Counting Boolean Functions with Faster Points
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Abstract. Duan and Lai introduced the notion of “fast point” for a
Boolean function f as being a direction a so that the algebraic degree
of the derivative of f in direction a is strictly lower than the expected
deg(f) — 1. Their study was motivated by the fact that the existence of
fast points makes many cryptographic differential attacks (such as the
cube and AIDA attack) more efficient. The number of functions with
fast points was determined by Duan et. al. in some special cases and by
Salagean and Mandache in the general case.

We generalise the notion of fast point, defining a fast points of order ¢ as
being a fast point a so that the degree of the derivative of f in direction a
is lower by at least £ than the expected degree. We determine the number
of functions of degree d in n variables which have fast points of order /.
We also determine the number of functions which have a given space U
as their space of fast points of order £. As an application, we compute the
number of functions which admit linear structures (i.e. their derivative
in a certain direction is constant); such functions have a long history of
being used in the analysis of symmetric ciphers.
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1 Introduction

Boolean functions used in cryptography are usually required to resist a range of
attacks. They need to have a sufficiently high algebraic degree (i.e. the degree
of the function written in its algebraic normal form) in order to resist algebraic
attacks. Differential attacks on cryptographic functions typically exploit prop-
erties of the discrete derivative. The discrete derivative of a function f in the
direction a is defined as D, f(z) = f(xz + a) — f(x). The derivatives should also
have a high degree; the highest that can be achieved is one less than the de-
gree of the original function, i.e. deg(D,f) < deg(f) — 1. For example, the cube
attack of Dinur and Shamir [2] and the AIDA attack of Vielhaber [7], as well
as many further variants of these attacks, exploit the situation where a higher
order derivative of the function has a very low degree (usually 1 or 2). Higher
order derivatives are obtained by repeatedly differentiating in several directions.

Motivated by these applications, Duan and Lai [3] introduced the notion of
“fast point” for a cryptographic function: a is a fast point for a function f if the



degree of D, f drops more than expected, i.e. the degree is strictly lower than
deg(f)—1. The fast points of a function f form a linear space. In [4] they started
computing the number of functions that admit fast points; explicit formulae were
obtained for small degrees and very large degrees, and exhaustive search results
were obtained for small numbers of variables.

In [6] Sdlagean and Mandache obtained a recurrence relation as well as an
explicit formula for the number of functions that admit fast points, for any
number of variables n and any degree d, and also for any given dimension of the
space of fast points.

In this paper we define “faster points” i.e. points where the degree of the
derivative drops by at least 2 more than expected. More generally, a fast point
of order ¢ for a function f will be a point where the degree of D, f is at most
deg(f) — 1 — ¢, i.e. it dropped ¢ more than expected. The fast points of order ¢
of a function f form a linear space.

We will count the number of functions of degree d in n variables which have
a given space U as their space of fast points of order ¢. This number does not
depend on the space itself, only on its dimension, so this allows us to count, for
each fixed k, the number of functions which have exactly 2% fast points of order
£; also the number of functions which have no fast points of order £. For all these
numbers we give both recurrence relations and explicit formulae, see Theorem 2
for fast points of order 2 and Theorem 3 for arbitrary order. The proofs use
some techniques similar to the ones in [6], but also some different techniques,
see Lemma 2.

As an application of these counting results, we can determine the number
of functions which have linear structures. The notion of linear structure was
introduced by Chaum and Evertse in 1985 in [1] and has since been used widely
in the analysis of cryptographic primitives. An element a is a linear structure for
a function f if D, f is a constant function. With our definition, a linear structure
for f is a fast point of order deg(f) — 1, so we can apply our results directly to
compute the number of functions which have linear structures for each degree d
and n variables.

2 Preliminaries

We denote by Fy the binary field. A boolean function f with n-bits input and
one bit output can be viewed as a function f : Fy — Fs. Any such function can
be represented in algebraic form as a polynomial function of degree at most one
in each variable. (More precisely, because 2 = x when z € Fy, each function cor-
responds to an element in Fo[z1,...,2,]/(z? +z1,...,22 +2,); we identify each
coset with its unique representative multivariate polynomial which has degree
at most one in each variable.)

The (algebraic) degree of f, denoted deg(f), is the total degree of the poly-
nomial, with the usual convention that the degree of the zero function is —oo.
We will denote by BF(n) the set of Boolean functions in n variables, and by



BF(n,d) the set of Boolean functions in n variables of degree exactly d, where
0<d<n.

