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Abstract. We introduce a linear programming framework for obtaining
upper bounds for potential energy of spherical codes of fixed cardinality
and minimum distance. Using Hermite interpolation we construct poly-
nomials to derive corresponding bounds. Our bounds are universal in the
sense that they are valid for all absolutely monotone potential functions
as the required interpolation nodes do not depend on the potentials.

1 Introduction

Let Sn−1 denote the unit sphere in Rn and C ⊂ Sn−1 be a spherical code. Given
an (extended real-valued) function h(t) : [−1, 1]→ [0,+∞], the potential energy
(or h-energy) of C is given by

Eh(C) :=
∑

x,y∈C,x 6=y

h(〈x, y〉), (1)

where 〈x, y〉 denotes the usual inner product of x and y.
Denote by

C(n,M, s) := {C ⊂ Sn−1 : |C| = M, s(C) = s}
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the family of all spherical codes on Sn−1 of given cardinality M and given maxi-
mal inner product s(C) = max{〈x, y〉 : x, y ∈ C, x 6= y}. Equivalently, minimum
distance d(C) = min{d(x, y) : x, y ∈ C, x 6= y} is investigated in coding theory.

Given, n, M , s, and h(t), we are interested in upper bounds on the quantity

Gh(n,M, s) := sup
C∈C(n,M,s)

{Eh(C)}. (2)

Hereafter we consider only absolutely monotone potentials h(t); i.e. real valued
extended functions h(t) : [−1, 1] → (0,+∞] such that h(k)(t) ≥ 0 for every
t ∈ [−1, 1) and every integer k ≥ 0, and h(1) = limt→1− h(t). Among the more
prominent absolutely monotone potentials we list the Newton potential (when
h(t) = [2(1− t)]1−n/2); the Riesz potential (when h(t) = [2(1− t)]−α/2, α > 0);
the Exponential potential (when h(t) = e−2α(1−t)); and the Logarithmic potential
(when h(t) = − log[2(1− t)]).

In this article a general linear programming bound in the spirit of the Delsarte-
Yudin approach is proposed for obtaining upper bounds on Gh(n,M, s). Polyno-
mials which work in wide areas are constructed and tested in cases where good
codes are known. We point out that upper bounds on the minimal energy for
Riesz (0 < α < 2) and Logarithmic potentials on S2 have been considered by G.
Wagner in [10].

2 Linear programming for upper bounds for Gh(n,M, s)

Let P
(n)
i (t), i = 0, 1, . . ., be the Gegenbauer polynomials normalized by P

(n)
i (1) =

1. Denote by Un,s;h the set of the real polynomials which satisfy the following
two conditions:

(F1) f(t) ≥ h(t) for every t ∈ [−1, s];

(F2) the coefficients in the expansion f(t) =
∑r
i=0 fiP

(n)
i (t) in terms of

Gegenbauer polynomials satisfy fi ≤ 0 for i = 1, . . . , r.
Upper bounds for the quantity Gh(n,M, s) can be obtained by the following

linear programming theorem.

Theorem 1. Let n ≥ 3, M ≥ 2 be positive integers, s ∈ [−1, 1), and h(t) be a
function defined on [−1, 1). If f ∈ Un,s;h, then Gh(n,M, s) ≤M(f0M − f(1)).

Proof. For a spherical code C ∈ C(n,M, s) and a polynomial f ∈ Un,s;h we
consider the identity

f(1)M +
∑
x∈C

∑
y∈C\{x}

f(〈x, y〉) = f0M
2 +

deg(f)∑
i=1

fiMi(C), (3)

where Mi(C) =
∑
x,y∈C P

(n)
i (〈x, y〉) ≥ 0 are the moments of C (see, for example

[2]). Then (F1) together with s(C) = s imply that the the left hand side of
(3) is at least Mf(1) + Eh(C) and (F2) together with Mi ≥ 0 for all i give
that the right hand side is at most M2f0. Therefore Eh(C) ≤ M(f0M − f(1)).
Since these estimations are valid for every code C ∈ C(n,M, s) we conclude that
Gh(n,M, s) ≤M(f0M − f(1)).



3 Construction and investigation of polynomials for
Theorem 1

3.1 Levenshtein framework parameters

It is customary in this field to use certain parameters which were introduced by
Levenshtein in [7] (see also [8, Section 5]) and generalized in [2] by the notion of
a 1/N -quadrature rule over subspaces.

Definition 1. A finite sequence of ordered pairs {(αi, ρi)}ki=1, −1 ≤ α1 < α2 <
· · · < αk < 1, ρi > 0 for i = 1, 2, . . . , k, forms a 1/N -quadrature rule, N > 0,
that is exact for the subspace Λ ⊂ C[−1, 1] if

f0 = γn

∫ 1

−1
f(t)(1− t2)(n−3)/2dt =

f(1)

N
+

k∑
i=1

ρif(αi), (4)

for all f ∈ Λ.

