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Abstract. In this paper we analyze the intersection between the norm-
trace curve over Fq3 and the curves of the form y = ax3 + bx2 + cx+ d,
giving a complete characterization of the intersection between the curve
and the parabolas, as well as sharp bounds for the other cases. This
information is used for the determination of the weight distribution of
some one-point AG codes constructed on the curve.
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1 Introduction

Algebraic-Geometric (AG codes for short) codes form an important class of error
correcting codes; see [8, 9, 17].

Let X be an algebraic curve defined over the finite field Fq of order q. The
parameters of the AG codes associated with X strictly depend on some properties
of the underlying curve X . In general, curves with many Fq-rational places with
respect to their genus give rise to AG codes with good parameters. For this
reason maximal curves, that is, curves attaining the Hasse-Weil upper bound,
have been widely investigated in the literature: for example the Hermitian curve
and its quotients; see for instance [16,18].

The determination of the intersection of a given curve and low degree curves
is often useful for the determination of informations of the algebraic-geometric
codes arising from the curve; see [1, 2, 5, 15].

The norm-trace curve is a natural generalization of the Hermitian curve to
any extension field Fqr . It has been widely studied for coding theoretical pur-
poses; see [1, 7].

In this paper, we focus our attention on the intersection between the norm-
trace curves and the curves of the form y = ax3+bx2+cx+d over Fq3 , arriving at
complete characterization of the intersection between the curve and the parabo-
las as well as sharp bounds for the other cases. To do so, we employ techniques
coming from the properties of irreducible cubic surfaces over finite fields. Then
we partially deduce the weight distribution of the corresponding one-point codes.



2 Preliminary Results

Let q be a power of a prime and consider Fq, the finite field with q elements. Let
C ⊂ (Fq)n be a linear subspace, then C is a linear code and we will indicate, as
usual, with [n, k, d] its parameters, where d is its Hamming minimum distance.

2.1 The norm-trace curve

The norm-trace curve X is the plane curve defined over Fqr by the affine equation

x
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r−1

+ yq
r−2

+ · · ·+ yq + y. (1)
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This curve X has q2r−1 + 1 rational points: q2r−1 of them are affine points
plus a single point at the infinity P∞.

If r = 2 X coincides with the Hermitian curve and if r ≥ 3 X is singular in
P∞. Moreover it is known that its Weierstrass semigroup in P∞ is generated by〈
qr−1, q

r−1
q−1

〉
.

Our main aim is the study of the intersection between X and the cubics of
the form y = ax3 + bx2 + cx+ d, where a, b, c, d ∈ Fqr .

2.2 Algebraic-Geometric Codes

In this section we introduce some basics notions on AG codes. For a detailed
introduction we refer to [17].

Let X be a projective curve over the finite field Fq, consider the rational
function field Fq(X ) and the set X (Fq) = {P1, . . . , PN} given by the Fq-rational
places of X . Given an Fq-rational divisor D =

∑
i=1,...,nmiPi, where n < N ,

the Riemann-Roch space associated to D on X is the vector space L(D) over Fq

defined as
L(D) = {f ∈ Fq(X ) | (f) +D ≥ 0} ∪ {0}.

It is known that L(D) is a finite dimensional Fq-vector space and the exact
dimension can be computed using the Riemann-Roch theorem. We write `(D) =
dimFq

L(D).
Consider now the divisor D =

∑
P∈S P , S = {P1, . . . ,Pn} ( X (Fq), where

all the P ’s have weight one. Let G be another Fq-rational divisor such that
supp(G) ∩ supp(D) = ∅. Consider the evaluation map

ev : L(G)→ (Fq)n ev(f) = (f(P1), . . . , f(Pn)).

This map is Fq-linear and it is injective if n > deg(G).
The AG-code CL(D,G) associated with the divisors D and G is then defined

as ev(L(G)). It is well known that `(G) > `(G − D) and that CL(D,G) is an
[n, `(G)−`(G−D), d]q code, where d ≥ d∗ = n−deg(G), with d∗ is the so called
designed minimum distance of the code.