Let f € BF(n,d) and a = (a1,...,a,) € F3. The derivative D,f of f is
defined as the Boolean function in n variables = — f(z + a) — f(z). The degree
of D, f is lower than or equal to d — 1 (see [5]), i.e. differentiation decreases the
degree of the function by at least 1. Vectors a for which the degree of D, f is
strictly lower than d — 1 (i.e. the degree drops more than expected) are called
“fast points” of f (see [3]). The set of fast points of f is a linear subspace of F%
of dimension at most n — d (see [3]).

Note that only the monomials of f of degree d matter when determining
whether the degree of D,f is equal to d — 1 or strictly lower, and therefore
determining whether a is a fast point. In other words, a € F is a fast point of f
if and only if a is a fast point of f 4 g, where g is an arbitrary Boolean function
in n variables of degree at most d — 1. Hence for counting Boolean functions
having fast points, it is natural to define the following equivalence on BF(n):
for fi1, fo € BF(n)

A = deg(f1 — fa) <.
Then | f](i) denotes the equivalence class of f with respect to the equivalence

relation (L) For deciding whether f has fast points, it suffices to consider f up
d—
to the equivalence ( Nl).

Next we formally define “faster points”.

Definition 1. Let f € B(n,d) and 1 < ¢ < d. An element a € F} is called a
fast point of order ¢ for f if deg(D.f) < d—1—£. The set of fast points of order
L of f is denoted

FPO(f) = {a € F} : deg(Dof) < d—1—(}. (1)
Note the usual fast points are fast points of order 1. If aq,as € FP(Z)(f), then

Daytar f(2) = f(z + a1 + a2) — f(z)
= flx+a1+a2) = flx+a)+ fz+a1) - f(x)
= Dq, f(x + a1) + Dq, f(2).

Hence deg(Dq, 4a,f) < max{deg(Dq, f),deg(D,, f)}. This proves that FP(f)
is a linear subspace of ;. The dimension of this space is at most n — d, since a
fast point of order £ is also a fast point of order £—1 and dim(FPW (f)) < n—d.
We have a filtration of linear subspaces:

Fy 2 FPU(f) DFPP(f) 2 --- 2 FPUV () 2FPY(f) 2 {0}.

When determining whether a function f has fast points of order £ only the
monomials of degree d,d —1,...,d— ¢+ 1 matter, as they are the only ones that
can produce polynomials of degree strictly above d — 1 — ¢ after differentiation;

d—¢
so we only need to consider the function f up to the equivalence @3 ). The set of



functions (up to the suitable equivalence) which have their space of fast points
of order ¢ equal to a given subspace U C Fy will be denoted:

F©® (n,d;U) = {[f](d_z) : f € BF(n,d) and FP(E)(f) =U}.

The set of functions (up to the suitable equivalence) for which the space of fast
points of order £ has a given dimension k£ will be denoted:

FO(n,d; k) = {[f]“"9 : f € BF(n,d) and dim(FPY(f)) = k}.

For integers 0 < k < n the Gaussian binomial coefficients (or g-binomial
coefficients) are defined as

m _ (@ =D =D (gt -
k|, (" =D(¢**t-1)---(¢g—=1) ~

Recall that [Z]q is the number of k dimensional F,-linear subspaces of Fy. We
will mostly use these coeflicients for ¢ = 2, and in this case we will omit the
index and simply denote [}| = [}

(2)

I
The cardinality of F(Y)(n,d; k) was computed explicitly by Sildgean and
Mandache-Salagean:

Theorem 1. ([6, Corollary 3]) For integers 1 < d <mn and 0 < k <n —d we

have
gt {";k] (2(”’5”) . 1).

For 1 <i<mnlete =(0,...,0,1,0,...,0) € F} be the vector which has 1 in
its i-th position and zeroes elsewhere. The set {eq,...,e,} forms the standard
basis of FY over Fy. Linear changes of variables (changes of coordinates) will be
useful, so we collect a number of straightforward results:

n—k—d

|F<1>(ndk|_H Z

i=

Lemma 1. Let f, fi, fo : F5 — Fy and a € Fy. Let ¢ : F§ — F5 be an invertible
linear map.

(i) deg(f) = deg(f o ¢).

(”) (Daf) op= Dgp*%a)(f 0 QO)'

(iii) a is a fast point of order { for f iff o=(a) is a fast point of order £ for
foo.

