
On the Sparsity of MRD Codes

Eimear Byrne and Alberto Ravagnani

School of Mathematics and Statistics, University College Dublin, Ireland
{ebyrne,alberto.ravagnani}@ucd.ie

Abstract. It is classically known that MDS codes in Fn
q are dense within

the family of Fq-linear block codes with the same dimension as q → +∞.
In the rank-metric, MRD codes are the analogue of MDS codes, and it
has been proven recently that they are dense within the family of Fqm -
linear codes having the same dimension for m → +∞. In this paper,
we show that Fq-linear matrix MRD codes exhibit a completely different
behaviour. More precisely, we prove that MRD matrix codes in Fn×m

q are
not dense within the family of Fq-linear codes with the same dimension,
both as q → +∞ and as m → +∞. More precisely, we show that their
density is asymptotically upper bounded by 1/2. This is in sharp contrast
with the behaviour of MDS and Fqm -linear vector MRD codes.
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1 Introduction

The results presented in this extended abstract summarize some sections of the
preprint [3], in which the notion of a partition-balanced family of codes is applied
to determine the density or sparsity of codes that are extremal with respect
to properties such as minimum distance and maximality. Here, we focus the
discussion on the first of these properties.

Rank metric codes [4,5,14] have seen a recent resurgence of interest both
for their potential use in code based cryptography and as error-correcting codes
in network communications. See [6,16] among many others. The rank metric
analogue of the Singleton bound yields the class of maximum rank distance
(MRD) codes, which exist for all choices of m,n and minimum distance d, both
for Fqm-linear subspaces of Fn

qm (vector rank metric codes) and the larger class
of Fq-linear subspaces of Fn×m

q (matrix rank metric codes).
While vector rank metric codes exhibit a behaviour similar to block codes for

the Hamming metric, there is considerable divergence between these families and
the class of matrix rank metric codes. Perhaps the most profound difference is to
be seen in the behaviour of the density functions of codes that are extremal with
respect to the minimum distance. We will show that, while both MDS and vector
rank metric MRD codes are dense among codes having the same dimension, the
matrix MRD codes are never dense in this sense, neither as q → +∞ and nor as
m→ +∞. This behaviour was also observed independently in [1] for q → +∞.

We give a brief outline of this paper. Section 2 contains some preliminaries on
linear codes. In Section 3 we define density functions and define what we mean
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by the terms sparse and dense. We also give an exposition on how to establish
the density of both the MDS linear block codes and the MRD vector linear codes
using the Schwartz-Zippel Lemma and explain why this approach does not apply
in the case of matrix rank metric codes.

The main results can be read in Sections 4 and 5. In Section 4 we give a
lower bound on the number of non-MRD matrix codes of a fixed dimension, and
we use this for the results of Section 5. We first show that for any ε > 0, and for
sufficiently large q, the proportion of non-MRD matrix codes within the family
of all codes of the same dimension is at least 1/2−ε. We also show for any fixed q
and ε > 0, this proportion is at least 1/2(q/(q − 1)− 1/(q − 1)2)− ε ≥ 1/2− ε
for sufficiently large m.

2 Codes for the Hamming and the Rank Metric

In this paper, q denotes a prime power and k, n,m are non-negative integers
with m ≥ n ≥ 1 and k ≤ n.

Recall that an [n, k]q code is a k-dimensional subspace C ≤ Fn
q . If k ≥ 1,

then the minimum (Hamming) distance of C is

dH(C) := min{ωH(x) | x ∈ C, x 6= 0},

where ωH is the Hamming weight on Fn
q . The dimension of a non-zero [n, k]q

code satisfies k ≤ n − dH(C) + 1. This is the well-known Singleton bound [17].
Codes that meet this bound are called MDS. A standard reference on codes
endowed with the Hamming metric is [9].

Definition 1. An [n × m, k]q matrix rank-metric code is an Fq-linear sub-
space C ≤ Fn×m

q . If k ≥ 1, then the minimum rank distance of C is

drk(C) := min{rk(X) | X ∈ C, X 6= 0}.

In [4], Delsarte shows the rank-metric analogue of the Singleton bound.

