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Abstract. For any admissible value of the parameters there exist Max-
imum Rank distance (shortly MRD) Fqn -linear codes of Fn×n

q (see Sub-
section 1.1 for the definition). It has been shown in [19] (see also [2]) that,
if field extensions large enough are considered, then almost all (rectangu-
lar) rank distance codes are MRD. On the other hand, very few families
of Fqn -linear codes are currently known up to equivalence. One of the
possible applications of MRD-codes is for McEliece–like public key cryp-
tosystems, as proposed by Gabidulin, Paramonov and Tretjakov in [8]. In
this framework it is very important to obtain new families of MRD-codes
endowed with fast decoding algorithms. Several decoding algorithms ex-
ist for Gabidulin codes as shown in [7], see also [15,20,24]. In this work,
we will survey the known families of Fqn -linear MRD-codes, study some
invariants of MRD-codes and evaluate their value for the known fami-
lies, providing a characterization of generalized twisted Gabidulin codes
as done in [9].

Keywords: Rank distance codes · Distinguishers · Linearized polyno-
mials.

1 Introduction

Delsarte [6] introduced rank-distance (RD) codes in 1978 as the q-analogs of the
usual linear error correcting codes endowed with Hamming distance. The set of
m × n matrices Fm×nq over Fq is a rank metric Fq-space where the rank metric
distance is given by

d(A,B) = rk (A−B)

for A,B ∈ Fm×nq .
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A subset C ⊆ Fm×nq is called a rank distance code (RD-code for short). The
minimum distance of C is

d(C) = min
A,B∈C, A 6=B

{d(A,B)}.

We say that C has parameters (n,m, q; d), where d is the minimum distance of C.
When C is an Fq-linear subspace of Fm×nq , we say that C is an Fq-linear RD-code
and its dimension dimFq

C is defined the dimension of C as a subspace over Fq.
In [6], Delsarte also showed that the parameters of these RD-codes must obey a
Singleton-like bound:

Theorem 1. Let C be an RD-code of Fm×nq and let d its minimum distance,
then

|C| ≤ qmax{m,n}(min{m,n}−d+1).

When the equality holds, C is a maximum rank distance (MRD for short)
code. Examples of MRD-codes were first found by Delsarte in [6] and rediscovered
by Gabidulin in [7] and by Roth in [22]. For m 6= n two RD-codes C and C′ are
said to be equivalent if and only if there exist X ∈ GL(m, q), Y ∈ GL(n, q),
Z ∈ Fm×nq and a field automorphism σ of Fq such that

C′ = {XCσY + Z : C ∈ C}.

When m = n we have two possible definitions:

1. C and C′ are equivalent if there are invertible matrices X,Y ∈ Fn×nq , Z ∈
Fn×nq and a field automorphism σ of Fq such that

C′ = {XCσY + Z : C ∈ C}.

2. C and C′ are equivalent if there are invertible matrices A,B ∈ Fn×nq , Z ∈
Fn×nq and a field automorphism σ of Fq such that

C′ = {XCσY + Z : C ∈ C} or C′ = {X(Ct)σY + Z : C ∈ C}.

From now on when we will talk about the equivalence between two RD-codes of
Fn×nq we will mean the first kind of equivalence mentioned above, otherwise we
will talk about strong equivalence. Clearly, when C and C′ are Fq-linear, we may
always assume that Z is the zero matrix. For further details on the equivalence
of RD-codes see also [1,18].

Let C ⊆ Fm×nq be an RD-code; the adjoint code of C is

C> = {Ct : C ∈ C}.

Consider the symmetric bilinear form 〈·, ·〉 on Fm×nq given by

〈M,N〉 = Tr(MN t).
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The Delsarte-dual code of an Fq-linear RD-code C is

C⊥ = {N ∈ Fm×nq : 〈M,N〉 = 0 for eachM ∈ C}.

By using the machinery of association schemes, Delsarte in [6] proved the
following result.

Lemma 1. [6, Theorem 5.5] Let C ⊆ Fm×nq be an Fq-linear MRD-code of di-

mension k with d > 1. Then the Delsarte dual code C⊥ ⊆ Fm×nq is an MRD-code
of dimension mn− k.

An elementary proof of the above result can be found in [21].

In general, it is difficult to determine whether two RD-codes are equivalent
or not. The notion of idealiser provides a useful criterion.