(iv) e; is a fast point of order ¢ for f iff x; does not appear in any of the
monomials of degree d,d —1,...,d—{€+1 of f.

(v) lefz iﬁf10¢@f20¢-

3 Counting Faster Points

We will make extensive use of the following result, which might be known but
so far we have not found it in the literature.



Lemma 2. Let S;T : N — C be functions. Then

S(n) = En: m T(k) for alln >0 (3)
k=0 q
if and only if
= z”: k(k = L{:] S(n—k) for alln >0 (4)
=0 q

Proof. Recall the analogue of the binomial formula for Gaussian binomial coef-

ficients:
n-l & k(k—1)
H 1+ ¢%t) Zq 2
k=0

which, for ¢t = —1, gives:

" k(k H(n 1 for n=0
Z Mq{o for n>1 (5)

k=0

q

Now assume the equation (3) holds, and we want to prove equation (4). We
evaluate the right hand side of (4), substituting S(n — k) by the expression given
in (3):

k=0 q
- Q g [’,j; " ()

We used the identity

BB,

which can easily be verified directly from the definition of Gaussian binomial
coefficients (2); for the last equality we used (5) above.
Proving that (4) implies (3) is similar.



We will also need the following lemma which exploits invariance to invertible
linear changes of coordinates.

Lemma 3. Let U be a space of dimension k. Then
[FO(n,d; U)| = [FO(n,d; (en—rt1,-- - en))| = |FO(n — k,d; {0})|

Proof. Let a1, ...,a; be a basis for U. Let ¢ be an invertible linear map so that
@(en_ir1) = a;. We will use Lemma 1. A function f is such that [f](?~9 €
F)(n,d;U) iff U is the space of fast points of order ¢ of f iff p~'(U) =
(én—k+1,---,€n) is the space of fast points of order ¢ of f o ¢ iff f o ¢ is such
that [f o ]~ € F)(n,d; (ey_ps1,-..,en)). This proves the first equality.
For the second equality, note that for the equivalence class [g] (d=8) we can pick
a representative which only contains monomials of degree d,d —1,...,d—/{+1,

where d = deg(g). Using Lemma, 1(iv), we see that [¢](¢~*) € F( (n d <€n—k»+1, e

iff the representative g which only contains monomials of degree d,d—1,...,d —
¢ + 1 does not depend on any of the variables x,,_g11,...,Zy,; in other words,
g is a polynomial in the n — k variables z1,...,z,_ ;. Since the space of fast
points of order ¢ of g is (en—k+1,--.,€n), this means that g has no non-trivial
fast points when viewed as a function in n — k variables, so we have [¢](?~9) €
F)(n—k,d;{0}). Conversely, any function in n—k variables in F() (n—k, d; {0})
can be viewed as a function in n variables and it has the required fast points to
be in FO (n,d; (en_ri1,---,en)).

We are now ready to count the functions which have a given space U (or any
space of given dimension k) as their space of fast points of order 2.

Theorem 2. Let 0 < d <n and 0 < k < n —d be integers. For the cardinality
of F@)(.,d,0) we have the recurrence formula

Z { }|F(2 —k,d;0) = (2(8) - 1)2(a") (6)

and the explicit formula

n—d

(2) . — 2 : 1ye w(i=1) M (717',) _ (n:ll)
We also have, for any space U of dimension k with 0 < k <n —d:
n—k—d -1 |n k ( & ) ( . )
(2) . — 2 : _1)\¢ =) - n—k—i B n,_lﬂ
) i=0 (e { 1 } <2 ’ 1) 2 ¢ (8)

IF@(n, d; k)| = m nzk:d PR [n_, k} (2("’5”) - 1) 2. (9)

(3
=0



Proof. For the recurrence relation, note that

{INY21f € Bn,a)} = JF® (n, & U)
U

where the union is disjoint and U ranges over all subspaces of F5. The cardinality
of the set on the left hand side is (2 2(i) — 1)2( ), since for any class we can pick
the representative which only has monomials of degree d and d — 1; there are (Z)
monomials of degree d, and at least one of them should have non-zero coefficient;
there are ( dfl) monomials of degree d — 1. For the set on the right hand side we
use Lemma 3 and the fact that there are [Z] spaces of each dimension k. This
completes the proof of the recurrence formula (6).
For the proof of the first explicit formula we rewrite (6) as

d

n

HEO ka0 =3[ " P 0 -kdo)

el
Il
<]

using the fact that [F)(k,d;0)| = 0 when k < d. This recurrence relation is of
the type of equation (3) in Lemma 2, viewing d as fixed and putting S(n) =
(2(3) - 1)2(11?1) and T(n) = [F®(n, d;0)|. Therefore, equation (4) in Lemma 2
gives the first explicit formula (7) in the theorem statement (with the summation
going up to n, but then note that S(n —i) =0 for n —d < i < n).