Theorem 1 ([4, Theorem 5.4]). Let C ≤ Fn×m
q be a non-zero [n×m, k]q rank-

metric code. We have k ≤ m(n− drk(C) + 1).

Codes meeting the bound of Theorem 1 are called MRD. They enjoy a
series of properties that are analogous to those of MDS codes. For example,
their weight distribution is determined by their dimension [4, Theorem 5.5].
See [12, Remark 50] for a generalization.

In [5] and [14], Gabidulin and Roth introduce independently a special class
of rank-metric codes, that are linear over Fqm . They are defined as follows.

Definition 2. An [n, k]qm vector rank-metric code is an Fqm-linear subspace
C ≤ Fn

qm . If k ≥ 1, then the minimum (rank) distance of C is

drk(C) := min{rk(x) | x ∈ C, x 6= 0},

where rk(x) denotes the Fq-dimension of the space generated by the entries of x.
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There is a simple relation between vector and matrix rank-metric codes,
which we briefly describe. Given an Fq-basis Γ = {γ1, ..., γm} of Fqm and a
vector x ∈ Fn

qm , denote by Γ (x) the n×m matrix over Fq defined by

xi =

m∑
j=1

Γij(x)γj for all 1 ≤ i ≤ n.

Then the following hold (see e.g. [7, Section 1]).

Proposition 1. For every Fq-basis Γ of Fqm , the map x 7→ Γ (x) is Fq-linear
and bijective. Moreover, it preserves the (respective) rank weights. In particular,
if C ≤ Fn

qm is an [n, k]qm vector rank metric code, then Γ (C) is matrix rank
metric code of dimension mk over Fq with the same minimum distance as C.

An [n, k]qm vector rank-metric code C is MRD if Γ (C) is MRD for some (and
therefore for all) basis Γ of Fqm/Fq. Equivalently, C is MRD if k = n−drk(C)+1.

While MDS codes, vector MRD codes, and matrix MRD codes often exhibit
a similar behaviour, in this paper we show that they behave very differently with
respect to density properties.

3 Density Questions in Coding Theory

It is natural to ask what the proportion of MDS and MRD code is within the
family of codes having the same dimension. This is the question that we address
in the remainder of the paper.

We start by defining density functions and what it means for a family to be
sparse or dense within a larger family. Such notions have been used for decades
in number theory; see e.g. [11].

Definition 3. Let S ⊆ N be an infinite subset. Let (Fs | s ∈ S) be a sequence
of finite non-empty sets indexed by S, and let (F ′s | s ∈ S) be a sequence of sets
with F ′s ⊆ Fs for all s ∈ S. The density function S → Q of F ′s in Fs is

s 7→ |F ′s|/|Fs|.

When lims→+∞ |F ′s|/|Fs| exists and equals δ, then we say that F ′s has den-
sity δ in Fs. If F ′s has density 0 in Fs, then F ′s is sparse in Fs. If F ′s has
density 1 in Fs, then F ′s is dense in Fs.

A typical problem is to study the asymptotics of the density functions of
sequences of sets (see e.g. [8]). We illustrate this with a very simple example.

Example 1. Let S = N. For all s ∈ S define the sets Fs := {n ∈ N | n ≤ s} and
F ′s := {n ∈ N | n ≤ s and n is even}. Then 1/2 ≤ |F ′s|/|Fs| ≤ 1/2 + 1/s for all
s ∈ S, as it can be easily checked. Thus F ′s has density 1/2 in Fs, as one expects.
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To simplify the notation, the variable s in Fs and F ′s is omitted when it is
clear from the context. Notions of lower density (the lims→+∞ inf) and upper
density (the lims→+∞ sup) are also used and appear in the literature, but are
not required here.

MDS codes are dense for q → +∞. This result is classically known, although
we cannot provide a precise reference. More precisely, the following hold.

Theorem 2. For all 1 ≤ k ≤ n, there are at least

qk(n−k)
(

1− k

q

((
n

k

)
− 1

))
k-dimensional MDS codes in Fn

q . In particular, MDS codes are dense in the set
of k-dimensional codes as q → +∞.