Let C ⊂ Fm×nq be an RD-code; its left and right idealisers L(C) and R(C) are
defined as

L(C) = {Y ∈ Fm×mq : Y C ∈ C for all C ∈ C}

R(C) = {Z ∈ Fn×nq : CZ ∈ C for all C ∈ C}.

These notions have been introduced by Liebhold and Nebe in [14, Definition
3.1]. The idealisers are subgroups of the automorphism group, which are easier
to calculate. Such sets appear also in the paper of Lunardon, Trombetti and
Zhou [16], where they are respectively called middle nucleus and right nucleus;
therein the authors investigate these sets and, in particular, prove the following
results.

Proposition 1. [16, Proposition 4.1] If C1 and C2 are equivalent Fq-linear RD-
codes of Fm×nq , then their left (resp. right) idealisers are also equivalent as RD-
codes.

Theorem 2. [16, Theorem 5.4 & Corollary 5.6] Let C be an Fq-linear MRD-
code of Fm×nq with minimum distance d > 1. If m ≤ n, then L(C) is a finite
field with |L(C)| ≤ qm. If m ≥ n, then R(C) is a finite field with |R(C)| ≤ qn. In
particular, when m = n then L(C) and R(C) are both finite fields.

1.1 Representation of RD-codes as q-polynomials

Any Fq-linear RD-code over Fq can be equivalently regarded either as a subspace
of matrices in Fm×nq or as a subspace of Hom(Vn, Vm). In the present section we
shall recall a specialized representation for these codes in terms of linearized
polynomials which we shall use in the rest of this abstract.

Consider two vector spaces Vn and Vm over Fq with dimension respectively
n and m. If n ≥ m we can always regard Vm as a subspace of Vn and identify
Hom(Vn, Vm) with the subspace of those ϕ ∈ Hom(Vn, Vn) such that Im(ϕ) ⊆
Vm. Also, Vn ∼= Fqn , when Fqn is considered as an Fq-vector space of dimension
n. Let now Homq(Fqn) := Homq(Fqn ,Fqn) be the set of all Fq–linear maps of Fqn
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in itself. It is well known that each element of Homq(Fqn) can be represented in
a unique way as a q–polynomial over Fqn ; see e.g. [13]. In other words, for any
ϕ ∈ Homq(Fqn) there is an unique polynomial f(x) of the form

f(x) :=

n−1∑
i=0

aix
qi

with ai ∈ Fqn such that

∀x ∈ Fqn : ϕ(x) = f(x) = a0x+ a1x
q + · · ·+ an−1x

qn−1

.

The set L̃n,q of such q-polynomials over Fqn is a vector space over Fqn of di-
mension n with respect to the usual sum and scalar multiplication. When it
is regarded as a vector space over Fq, its dimension is n2 and it is isomorphic

to Fn×nq . Actually, L̃n,q endowed with the product ◦ induced by the functional
composition in Homq(Fqn) is an algebra over Fq.

Using the above remarks, it is straightforward to see that any Fq-linear RD-

code might be regarded as a suitable Fq-subspace of L̃n,q, when m = n. This
approach shall be extensively used in the present work. In order to fix the no-
tation and ease the reader, we shall reformulate some of the notions recalled
before in terms of q-polynomials. Also, in the remainder of this work we shall
always silently identify the elements of L̃n,q with the morphisms of Homq(Fqn)
they represent and speak also of kernel and rank of a linearized polynomial.

The notion of Delsarte dual code can be written in terms of q-polynomials as
follows, see for example [17, Section 2]. Let b : L̃n,q × L̃n,q → Fq be the bilinear
form given by

b(f, g) = Trqn/q

(
n−1∑
i=0

figi

)

where f(x) =

n−1∑
i=0

fix
qi and g(x) =

n−1∑
i=0

gix
qi ∈ Fqn [x] and denote by Trqn/q the

trace function Fqn → Fq. The Delsarte dual code C⊥ of a set of q-polynomials C
is

C⊥ = {f ∈ L̃n,q : b(f, g) = 0, ∀g ∈ C}.
The adjoint code C> of a set of q-polynomials C is

C> = {f̂ ∈ L̃n,q : f ∈ C},

where f̂ is the adjoint of f(x) with respect to the bilinear form b.
Also, two RD-codes C and C′ are equivalent if and only if there exist two

invertible q-polynomials h and g and a field automorphism σ such that {h ◦ fσ ◦

g : f ∈ C} = C′, where if f(x) =

n−1∑
i=0

aix
qi then fσ(x) =

n−1∑
i=0

aσi x
qi ; furthermore,

C and C′ are strongly equivalent if and only if C′ is equivalent to either C or to
C>.