3 Intersections between X and a curve y = A(x) of
degree h

Our aim is to find out the intersection over Fq3 of X with the curve defined by
the polynomial y = A(x) of degree h, so A(x) = Ahx

h + · · ·+A0, where Ah 6= 0
and Ai ∈ Fqr . More precisely, given two curves X and Y lying in the affine
space A2(Fqr ) we call planar intersection (or simply intersection) the number of
points in A2(Fqr ) that lie in both curves, disregarding multiplicity. Substituting
y = A(x) in the equation of the norm-trace curve, we get, by the linearity of T,

N(x) = T(Ahx
h) + · · ·+ T(A1x) + T(A0).

Given a linear basis B = {w0, . . . , wr−1} of Fqr with respect to Fq, we know that
there is a vector space isomorphism ΦB : (Fq)r → Fqr such that ΦB(s0, . . . , sr−1) =∑r−1

i=0 siwi. If we consider the maps N,T: Fqr → Fq, we can interpret them from

(Fq)r to Fq defining Ñ = N ◦ ΦB and T̃ = T ◦ ΦB. Call Ti := T(Aix
i) and

T̃i := Ti ◦ ΦB, 1 ≤ i ≤ h. From now on, we will take as B a normal basis, i.e. a
basis B = {α, αq, . . . , αqr−1}. We know that such a basis exists, see [13, Theorem

2.35]. A simple manipulation shows that Ñ and T̃i are homogeneous polynomials
of degree respectively r and i in Fq[x0, . . . , xr−1]. Therefore

Ñ(x0, . . . , xr−1) = T̃h(x0, . . . , xr−1) + · · ·+ T̃1(x0, . . . , xr−1) +D (2)

which is the equation of a hypersurface of Ar(Fq), where D = T(A0). Notice
that the LHS has degree r, while the RHS has degree h.

4 Case r = 3 and h = 2

We are interested in this case to find the number of possible intersections between
the norm-trace curve and the parabolas. By parabola we mean a curve y = Ax2+
Bx+C, A,B,C ∈ Fq3 and A 6= 0. These numbers help to determine some weights

for the corresponding AG code, see Section 6. From now on B = {α, αq, αq2}.
Specializing to y = Ax2 +Bx+ C, equation (2) becomes

Ñ(x0, x1, x2) = T̃2(x0, x1, x2) + T̃1(x0, x1, x2) +D (3)

The map Φ−1B : Fq3 → (Fq)3 induces a correspondence between Fq[x0, x1, x2]

and Fq3 [x] such that we can substitute x with x0α+ x1α
q + x2α

q2 .
Using these relations we can write down equation (3) as follows

0 = − (x30 + x31 + x32)N(α) − (x20x1 + x21x2 + x22x0)T(αq+2) − (x20x2 + x21x0 + x22x1)T(α2q+1)

− x0x1x2(3N(α) − T(α3)) + x20T(Aα2) + x21T(Aα2q) + x22T(Aα2q2) + 2x0x1T(Aαq+1)

+ 2x0x2T(Aαq2+1) + 2x1x2T(Aαq2+q) + x0T(αB) + x1T(αBq2) + x2T(αBq) +D

(4)

and we call S1 = S1(Fq) the surface having this equation, which is clearly
defined over Fq.



Remark 1. By construction the Fq-rational points of S1, i.e. the points in S1(Fq),
correspond to the intersections in A2(Fq3) between the norm-trace curve and the
parabola y = Ax2 +Bx+ C.

If we apply the following linear change of coordinates in GL(3,Fq)
X0 = x0α+ x1α

q + x2α
q2

X1 = x0α
q + x1α

q2 + x2α

X2 = x0α
q2 + x1α+ x2α

q

we obtain a new surface S2 = S2(Fq), defined over Fq3 , with equation

X0X1X2 = AX2
0 +AqX2

1 +Aq2X2
2 +BX0 +BqX1 +Bq2X2 +D. (5)

Note that this change of coordinates is bijective since its associated matrix
is a Moore matrix, and it is known that its determinant is different from zero
since we are dealing with three linearly independent elements, see [13, Corollary
2.38].

Remark 2. Clearly, all the Fq rational points of S1 are mapped to all Fq3-rational

points of S2 of the form (β, βq, βq2), β ∈ Fq3 . Similarly, Fq-rational lines con-
tained in S1 are mapped to Fq3-rational lines contained in S2 having direction

(β, βq, βq2), β ∈ Fq3 . The affinity preserves the absolutely irreducible compo-

nents of the surfaces and the singularities, since it is in GL(3,Fq).