Proof. For a matrix G over Fq, we let piv(G) denote the pivot indices in the
reduced row-echelon form of G. Now suppose that G ∈ Fk×n

q is a rank k matrix
in reduced row-echelon form. Using standard coding theory arguments one shows
that the following are equivalent:

1. the rows of G generate a k-dimensional MDS code;
2. all the k × k minors of G are non-zero (in particular, piv(G) = {1, ..., k}).

Consider a matrix of the form G = (Ik | Y ), where Y is a k× (n− k) matrix
of Fq-independent variables (zi | 1 ≤ i ≤ N) and N = k(n−k). Let p1, ..., pM be
the maximal minors of G, where M =

(
n
k

)
. Then each pj is a polynomial in the

variables z1, ..., zN whose degree is upper bounded by k. Moreover, since G has
an identity in the first k × k block, p1 = 1 without loss of generality. Therefore
the polynomial p = p1p2 · · · pM has degree upper bounded by k(M − 1). By the
first part of the proof, the k-dimensional MDS codes in Fn

q are in bijection with

the set {α ∈ FN
q | p(α) 6= 0}. Therefore by the Schwartz-Zippel Lemma [15,18]

their number is at least

qN
(
1− q−1k(M − 1)

)
= qk(n−k)

(
1− k

q

((
n

k

)
− 1

))
.

The second part of the statement follows from the fact that

lim
q→+∞

qk(n−k)
(

1− k

q

((
n

k

)
− 1

))[
n
k

]
q

−1

= 1,

as one can easily check using the well-known estimate[
n
k

]
q

∼ qk(n−k) as q → +∞.

The rank-metric analogue of Theorem 2 holds for vector MRD codes that
are linear over Fqm , for m → +∞. This was shown in [10] with the aid of the
Schwartz-Zippel Lemma.
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Theorem 3. For all 1 ≤ k ≤ n ≤ m, there are at least

qmk(n−k)

(
1− k

qm

k−1∏
i=0

(qn − qi)

)
Fqm-linear MRD codes in Fn

qm of dimension k over Fqm . In particular, MRD
codes are dense in the set of k-dimensional Fqm-linear vector rank-metric codes
codes as m→ +∞.

Remark 1. The proof of Theorem 3 uses the fact that Fqm -linear MRD codes
correspond to the non-zeroes of a polynomial p in k(n− k) variables with coeffi-
cients in Fqm . In the argument of [10], it is crucial that the degree of p satisfies

lim
m→+∞

deg(p)/qm = 0, (1)

from which the density of Fqm -linear MRD codes as m → +∞ can be deduced
using the Schwartz-Zippel Lemma.

We notice that this proof technique cannot be applied to deduce that Fq-
linear matrix MRD codes are dense as q → +∞. These optimal codes of dimen-
sion m(k− d+ 1) over Fq, where d denotes the minimum distance, can easily be
described as the non-zeroes of a multivariate polynomial in m2(n−d+ 1)(d− 1)
variables and coefficients in Fq. However, the degree of any such polynomial, say
p, does not satisfy

lim
q→+∞

deg(p)/q = 0 or lim
m→+∞

deg(p)/q = 0

in general, thereby preventing the application of the Schwartz-Zippel Lemma.
In fact, Fq-linear MRD codes are not dense in the set of codes with the same
Fq-dimension, as we will shortly see. In particular, the behaviour of matrix MRD
codes is in sharp contrast with that of vector MRD codes.

4 The Density Function of Matrix MRD Codes

In this section we obtain a lower bound for the number of Fq-linear non-MRD
codes in Fn×m

q of a given dimension k. This result will be applied in Section 5
to deduce that matrix MRD codes are not dense within the set of codes having
the same dimension over Fq.

Theorem 4. Let k be a multiple of m with m ≤ k ≤ m(n− 1). The number of
Fq-linear k-dimensional non-MRD codes in Fn×m

q is at least

q · Λq(mn,mn− k, k) ·

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)
,

where

Λq(N, t, r) =

t∑
h=1

[
t
h

]
q

t∑
s=h

[
t− h
s− h

]
q

[
N − s
N − r

]
q

(−1)s−hq(
s−h
2 )

for all non-negative integers N, t, r and any prime power q.
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The proof of Theorem 4 is long and quite technical. We therefore only give
the idea of how it works and organize it in eight steps. We refer to [3, Section 6]
for a full proof.