Levenshtein’s Theorem 5.39 in [8] defines a Gauss-Jacobi quadrature formula
which is a 1/Lm(n, s)-quadrature rule exact for the subspace of real polynomials
of degree at most m. Hereafter Lm(n, s), m = 1, 2, . . ., is the Levenshtein up-
per bound on the maximal possible cardinality of spherical codes on Sn−1 with
s(C) = s.

The nodes in the Levenshtein’s 1/Lm(n, s)-quadrature rule are the roots of

certain polynomial f
(n,s)
m (t) of degree m (see [8, Theorem 5.39]). The explicit

form of f
(n,s)
m (t) can be found for example in [7, Eqs. (1.35-36)] or [8, Eq. (3.82)].

3.2 Construction of working polynomials

Denote by T the multiset of the roots of f
(n,s)
m (t); i.e.,

T =

{
{α0, α0, α1, α1, . . . , αk−2, αk−2, αk−1} if m = 2k − 1

{−1, α1, α1, α2, α2, . . . , αk−1, αk−1, αk} if m = 2k
,

where −1 < αi < αi+1 for every i and s is equal to αk−1 for m = 2k − 1 and to
αk for m = 2k.

Let n, M and s be such that the set C(n,M, s) is nonempty. We consider
the polynomial

f(t) := −αf (n,s)m (t) +Hh,T (t) =

m∑
i=0

fiP
(n)
i (t), (5)

where α > 0 is a parameter (to be determined later) and Hh,T (t) is the Hermite
interpolation polynomial to the function h(t) that agrees with h(t) exactly in
the points of T (counted with their multiplicities). Note that the degree of g(t)
is at most m− 1.



Theorem 2. Let h(t) be absolutely monotone. We have f(t) ∈ Un,s;h for any
large enough α, where f(t) is defined as in (5). In particular, if

α = max

{
gi
`i

: 1 ≤ i ≤ m− 1

}
,

then f(t) ∈ Un,s;h and

Gh(n,M, s) ≤M(f0M − f(1)).

A code C ∈ C(n,M, s) attains this bound if and only if all inner products of C
are in T and fiMi = 0 for every i ≥ 1.

Proof. The absolute monotonicity of h(t) and the interpolation conditions for

g(t) imply that g(t) ≥ h(t) for t ∈ [−1, s]. Since f
(n,s)
m (t) ≤ 0 for t ∈ [−1, s]

and f(αi) = g(αi) = h(αi) for every i (note also that f ′(αi) = g′(αi) = h′(αi)

in the double roots of f
(n,s)
m (t)), if follows from (5) that f(t) ≥ h(t) for every

t ∈ [−1, s]; i.e. (F1) is satisfied (whatever α > 0 is).
For (F2), observe that (5) implies that the coefficients fi, i = 1, 2, . . . ,m− 1,

in the Gegenbauer expansion of f(t) are linear combinations −α`i + gi, where

f
(n,s)
m (t) =

∑m
i=0 `iP

(n)
i (t) and g(t) =

∑m−1
i=0 giP

(n)
i (t). Since `i > 0 for every i

(see, for example, [8, Theorem 5.42]) it is clear that large enough α will make
fi ≤ 0 for every 1 ≤ i ≤ m − 1. The inequality fi < 0 follows for every α > 0
since deg(F ) = m and deg(g) = m− 1.

Since f0M − f(1) is a linear function of α, the conditions −α`i + gi ≤ 0
for i = 1, 2, . . . ,m − 1 imply that the smallest value of α which works is α =

max
{
gi
`i

: 1 ≤ i ≤ m− 1
}

. Moreover, the corresponding bound Gh(n,M, s) ≤
M(f0M − f(1)) will be best possible from this kind of f . This completes the
proof.

Remark 1. Our numerical experiments suggest that the maximum for the pa-
rameter α in Theorem 2 is always attained at i = 1.

Remark 2. Construction with g(t) of degree m is also possible by adding inter-
polation note at −1 for odd m and s for even m. Such approach gives sometimes
slightly better bounds.

3.3 Investigation

We proceed with a representation of the bound from Theorem 2 in a ULB-form
(see [2]) which may facilitate some further analysis. For simplicity we describe
the odd case m = 2k − 1 only.

Set M1 := L2k−1(n, s). The number M1 is not necessarily integer but the
inequality M1 ≥M follows. Indeed, if M > M1 is true, then the monotonicity of
the Levenshtien bound implies s(C) > s, which contradicts to C ∈ C(n,M, s).



Assume again that α is large enough as above for (F2) to be satisfied and
express f0 by the Levenshtein’s 1/M1-quadrature rule. This gives

Gh(n,M, s) ≤M(f0M − f(1)) = M

(
M

(
f(1)

M1
+

k−1∑
i=0

ρif(αi)

)
− f(1)

)

= M

(
M

M1
− 1

)
f(1) +M2

k−1∑
i=0

ρif(αi)

= M

(
M

M1
− 1

)
f(1) +M2

k−1∑
i=0

ρih(αi),

where the last equality follows by using the interpolation conditions f(αi) =
h(αi), i = 0, 1, . . . , k − 1. The dependence of this bound on α comes from f(1)
only. Since f(1) is linear with respect to α, the best bound is obtained again, of
course, when α is chosen as in Theorem 2.

