(n,D) columns, labelled by I ∈ XD+d and by
L ∈ XD respectively. The labels are ordered according to the lexicographic
order from left to right and from top to bottom.



– The entry I, L of Ai is

Ai,I,L =

{
bi,I\L if L ⊆ I,
0 otherwise.

Let AV denote the horizontal concatenation of the matrices A1, . . . , Av, that is
AV = A1|A2| . . . |Av. The equalities (3) are equivalent to uAV = 0 and therefore

|Sv| ≤
∑

dim(V )=v

qlq(n,D+d)−rk(AV ),

where the sum is over subspaces V of dimension v in Flq(n,d)q . Let the multiset
Ji ∈ X d label the first nonzero entry of the vector bi.

Lemma 1. For the subspace V with the basis B it holds that

rk(AV ) ≥

∣∣∣∣∣
v⋃
i=1

{
I ∈ XD+d|I ⊇ Ji

}∣∣∣∣∣ .
We omit the proof of the lemma in this abstract. By combining Lemma 1 and
Theorem 3, one concludes that for every V of dimension v, rk(AV ) ≥ χD+d

v and
so

Nv ≤
∑

dim(V )=v

qlq(n,d+D)−rk(AV ) ≤ svqlq(n,d+D)−χD+d
v .

where sv is the number of subspaces of dimension v in Flq(n,d)q . It is easy to see
that sv ≤ q(lq(n,d)−v+1)v. By applying (2), one gets:

p ≤
lq(n,d)−1∑
v=0

q(lq(n,d)−v+1)v+lq(n,D+d)−χD+d
v −(lq(n,d)−v)m =

= qlq(n,D+d)−mlq(n,d) +

lq(n,d)−1∑
v=1

q(lq(n,d)−v+1)v+lq(n,D+d)−χD+d
v −(lq(n,d)−v)m.

An analysis of the second term reveals that for n large enough it is O(ndq−n
D

).
That finishes the proof. ut

Remark 1. We notice that ifm < lq(n,D+d)/lq(n, d), then the regularity degree
for m homogeneous polynomials of degree D cannot be smaller than or equal to
D + d, for the Macaulay matrix of degree d cannot have linearly independent
columns.

4 Minimal covering family of multisets

A multiset over {1, . . . , n} is a sequence A = (a1, . . . , an) with integer ai ≥ 0.
Let B = (b1, . . . , bn) be another multiset. We say that A ⊆ B if ai ≤ bi for



every i. One defines A+B = (a1 + b1, . . . , an + bn) and if A ⊆ B, then B \A =
(b1−a1, . . . , bn−an). We say that |A| = d if

∑n
i=1 ai = d and call A a d-multiset.

For integer k1, . . . , kn ≥ 0 we define

X = {(a1, . . . , an)|0 ≤ ai ≤ ki, i = 1, . . . , n},

and X d = {A ∈ X such that |A| = d}.
Let A = {A1, . . . , Av} be a family of d-multisets and D ≥ d. By ||A|| we

denote the number of multisets from XD which contain at least one from A (we
say covered by A). The ordering on {1, 2, . . . , n} induces a lexicographic order
on the family X d. Let Xv = {X1, . . . , Xv} denote the first(largest) v multisets
according to that ordering and χDv = ||Xv||.

Theorem 3. Let k1 ≤ k2 ≤ . . . ≤ kn, then ||A|| ≥ χDv .

Let Yu be the family of the first(largest) u elements in XD according to the
lexicographic order on XD. Let Xv be a d-multiset at place v in the ordered
family X and Y`(v) denote the smallest D-multiset such that Y`(v) ⊇ Xv (covered
by Xv). So Y`(v) = {Y1, . . . , Y`(v)} the ordered family of Y ≥ Y`(v) in XD. We
give a sketch of the theorem proof based on several lemmas.

Lemma 2. The family of D-multisets covered by Xv is Y`(v). In particular,
χDv = `(v).

Proof. To simplify notation we write Y = Y`(v) and X = Xv. Let X ′ ≥ X, we
will prove that for any D-multiset Y ′ such that Y ′ ⊇ X ′ we have Y ′ ≥ Y . We
denote

X = (x1, . . . , xi−1, xi, . . . , xn), X ′ = (x1, . . . , xi−1, x
′
i, . . . , x

′
n),

where x′i > xi, and

Y = (y1, . . . , yi−1, yi, . . . , yn), Y ′ = (y′1, . . . , y
′
i−1, y

′
i, . . . , y

′
n).