Fqn -linear rank distance codes and their distinguishers 5

The left and right idealisers of a code C ⊆ L̃n,q can be written as

L(C) = {ϕ(x) ∈ L̃n,q : ϕ ◦ f ∈ C for all f ∈ C};

R(C) = {ϕ(x) ∈ L̃n,q : f ◦ ϕ ∈ C for all f ∈ C}.

Let C be an Fq-linear MRD-code of dimension nk with parameters (n, n, q;n−
k+ 1). If L(C) has maximum cardinality qn, then we may always assume (up to
equivalence) that

L(C) = Fn = {τα = αx : α ∈ Fqn} ' Fqn ;

the same holds for the right idealiser (see e.g. [11]).
Hence, when the left idealiser is Fn, C turns out to be closed with respect to

the left composition with Fqn -linear maps, while if the right idealiser is Fn, then
C is closed with respect to the right composition with the Fqn -linear maps. For
this reason, when L(C) (resp. R(C)) is equal to Fn we say that C is Fqn -linear on
the left (resp. right) (or simply Fqn -linear if it is clear from the context). In the
literature it is quite common to find the term Fqn-linear instead of Fqn -linear on
the left. We can state the following result.

Proposition 2. [3, Theorem 6.1][4, Theorem 2.2] Let C be an Fq-linear MRD-
code of dimension nk with parameters (n, n, q;n−k+1). Then L(C) (resp. R(C))
has maximum order qn if and only if there exists an MRD-code C′ equivalent to
C which is Fqn-linear on the left (resp. on the right).

For more details see also [25].

2 Known examples of Fqn-linear MRD-codes

This section is devoted to list the known examples of MRD-codes, by using
their representation as sets of linearized polynomials of L̃n,q. In [6], Delsarte
gives the first construction for linear MRD-codes (he calls such sets Singleton
systems) from the perspective of bilinear forms. Few years later, Gabidulin in [7,
Section 4] presents the same class of MRD-codes by using linearized polynomials.
Although these codes have been originally discovered by Delsarte, they are called
Gabidulin codes and they can be written as follows

Gk = 〈x, xq, . . . , xq
k−1

〉Fqn
,

with k ≤ n− 1. Kshevetskiy and Gabidulin in [12] generalize the previous con-
struction obtaining the so-called generalized Gabidulin codes

Gk,s = 〈x, xq
s

, . . . , xq
s(k−1)

〉Fqn
,

with gcd(s, n) = 1 and k ≤ n−1. Gk,s is an Fq-linear MRD-code with parameters
(n, n, q;n− k+ 1) and L(Gk,s) = R(Gk,s) ' Fqn , see [14, Lemma 4.1 & Theorem
4.5] and [18, Theorem IV.4]. Note that, as proved in [7,12], this family is closed
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by the Delsarte duality and by the adjoint operation, more precisely G⊥k,s is

equivalent to Gn−k,s and G>k,s is equivalent to itself.
More recently, Sheekey in [23] proves that with gcd(s, n) = 1, the set

Hk,s(η, h) = {a0x+ a1x
qs + . . .+ ak−1x

qs(k−1)

+ aq
h

0 ηxq
sk

: ai ∈ Fqn},

with k ≤ n− 1 and η ∈ Fqn such that Nqn/q(η) 6= (−1)nk, is an Fq-linear MRD-
code of dimension nk with parameters (n, n, q;n − k + 1). This code is called
generalized twisted Gabidulin code. Lunardon, Trombetti and Zhou in [17], gen-
eralizing the results of [23], determined the automorphism group of the general-
ized twisted Gabidulin codes and proved that, up to equivalence, the generalized
Gabidulin codes and the twisted Gabidulin codes are both proper subsets of this
class. Clearly, for η = 0 we have exactly the generalized Gabidulin code Gk,s.
Also, the authors in [17, Corollary 5.2] determined the left and right idealisers:
if η 6= 0, then

L(Hk,s(η, h)) ' Fqgcd(n,h) and R(Hk,s(η, h)) ' Fqgcd(n,sk−h) . (1)

The class of generalized twisted Gabidulin codes is closed by Delsarte dual-
ity and by the adjoint operation, more precisely Hk,s(η, h)⊥ is equivalent to
Hn−k,s(−η, n− h) and Hk,s(η, h)> is equivalent to Hk,s(1/η, sk − h), [23, The-
orem 6] and [17, Propositions 4.2 & 4.3]. We are interested to the case in which
h = 0, i.e.