Proof (sketch). Define d = n − k/m + 1. The main idea behind the proof is
to construct q vector spaces of matrices D1, ...,Dq ≤ Fn×m

q that only contain
matrices of rank upper bounded by d − 1, and then derive a lower bound for
the number of k-dimensional codes C ≤ Fn×m

q that intersect non-trivially at
least one of these spaces. Clearly, this gives a lower bound on the number of
k-dimensional codes C ≤ Fn×m

q that are not MRD.

1. The first step is to show that one can assume n ≥ 2(d − 1) without loss of
generality. To see this, observe that trace-duality in Fn×m

q gives a bijection
between the MRD codes of distance d and dimension k and the MRD codes
of distance n−d+2 and dimension mn−k. See e.g. [13, Section 4]. Moreover,
if n < 2(d − 1), then n > 2((n − d + 2) − 1) and 2 ≤ n − d + 2 ≤ n. We
henceforth assume n ≥ 2(d− 1) in the sequel.

2. Using results on partial spreads [2] and step 1, one shows that there exist
Fq-linear spaces U1, ..., Uq ≤ Fn

q of dimension d − 1 with the property that
Ui ∩ Uj = {0} for all i, j ∈ {1, ..., q} with i 6= j. Then one defines

Di = {X ∈ Fn×m
q | columnspace(X) ≤ Ui} ≤ Fn×m

q for all 1 ≤ i ≤ q,

and observes that Di ∩Dj = {0} for all i, j ∈ {1, ..., q} with i 6= j. Moreover,
each Di only contains matrices of rank ≤ d − 1. Finally, the dimension of
each Di over Fq is m(d−1) by [13, Lemma 26]. It remains to show that there
are at least

q · Λq(mn,mn− k, k) ·

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)
k-dimensional codes C ≤ Fn×m

q that intersect non-trivially at least one space
among D1, ...,Dq. This is done in various steps and using the following aux-
iliary objects:

Fi = {C ≤ Fn×m
q | dim(C) = k, C ∩ Di 6= {0}} for 1 ≤ i ≤ q,

A1 = ∅,
Ai =

⋃
1≤j<i

Dj \ {0} for 2 ≤ i ≤ q,

F i = {C ∈ F | C ∩ Di 6= {0} and C ∩Ai = ∅} ⊆ Fi for 1 ≤ i ≤ q.

3. It easily follows from the definitions that the number of k-dimensional codes
C ≤ Fn×m

q that intersect non-trivially at least one space among D1, ...,Dq is
at least

q∑
i=1

|F i|.

We will obtain a lower bound on the cardinality of each F i.
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4. Using results on partition-balanced families of codes [3], one shows that

|{C ∈ Fi | X ∈ C}| ≤ |Fi| ·
qk − 1

qmn − qm(d−1)

for all X ∈ Fn×m
q with X 6= 0 and for all 1 ≤ i ≤ q. This in turn can be used

to obtain that

|F i| ≥ |Fi|
(

1− (q − 1)−1
qk − 1

qmn − qm(d−1) · |Ai|
)

for all 1 ≤ i ≤ q.

5. Applying counting arguments based on Mœbius inversion, it can be shown
that

|Fi| = Λq(mn,mn− k, k) for all 1 ≤ i ≤ q,

where the quantity on the right-hand side is given by the formula in the
statement. See [3, Section 3] for details.

6. Combining steps 4 and 5 we see that

|F i| ≥ Λq(mn,mn− k, k) ·
(

1− (q − 1)−1
qk − 1

qmn − qm(d−1) · |Ai|
)

for all 1 ≤ i ≤ q.
7. We can also explicitly compute the cardinality of each Ai as

|Ai| = (i− 1)
(
qm(d−1)−1

)
, 1 ≤ i ≤ q.

The formulas follow from the fact that the Di’s are pairwise disjoint (step 2),
which heavily relies upon the partial spread property of the Ui’s.