In the end of this section we put together the upper bound from Theorem
2 and the universal lower bound from [2]. We start now with M = Lm(n, r)
for a unique r (the uniqueness follows from the monotonicity of the Levenshtein

bounds). Let the polynomial f
(n,r)
2k−1(t) have roots α′0 < α′1 < · · · < α′k−1 = r with

corresponding weights ρ′0, ρ
′
1, . . . , ρ

′
k−1 in the Levenshtein’s 1/M -quadrature rule.

Then the energy of any code C ⊂ Sn−1 with cardinality |C| = M is bounded
from below by

Eh(C) ≥M2
k−1∑
i=0

ρ′ih(α′i)

(see [2, Theorem 3.1]). This, together with the bound from Theorem 2 implies

M2
k−1∑
i=0

ρ′ih(α′i) ≤ Eh(C) ≤M
(
M

M1
− 1

)
f(1) +M2

k−1∑
i=0

ρih(αi), (6)

defining a strip where the energies of all codes from C(n,M, s) lie and, in par-
ticular, a lower bound on Gh(n,M, s). Of course, lower bounds for Gh(n,M, s)
can be extracted also from constructions of good codes.

It is clear from the above that M = M1 implies the coincidence of the
upper and lower bounds in (6). In this case the corresponding codes are sharp
configurations (also universally optimal codes; see [5]) which means that they
attain simultaneously the Levenshtein bound, the ULB bound [2] and the upper
bound from Theorem 2.

4 Bounds for (n,M) = (n, 2n + 1) codes

It is natural to consider upper bounds for parameters where good codes are
known. Here we show how our bound behaves for spherical codes Cn ⊂ Sn−1
with M = 2n + 1 points constructed in [6]. These codes are conjectured to be



optimal (see [1, Section 3.3]) but this is proved in dimensions 3 [9] and 4 [11]
only.

The maximal inner product of Cn is equal to the unique root s ∈ (0, 1/n) of
the equation

n(n− 2)2X3 − n2X2 − nX + 1 = 0.

These parameters are in the region of the third Levenshtein bound; i.e., we use
m = 3.

The universal lower bound [2] with parameters coming from L3(n, r) = M
as in the last paragraph of the previous section is

Rh(n, 2n+ 1) := M2 (ρ′0h(α′0) + ρ′1h(r)) . (7)

To obtain upper bounds for Gh(n,M, s) we consider the corresponding Lev-

enshtein polynomial f
(n,s)
3 (t) with zeros α0 (double) and α1 = s (simple). Then

T = {α0, α0, α1} and g(t) := Hh,T (t) is the second degree interpolant to h in
the nodes α0 (doubly) and α1. The polynomial from (5) is

f(t) = −αf (n,s)3 (t) + g(t) =

3∑
i=0

fiP
(n)
i (t)

where α > 0 has to be chosen to ensure f1 ≤ 0 and f2 ≤ 0 (f3 < 0 follows for
every α > 0).

Here are the numerical results for n = 5, M = 2n+ 1 = 11 and s ≈ 0.13285
with the Newton potential h(t) = 1/(2− 2t)(n−2)/2.

The lower bound from (7) is

Rh(5, 11) = 112(ρ′0h(α′0) + ρ′1h(α′1)) ≈ 37.484.

For the construction of the upper bound we find f
(5,s)
3 (t) with roots (α0, α1 =

s) ≈ (−0.68069, 0.13285) and

g(t) = H(h;α0, α0, α1) ≈ 0.23835t2 + 0.46931t+ 0.37128.

Then we search for α to satisfy the conditions fi ≤ 0 for i = 1, 2, 3. The com-
putations show that all α ≥ 0.661 work as best the upper bound ≈ 41.906 from
Theorem 2 (also the upper bound in (6)) is obtained with the smallest possible
α = g1/`1 ≈ 0.661. For the representation of the upper bound in (6) we compute
M1 = L3(5, s) ≈ 13.3014 and

Gh(n,M, s) ≤ 11

(
11

M1
− 1

)
f(1) + 112 (ρ0h(α0) + ρ1h(s)) . (8)

The Newton energy of the code C5 is

Eh(C5) = (3n2 − n)h(s) + (n2 − n)h(a) + 2nh(b) + 2nh(c) ≈ 39.0225,

where a ≈ −0.22793, b ≈ −0.553428, and c ≈ −0.89904. The best known (for the
minimum Newton energy problem) code of 11 points on S4 has energy ≈ 38.0544
[1].



5 Conclusion and future work

The conditions of attaining the bound of Theorem 2 lead to the usual suspects –
the universally optimal configurations [5]. In a broader view, our upper bounds
set the range of all possible energies (or energy levels) of good spherical codes.
Thus we impose restrictions on the structure of such code which could be useful
for obtaining classification (or nonexistence) results.

It is also interesting if the optimality condition f1 = 0 (see Remark 1) is true
for every absolutely monotone potential function h(t).

One more interesting object for investigation is the 600-cell in four dimensions
which is an exceptional case among the universally optimal configurations (see
[5, 4]). Here we expect to derive upper bound of next level.
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