Proposition 1. S1 is an absolutely irreducible cubic surface.

What we want to do now is to estimate the number of Fq-rational points of
S1. Since they correspond to the intersections between X and y = Ax2+Bx+C,
by applying the Bézout theorem we get that

|S1(Fq)| ≤ 2(q2 + q + 1).

This bound can be improved, as we will see. Using the fact that the surface is
irreducible, we can apply the well-known Lang-Weil bound.

Theorem 1 ( [12]). Given nonnegative integers n, d and r, with d > 0, there
is a positive constant A(n, d, r) such that for every finite field Fq, and every
irreducible subvariety X ⊆ Pn(Fq) of dimension r and degree d, we have

||X (Fq)| − qr| ≤ (d− 1)(d− 2)qr−
1
2 +A(n, d, r)qr−1

Corollary 1. The number of Fq-rational points on the surface S1(Fq) is limited
by

q2 + 2q
3
2 +A(3, 3, 2)q.



This bound is better than Bézout’s, and other theoretical estimates are known
(see [3]), but we want to improve the estimation and arrive at a bound in the
form

S1(Fq) ≤ q2 + ηq + µ

where µ < q and η is upper bounded by a constant (independent from q and µ).
Experimentally we found the following

Fact 2 For q ∈ {2, . . . , 29} it is |η| ≤ 2 and µ = 1.

Conjecture 1. |η| ≤ 2 and µ = 1 for all q.

In the case in which S1 is smooth we also know the possible values for |S1(Fq)|.

Theorem 3 (Theorem 23.1, [14]). Let S be a smooth irreducible cubic surface
over Fq, then the number of points of S(Fq) is exactly

|S(Fq)| = q2 + ηq + 1

where η ∈ {−2,−1, 0, 1, 2, 3, 4, 5, 7}.

Theorem (3) suggests us to to consider separately the case in which S1 is
smooth from the case in which it is singular, indeed (3) gives a good bound for
the smooth case.

5 Preliminaries on the singular case

From now on we investigate when S1 is singular. We start with observing that
the possible singular points can only be isolated double points, since S1 is a cubic
irreducible surface. In this context the following result is very helpful.

Theorem 4 ( [4]). Let S ⊂ P3(K) be a singular irreducible cubic surface defined
on the field K. Let S̄ = S(K) be the surface defined by S over K, the algebraic
closure of K. Let δ be the number of isolated double points of S̄. Then δ ≤ 4 and
S is birationally equivalent (over K) to

(i) P2(K) if δ = 1, 4;
(ii) a smooth Del Pezzo surface of degree 4 if δ = 2;

(iii) a smooth Del Pezzo surface of degree 6 if δ = 3.

Recall that a smooth Del Pezzo surface is a smooth projective surface V whose
anticanonical class is ample. Many arithmetic properties of these surfaces were
investigated by Manin; see [14].

What we want to do now is to find a bound in the desired form for the four
possible cases of singularities (δ = 1, 2, 3, 4).

Clearly the singular points on S2 correspond to the solutions of
X0X1X2 = AX2

0 +AqX2
1 +Aq2X2

2 +BX0 +BqX1 +Bq2X2 +D

X1X2 = 2AX0 +B

X0X2 = 2AqX1 +Bq

X0X1 = 2Aq2X2 +Bq2

(6)



Remark 3. Since S1 is defined over Fq if P ∈ S1(Fq) is a singular point then its
conjugates with respect to the Frobenius automorphism are singular.

Before delving into the classification of the four cases arising from different
values of δ, we need to examine separately the case B = 0, which turns out ot
be special.

Proposition 2. The possible singular case for B = 0 are

(i) P = (0, 0, 0) is the only singular point, this happens if and only if D = 0.
(ii) q is odd and δ = 4, this happens if and only if −D

A is a square. In this
case the four singular points cannot be all conjugates with respect to the
Frobenius automorphism.