Alternatively, (7) could also be proven using the technique from the proof of
[6, Theorem 6].

For the next explicit formula, (8) we use Lemma 3. Finally for the final
formula (9) we use the fact that F(*)(n,d; k) = UyF® (n,d; U) where U ranges
over all the [Z] spaces of dimension k in F5 and the sets in the union are disjoint.

The Theorem above can be generalised to counting the functions which have
a given space U (or any space of given dimension k) as their space of fast points
of order /.

Theorem 3. Let 1 < ¢ <d and let U be a space of dimension k. Then

n—k—d ) L me ki
FO (. d:U) Z ) [nlk} (2(%;71) B 1) o5zt ("2t (10)
1=0
n n—k—d
FO
IFO) (n,d; k)| M > (-

=0

s 1>[ i k] (2@—;—71) B 1) 935=1 ("a55 )11



Furthermore, the number of functions which have fast points of order £ (any
number of non-trivial fast points of order £) is:

{IF1979 : f € B(n,d), FPO(f) # {0}}] = (12)
S pim1gtsn [n] (o0 1
= ;(—1) 1973 [Z] (2( a) — 1) 9= (a5). (13)
Proof. As in the proof of Theorem 2, we have
{1791 € Bn,d)} = JF (n,d; ).

U
For the left hand side we have:

{017 € B, d)}| = (208 — 1) 225 (),

and using Lemma 3 we obtain the recurrence relation

(2(3) _ 1) 93521 (a2)) = :z;: {Z] B (n — k,d;0)|

which we solve using Lemma 2 to obtain

F O (n, d: 0)| = Z%(_lyww m (203 — 1) 225 (),
Using this formula and Lemma 3, we then obtain (10) and (11).
For Equation (12) we have:

{[f1"9 : f € B(n,d),FPY(f) # {0}}| =
= [{[f1“9|f € B(n,d)} \ F(n,d; 0)|

(i) — 1) 2% () - "f(_lygw m (2059 — 1) 2555 ()

, 1
=0

n—d
> (o2t 1] (o0 1) 2B

?

As an application of these counting results, we can determine the number of
functions which have linear structures. An element a € F} \ {0} is a linear
structure for a function f if D, f is a constant function. With our definition, a
linear structure for f is a fast point of order deg(f) — 1. Therefore:

Corollary 1. The number of functions of degree d in n wvariables which have
linear structures is:

n—d
S (1)t m (2059 — 1) 2252 (),

where the functions are counted up to addition of an affine function.



Ezxample 1. Let n = 7,d = 3. We compute the number of functions of degree 3
in 7 variables which have fast points of order 2, i.e. they have linear structures.
Using Corollary 1, this number is:

Y (-t H (2(75") - 1) 2("2") = 4 358 179 630 080.

1
Note the counting is done up to equivalence @O i.e. up to addition of affine
functions. The remaining

(2(5) _ 1) 2(3) — 4 358 179 630 080 = 72 057 594 035 830 784 — 4 358 179 630 080
— 72 053 235 856 200 704

functions have no linear structures. We can also compute the number of functions
with no fast points of order 2 directly using Theorem 2:

4 i(i—1 —1 —1
F®(7,3;{0})] = > (~1)2" %" m (2(73 ) — 1) 2("2") = 72053235856200704.
1=0

The proportion of functions which have linear structures out of all functions of
degree 3 in 7 variables is

4358179630080

T2057594035830784 0000

4 Conclusion

Motivated by the properties of cryptographic functions exploited by differential
attacks, Duan and Lai [3] introduced the notion of Boolean functions that admit
“fast points”. We generalised this notion, defining functions f which have “fast
points of order ¢” i.e. the degree of at least one of the discrete derivatives of f
is lower by £ than the expected value (i.e. it is d — 1 — £ or less, instead of the
expected d — 1). We obtained explicit formulae for the number of such functions
of degree d in n variables. As an important particular case, this allowed us to
compute the number of functions which admit a linear structure.
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