Hk,s(η) := Hk,s(η, 0) = 〈x+ ηxq
sk

, xq
s

, . . . , xq
s(k−1)

〉Fqn
,

which is Fqn -linear (more precisely it is an Fq-linear MRD-codes Fqn -linear on the
left). Apart from the two infinite families of Fq-linear MRD-codes Fqn -linear on
the left (Gk,s andHk,s(η)), there are a few other examples known for n ∈ {6, 7, 8}.

– In [3], Csajbók, Marino, Polverino and Zanella prove the following results
• for q > 4 it is always possible to find δ ∈ Fq2 such that the set

C1 = 〈x, δxq + xq
4

〉Fq6

is an MRD-code with parameters (6, 6, q; 5), [3, Theorem 7.1]. Its Del-
sarte dual code is equivalent to

D1 = 〈xq, xq
2

, xq
4

, x− δqxq
3

〉Fq6
,

whose parameters are (6, 6, q; 3);
• for q odd and δ ∈ Fq8 such that δ2 = −1 the set

C2 = 〈x, δxq + xq
5

〉Fq8

is an MRD-code with parameters (8, 8, q; 7), [3, Theorem 7.2]. Its Del-
sarte dual code is is equivalent to

D2 = 〈xq, xq
2

, xq
3

, xq
5

, xq
6

, x− δxq
4

〉Fq8
,

whose parameters are (8, 8, q; 3).
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– In [4], Csajbók, Marino, Polverino and Zhou prove the following results
• for q odd and gcd(s, 7) = 1 the set

C3 = 〈x, xq
s

, xq
3s

〉Fq7

is an MRD-code with parameters (7, 7, q; 5), [4, Theorem 3.3]. Its Del-
sarte dual code is equivalent to

D3 = 〈x, xq
2s

, xq
3s

, xq
4s

〉Fq7
,

whose parameters are (7, 7, q; 4);
• for q ≡ 1 (mod 3) and gcd(s, 8) = 1 the set

C4 = 〈x, xq
s

, xq
3s

〉Fq8

is an MRD-code with parameters (8, 8, q; 6), [4, Theorem 3.5]. Its Del-
sarte dual code is is equivalent to

D4 = 〈x, xq
2s

, xq
3s

, xq
4s

, xq
5s

〉Fq8

whose parameters are (8, 8, q; 4).
– In [5] Csajbók, Marino and Zullo prove that for q odd, δ2 + δ = 1 and
q ≡ 0,±1 (mod 5)

C5 = 〈x, xq + xq
3

+ δxq
5

〉Fq6

is an MRD-code with parameters (6, 6, q; 5), [5, Theorem 6.1]. Its Delsarte
dual code is is equivalent to

D5 = 〈xq, xq
3

, x− xq
2

, xq
4

− δx〉Fq6

and it has parameters (6, 6, q; 3).

3 Characterization of generalized twisted Gabidulin
codes

In this section, we shall deal with Fq-linear MRD-codes Fqn -linear on the left;
hence from now on we will refer to them just as Fqn-linear MRD-codes. Also,

we may always assume that C ⊆ L̃n,q and that L(C) = {αx : α ∈ Fqn}. So, if k
is the dimension of C over L(C), we have that

C = 〈f1(x), . . . , fk(x)〉Fqn
,

for some f1(x), . . . , fk(x) ∈ L̃n,q.
Horlemann-Trautmann and Marshall in [10] prove the following character-

ization of generalized Gabidulin codes. In the original version, this result was
formulated regarding RD-codes as subsets of Fnqm ; here we rewrite it in the con-

text of linearized polynomials with C ⊆ L̃n,q.
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Theorem 3. [10, Theorem 4.8] An Fqn-linear MRD-code C ⊆ L̃n,q having di-
mension k is equivalent to a generalized Gabidulin code Gk,s if and only if there
is an integer s < n with gcd(s, n) = 1 and dimFqn

(C ∩ C[s]) = k − 1, where

C[s] = {f(x)[s] : f(x) ∈ C}, denoting by [s] the power qs.