5.1 One singular point

From now on we can consider B 6= 0. From Remark 3 if S1 has one singular
(double) point P then P has to be Fq-rational, otherwise also its conjugate
should be singular. Consider now the sheaf of Fq-rational lines passing through
P : each line, not contained in S1(Fq), can intersect S1(Fq) in at most one more
point since P is a double point and S1 has degree three. So the number of
Fq-rational points of S1 is given by

|S1(Fq)| ≤ (q2 + 1) + h(q − 1) = q2 + hq + 1− h

where h is the number of lines contained in S1 and passing through P .

Proposition 3. With the same notation as before we have h = 0.

Putting together the previous observations we have the following result.

Proposition 4. If S1 has one singular Fq-rational point then

|S1(Fq)| ≤ q2 + 1. (7)

5.2 Two singular points

Call P1 and P2 the two singular points of S1, from Remark 3 there are two
possibilities:

(i) P1 and P2 are Fq-rational;
(ii) P1 and P2 are Fq2 -rational and conjugates.

If (i) happens then (7) holds and we can use that bound.
We look for a bound when (ii) happens: call r the line passing through P1 and

P2, since it fixes the conjugate points then it has to be Fq-rational and moreover
this line has to be contained in S1(Fq) since the intersection multiplicity of this
line is at least 2 in both P1 and P2 and the surface has degree 3. Now consider
the pencil of planes passing through r and consider the cubic curve C defined as
intersection between any of these planes and S1. Clearly C is reducible and there
are two possible situations



1. C is completely reducible. In this case C is the product of three lines contained
in the surface. Call s and s′ the two lines different from r: s and s′ cannot
be Fq-rational since they do not fix the conjugates, so they are Fq2-rational.
From the fact that they are contained in S1 and they pass through conjugate
points we have that s′ = sq. From this fact we have that the number of Fq-
rational points on C \ r is 1 and that point is s ∩ s′.

2. C is the product of r and an irreducible conic D contained in the surface and
it contains exactly q points, see [11, Lemma 7.2.3]. In this case the number
of Fq rational points of D not contained in r is exactly q − 2.

From the analysis of the two possible cases, recalling that the maximum
number of lines contained in a cubic surface is 27 (see [14, Chapter IV]), the
first situation can happen at most in 13 cases. Putting together the previous
observations we have the following result.

Proposition 5. If S1 has two singular Fq2-rational conjugate points then

q2 − 14q + 39 ≤ |S1(Fq)| ≤ q2 − q. (8)

5.3 Three singular points

Call P1, P2 and P3 the singular points of S1, from Remark 3 we have the following
configurations:

(i) At least one among P1, P2 and P3 is Fq-rational;
(ii) P1, P2 and P3 are Fq3 -rational and conjugates.

If (i) happens then (7) holds, so our task now is to find a bound when (ii)
happens.

In order to get an estimation of |S1(Fq)| for (ii) we change the model of the
surface as the following proposition suggests.

Proposition 6. Let S be a cubic surface over P3(Fq), considered with projective
coordinates [r0 : r1 : r2 : T ], and such that it has exactly three conjugates Fq3-
rational double points, namely P1, P2 and P3. Then S is projectively equivalent
to the surface having affine equation, for certain β, γ ∈ Fq3

r0r1r2 + βr0r1 + βqr1r2 + βq2r0r2 + γr0 + γqr1 + γq
2

r2 = 0.



We want to reduce the problem of counting the points in the form (α, αq, αq2)
on the cubic surface to the problem of counting the points in the same form on
a certain quadric. To achieve the result we apply the Cremona transform, call
z1 := 1

r1
, z2 := 1

r2
and z3 := 1

r3
, dividing the equation of the surface by r1r2r3

we obtain

Q : βz3 + βqz1 + βq2z2 + γz2z3 + γqz1z3 + γq
2

z1z2 − 1 = 0.

Note that if γ = 0 then Q is a plane.

Proposition 7. The quadric surface Q is absolutely irreducible.

We want to count the points on the quadric Q in the form (δ, δq, δq
2

), where

δ ∈ Fq3 . Writing down δ on the normal basis B we get δ = w1α+w2α
q +w3α

q2 .
Taking w1, w2 and w3 as a set of variables (on Fq) we obtain a Fq-rational
quadric surface and its Fq-rational points are in one-to-one correspondence with
the searched ones. It is widely known (see [10, Section 15.3]) that, in this case

|S1(Fq)| = q2 + ηq + 1, η ∈ {0, 1, 2} (9)

since the quadric surface Q is irreducible.