8. Combining steps 3, 6 and 7 we finally deduce that the number of k-dimensional
codes C ≤ Fn×m

q that intersect non-trivially at least one among D1, ...,Dq is
lower bounded by

q∑
i=1

Λq(mn,mn− k, k) ·
(

1− (q − 1)−1
qk − 1

qmn − qmn−k · |Ai|
)

= Λq(mn,mn− k, k) ·

(
q −

(
qk − 1

) (
qmn−k − 1

)
(q − 1) (qmn − qmn−k)

q(q − 1)

2

)

= q · Λq(mn,mn− k, k) ·

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)
,

where the first equality follows from the identity

q∑
i=1

(i− 1) =
q(q − 1)

2
.

This yields the desired result by step 2 and concludes the proof.
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5 Applications

In this section we show that Theorem 4 implies the non-density of MRD matrix
codes, both as q → +∞ and as m→ +∞, and the sparsity of binary MRD codes
as m → +∞. We start by giving a partial proof for the non-density of MRD
codes as q → +∞.

Corollary 1. Let k be a multiple of m with m ≤ k ≤ m(n − 1). Define the
families Fq := {C ≤ Fn×m

q | dim(C) = k} and F ′q := {C ∈ Fq | C is not MRD}.
Then for every ε ∈ R>0 there exists qε ∈ N such that

|F ′q|/|Fq| ≥
1

2
− ε

for all prime powers q ≥ qε. In particular, limq→∞ |F ′q|/|Fq| ≥ 1/2, provided the
limit exists.

Proof. By Theorem 4 we have

|F ′q|
|Fq|

≥ q · Λq(mn,mn− k, k)

|Fq|

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)
. (2)

It can be shown [3, Section 3] that

Λq(mn,mn− k, k) ∼ qk(mn−k)−1 as q → +∞,

while it is well-known that

|Fq| =
[
mn
k

]
q

∼ qk(mn−k) as q → +∞.

Therefore

lim
q→+∞

q · Λq(mn,mn− k, k)

|Fq|
= lim

q→+∞

q · qk(mn−k)−1

qk(mn−k) = 1.

As a consequence,

lim
q→+∞

q · Λq(mn,mn− k, k)

|Fq|
·

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)
=

1

2
. (3)

The statement can now be obtained by combining (2) and (3).

MRD matrix codes are not dense also for m → +∞. The proof of the next
corollary is quite technical and therefore we only sketch it here.

Corollary 2. Fix an integer d with 2 ≤ d ≤ n, and let k := m(n−d+1). Define
Fm := {C ≤ Fn×m

q | dim(C) = k} and F ′m := {C ∈ Fm | C is not MRD}. Then
for every ε ∈ R>0 there exists mε ∈ N such that

|F ′m|/|Fm| ≥
1

2

(
q

q − 1
− 1

(q − 1)2

)
− ε

for all integers m ≥ mε. In particular, limm→∞ |F ′m|/|Fm| ≥ 1/2, provided the
limit exists.
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Proof (sketch). The idea is to obtain a lower bound for the limit, as m→ +∞,
of the ratio

Em

|Fm|
, where Em = q · Λq(mn,mn− k, k) ·

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)

is the expression in Theorem 4. To simplify notation, we let N = mn and
t = N − k = m(d− 1). The first step is to obtain the following lower bound:

Λq(N, t, k) ≥
[
t
1

]
q

[
N − 1
t

]
q

−
[
t
1

]
q

[
t− 1

1

]
q

[
N − 2
t

]
q

. (4)

The above inequality is not immediate; for more details, see the proof of [3,
Corollary 6.4]. Using (4) one shows that

q · Λq(N, t, k)

|Fm|
≥

q(qt − 1)(qN−t − 1)

(q − 1)(qN − 1)
− q(qt − 1)(qt−1 − 1)(qN−t−1 − 1)(qN−t − 1)

(q − 1)2(qN − 1)(qN−1 − 1)
. (5)

Denote by β(m) the expression on the right-hand side of (5). Then

Em

|Fm|
≥ β(m) ·

(
1−

(
qk − 1

) (
qmn−k − 1

)
2 (qmn − qmn−k)

)
. (6)

Now the right-hand side of (6) tends to

1

2

(
q

q − 1
− 1

(q − 1)2

)
as m → +∞, since k ≤ m(n − 1) by assumption. This yields the desired lower
bound on

lim
m→+∞

Em/|Fm|.

The corollary now follows from the fact that |F ′m|/|Fm| ≥ Em/|Fm| by Theo-
rem 4.
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