Consider the subfamily of Fqn -linear generalized twisted Gabidulin codes

Hk,s(η) = Hk,s(η, 0) = 〈x+ ηx[sk], x[s], . . . , x[s(k−1)]〉Fqn
,

with η 6= 0. Note that if C ⊆ L̃n,q is an Fqn -linear MRD-code of dimension
k equivalent to a generalized twisted Gabidulin code Hk,s(η) with η 6= 0, then
dimFqn

(C∩C[s]) = k−2. This condition, in general, is not enough to characterize
MRD-codes equivalent to Hk,s(η). In [9], we determine what further conditions
are necessary for a characterization in the spirit of Theorem 3, proving the
following result.

Theorem 4. [9, Theorem 3.9] Let C be a k-dimensional Fqn-linear MRD-code

with k > 2 contained in L̃n,q. Then, the code C is equivalent to a generalized
twisted Gabidulin code if and only if there exists an integer s such that gcd(s, n) =
1 and such that the following two conditions hold

1. dim(C ∩ C[s]) = k − 2 and dim(C ∩ C[s] ∩ C[2s]) = k − 3, i.e. there exist
p(x), q(x) ∈ L̃n,q such that

C = 〈p(x)[s], p(x)[2s], . . . , p(x)[s(k−1)]〉Fqn
⊕ 〈q(x)〉Fqn

;

2. p(x) is invertible and there exists η ∈ F∗qn such that p(x) + ηp(x)[sk] ∈ C.

4 Distinguishers for RD-codes

A distinguisher is an easy to compute function which allows to identify an ob-
ject in a family of (apparently) similar ones. Existence of distinguishers is of
particular interest for cryptographic applications, as it makes possible to iden-
tify a candidate encryption from a random text. Here, we shall present some
new distinguishers for rank metric codes.

As seen in the previous section, it has been shown in [10] that an MRD-code
C of parameters [n, k], i.e a k-dimensional MRD-code of L̃n,q, is equivalent to a
generalized Gabidulin code if, and only if, there exists a positive integer s such
that gcd(s, n) = 1 and dim(C ∩ C[s]) = k − 1. Following the approach of [10], we
define for any RD-code C ⊆ L̃n,q the number

h(C) := max{dim(C ∩ C[j]) : j = 1, . . . , n− 1; gcd(j, n) = 1}. (2)

Theorem 3 states that an MRD-code C is equivalent to a generalized Gabidulin
code if and only if h(C) = k − 1.

We now define also the Gabidulin index, ind(C) of a [n, k] RD-code as the
maximum dimension of a subcode G ≤ C contained in C with G equivalent to a
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generalized Gabidulin code. Note that the Gabidulin index is an invariant with
respect to strong equivalence since G>k,s ' Gk,s.

In [9], we determine these indexes for each known Fqn-linear MRD-code. Our
result is contained in Table 1 and it is of interest since it can be used for the
equivalence issue. Note that in Table 1, ind, h and R denote, respectively, the
Gabidulin index, the value defined in (2) and the right idealiser.

Code ind h R [n, k]

Gk,s k k − 1 Fqn [n, k]

Hk,s(η) k − 1 k − 2 Fgcd(n,k)
q [n, k]

C1 1 0 Fq3 [6, 2]

C2 1 0 Fq4 [8, 2]

C3 2 1 Fq7 [7, 3]

C4 2 1 Fq8 [8, 3]

C5 1 0 Fq2 [6, 2]

Code ind h R [n, k]

D1 2 2 Fq3 [6, 4]

D2 3 4 Fq4 [8, 6]

D3 3 2 Fq7 [7, 4]

D4 4 3 Fq8 [8, 5]

D5 2 2 Fq2 [6, 4]

Table 1. Known linear MRD-codes and their distinguishers

Clearly, the Gabidulin index may be defined also in the case in which the
code considered is not Fqn -linear.

For instance, we get the following.

Theorem 5. Let n, s be positive integers such that gcd(s, n) = 1. Let k ≤ n− 1
and η ∈ F∗qn such that Nqn/q(η) 6= (−1)nk, then Hk,s(η, h) has Gabidulin index
equals to k − 1.

Proof. As recalled in Section 2,

Hk,s(η, h) = {a0x+ a1x
qs + . . .+ ak−1x

qs(k−1)

+ aq
h

0 ηxq
sk

: ai ∈ Fqn},

and since η 6= 0, it is not equivalent to any generalized Gabidulin code. Hence,
ind(Hk,s(η, h)) < k. Also, it contains G′, where

G′ = {a1xq
s

+ . . .+ ak−1x
qs(k−1)

: ai ∈ Fqn} ' Gk−1,s.

Hence, ind(Hk,s(η, h)) = k − 1.

We aim to continue in investigating such kind of results.
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