5.4 Four singular points

Call P1, P2, P3 and P4 the singular points of S1, applying Remark 3 we have
the following possibilities:

(i) At least one among P1, P2, P3 and P4 is Fq-rational;
(ii) There are two couples of Fq2-rational and conjugates singular points.
(iii) P1, P2, P3 and P4 are Fq4 -rational and conjugates.

If (i) or (ii) hold then we have already found out a good bound before, the
last thing we have to do is show that (iii) never holds.

Proposition 8. Case (iii) never holds.

6 Case r = 3 and h = 3

Consider the case of the intersection over Fq3 between X and the curves y =
Ax3 + Bx2 + Cx+D, A,B,C,D ∈ Fq3 and A 6= 0. After doing similar compu-
tations to the ones done for the case r = 3 and h = 2 we arrive at the situation
in which the surface Ŝ2 has equation

X0X1X2 = AX3
0+AqX3

1+Aq2X3
2+BX2

0+BqX2
1+Bq2X2

2+CX0+CqX1+Cq2X2+E

where E = T(D). The reasonings done above can be completely extended if Ŝ1
is irreducible, so we claim the following result.

Theorem 5. Let r = h = 3 and consider the Fq-rational cubic surface Ŝ1 as-

sociated to the intersections between X and y = Ax3 + Bx2 + Cx+ D. If Ŝ1 is
irreducible then

|Ŝ1| ≤ q2 + 7q + 1



7 AG codes from the Norm-Trace curves

Consider the norm-trace curve over the field Fq3 : since r = 3 X has q2r−1 = q5

Fq-rational points in A2(Fq). We also know that LFq (2q2P∞) = {ay+ bx2 + cx+
d | a, b, c, d ∈ Fq3}. Considering the evaluation map

ev : LFq3
(2q2P∞) −→ (Fq3)q

5

f = ãy + b̃x2 + c̃x+ d̃ 7−→ (f(P1), . . . , f(PN ))

the associated one-point code will be C(D, 2q2P∞) = ev(LFq3
(2q2P∞)), where

the divisor D is the formal sum of all the q5-rational affine points of X . The
weight of a codeword associated to the evaluation of a function f ∈ LFq3

(2q2P∞)
corresponds to

w(ev(f)) = |X (Fq3)| − |{X (Fq3) ∩ {ãy + b̃x2 + c̃x+ d̃ = 0}}|.

1. If ã = 0 then we have to study the common zeroes of b̃x2 + c̃x+ d̃ and X .

(a) if b̃ = c̃ = d̃ = 0 then w(ev(f)) = 0;
(b) if b̃ = c̃ = 0 and d̃ 6= 0 then w(ev(f)) = q5;
(c) if b̃ = 0 and c̃ 6= 0 then w(ev(f)) = q5 − q2;
(d) if c̃ 6= 0 and c̃2 − 4b̃d̃ = 0 then w(ev(f)) = q5 − q2;
(e) otherwise w(ev(f)) = q5 − 2q2.

2. On the other hand, if ã 6= 0 then we have to study the common zeroes
between X and ãy + b̃x2 + c̃x+ d̃.

(a) if b̃ = c̃ = d̃ = 0 then w(ev(f)) = q5 − 1;
(b) if b̃ = c̃ = 0 and d̃ 6= 0 then w(ev(f)) = q5 − q2;
(c) if b̃ = 0 and c̃ 6= 0 then, applying Bézout theorem, we have that

w(ev(f)) ≥ q5 − (q2 + q + 1);
(d) otherwise, from what we said previously, w(ev(f)) ≥ q5 − (q2 + 7q + 1).

We can summarize our reasonings in the following result.

Theorem 6. Consider the norm-trace curve X over the field Fq3 , q ≥ 8, and
the AG code C = C(D, 2q2P∞) arising from X , where D =

∑
P∈X(Fq3)\P∞ P .

Let {Aw}0≤w≤q5 be the weight distribution of C, then the following results hold

(i) A0 = 1;
(ii) The minimum distance of C is q5 − 2q2;

(iii) If w > q5 − 2q2 and Aw 6= 0 then w ≥ q5 − q2 − 7q − 1;
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