Then y′1 ≤ y1, otherwise Y ′ > Y and it is nothing to prove. If y′1 < y1, then
we get a contradiction with the minimality of Y by constructing Y ′′ < Y and
X ⊆ Y ′′. So y′1 = y1. By the same argument we prove that y′j = yj , 1 ≤ j ≤ i−1.
So xi < x′i ≤ y′i ≤ yi. If i = n, then Y ′ = Y and nothing is to prove. If i < n,
then one gets a similar contradiction. So y′i > yi and Y ′ > Y . It is easy to
see that for any D-multiset Y ′ ≥ Y there exists d-multiset X ′ ≥ X such that
X ′ ⊆ Y ′. That proves the statement.

Let s be a natural number and f(v) = |Y`(v+s) \ Y`(v)| for 0 ≤ v ≤ |X d| − s.

Lemma 3. f(|X d| − s) ≤ f(v) ≤ f(0).

We omit the proof of the lemma in this abstract.

Lemma 4. It is enough to prove Theorem 3 for D = d+ 1.



Proof. Let the theorem be true for D = d + 1 and any d. We prove it is true
for D = d + 2. Let `01(s), `12(s), `02(s) be the above function for d, d + 1, and
d+1, d+2, and d, d+2 respectively. The family A of d-multisets covers a family
B of (d + 1)-multisets, and B covers a family C of (d + 2)-multisets. Then C
contains all (d + 2)-multisets covered by A. So, in particular, it is easy to see
that `12(`01(s)) = `02(s). Let |A| = s, |B| = r, |C| = t. Then

t ≥ `12(r), r ≥ `01(s).

Therefore t ≥ `12(r) ≥ `12(`01(s)) = `02(s) and the statement is true for D =
d+ 2. One uses the same argument to prove the lemma for D > d+ 2.

Proof (sketch) of the Theorem. Let {1, . . . , n} = {i1, . . . , ir} ∪ {j1, . . . , jn−r},
where 1 ≤ r < n. One splits A into subfamilies AZ , where Z runs over t-multisets
(zi1 , . . . , zir ), 0 ≤ zil ≤ kil and 0 ≤ t ≤ d. Each d-multiset (a1, a2, . . . , an) ∈ AZ
satisfies (ai1 , . . . , air ) = Z and (aj1 , . . . , ajn−r ) is a (d−t)-multiset. Let |AZ | = sZ
and CZ be a family of d-multiset (a1, a2, . . . , an), where (ai1 , . . . , air ) = Z and
(aj1 , . . . , ajn−r

) are the first(largest) sZ of (d− t)-multisets in the lexicographic
ordering. We put C =

⋃
Z CZ and say C satisfies the condition (i1, . . . , ir). Obvi-

ously, |C| = |A|. By using induction we will now prove that ||C|| ≤ ||A||.
Let BZ be a family of D-multisets (b1, b2, . . . , bn) covered by AZ . One splits

BZ into subfamilies BZ,U , where U runs over T -multisets (ui1 , . . . , uir ) for Z ⊆ U
and t ≤ T ≤ D. Each D-multiset (b1, b2, . . . , bn) ∈ BZ,U satisfies (bi1 , . . . , bir ) =
U , where (bj1 , . . . , bjn−r

) is a (D − T )-multiset.
We now consider multisets (aj1 , . . . , ajn−r

). Let `Z,U (s) be the number of such
(D−T )-multisets covered by the first s such (d−t)-multisets in the lexicographic
order. As n− r < n, by induction, |BZ,U | ≥ `Z,U (sZ) and therefore |

⋃
Z BZ,U | ≥

maxZ `Z,U (sZ). Then

||A|| = |
⋃
Z,U

BZ,U | =
∑
U

|
⋃
Z

BZ,U | ≥
∑
U

max
Z

`Z,U (sZ) = ||C||.

If A does not satisfy the condition (i1, . . . , ir), one transforms A into a family
for which this condition is satisfied. As the members of A are becoming larger
in the lexicographic order, this process stops at some point. So we assume A
satisfies all the conditions (i1, . . . , ir) for 1 ≤ r < n.

One now combines the conditions (1) and (3, . . . , n), and the inequalities in
Lemma 3 to finish the proof. ut
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