
On equivalence between some families of APN
functions

Lilya Budaghyan, Marco Calderini, and Irene Villa

Department of informatics, University of Bergen
{lilya.budaghyan, marco.calderini, irene.villa}@uib.no

Abstract. We prove that two families among the known APN polyno-
mial functions are equivalent to the hexanomials family introduced by
Budaghyan and Carlet in 2008. By that we reduce the list of known fam-
ilies of APN functions to those strictly inequivalent to each other.
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1 Introduction

Let n and m be two positive integers, an (n,m)-function, or vectorial Boolean
function, is a function F from the finite field F2n with 2n elements to the finite
field F2m with 2m elements. When m = 1 such functions are simply called
Boolean functions. Boolean functions and vectorial Boolean functions have been
intensively studied due to the large number of applications both in mathematics
and computer science. In particular, they have a crucial role in the design of
secure cryptographic primitives, such as block ciphers. In this context, vectorial
Boolean functions are also called S-boxes.

The differential attack, introduced by Biham and Shamir [1], is among the
most efficient attacks on block cipher. To measure the resistance of an S-box
to this attack, in [15], Nyberg introduced the notion of differential uniformity.
A vectorial Boolean function F is called differentially δ-uniform if the equation
F (x) + F (x + a) = b has at most δ solutions for any non-zero a and for all b.
The smallest possible values for δ is 2, and functions achieving such differential
uniformity are called almost perfect nonlinear (APN).

Boolean function used in cryptography must have low differential uniformity.
For this reason, functions with low differential uniformity, and in particular APN
functions are an important domain of research for symmetric cryptography.

The differential uniformity, and thus the APN property, is preserved by some
transformations of functions, which define equivalence relations between vecto-
rial Boolean functions. Two of these equivalence notions are, the extended affine
equivalence (EA-equivalence) and Carlet-Charpin-Zinoviev equivalence (CCZ-
equivalence). EA-equivalence is a particular case of CCZ-equivalence, which is
the more general known equivalence relation preserving the differential unifor-
mity.



An important aspect of the study and the analysis of APN functions, and
vectorial Boolean functions in general, is their classification with respect to these
equivalence relations. Classifications of APN functions is a hard problem and a
complete classification is only known for n ≤ 5 [5]. There are only few infinite
classes of APN functions known and among them six are power functions. In
recent years, some newly constructed families of APN polynomials have not
been checked for equivalence to already known classes.

In this work we reduce the list of known families of polynomial APN functions
by excluding all equivalent cases. Indeed, we show that the class of trinomial
APN functions introduced in [7] and the class of multinomials studied in [2]
are equivalent. Finally we show that both these classes can be reduced to the
hexanomials introduced in [7]. According to the table of all CCZ-inequivalent
functions which arise from known APN families (in dimensions up to 11) [12],
the remained families of APN functions are pairwise inequivalent in general. We
present a complete list of the known families of APN polynomials, which are
pairwise CCZ-inequivalent, in Table 3.

2 Preliminaries

Let F2n [x] be the univariate polynomial ring defined over F2n . Any function
F : F2n → F2n can be represented by a univariate polynomial of degree at most
2n − 1 in F2n [x], that is

F (x) =

2n−1∑
i=0

cix
i, ci ∈ F2n .

The algebraic degree of a function F is equal to the maximum 2-weight of the
exponent i such that ci 6= 0, where the 2-weight of i is the (Hamming) weight
of its binary representation. Functions of algebraic degree 1 are called affine
and of degree 2 quadratic. Affine functions without the constant term are linear
functions and they can be represented as L(x) =

∑n−1
i=0 cix

2i .

We will denote the trace function from F2n to F2m by Trmn (x) =
∑n/m−1
i=0 x2

im

.
When m = 1 we denote Tr1n(x) by Tr(x).

The derivative of F in the direction of a ∈ F∗2n is given by the function
DaF (x) = F (x+ a) +F (x). The function F is APN if for every a 6= 0 and every
b in F2n , the equation DaF (x) = b admits at most 2 solutions, or equivalently
|Im(DaF )| = 2n−1, where Im(F ) = {F (x) |x ∈ F2n} is the image of F .

There are several equivalence relations of functions for which the APN prop-
erty is preserved. Two functions F and F ′ from F2n to itself are called:

– affine equivalent if F ′ = A1 ◦ F ◦ A2 where A1, A2 : F2n → F2n are affine
permutations;

– EA-equivalent if F ′ = F ′′ + A, where the map A : F2n → F2n is affine and
F ′′ is affine equivalent to F ;



– CCZ-equivalent if there exists some affine permutation L of F2n × F2n such
that the image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ ,
where GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

The affine equivalence is, obviously, included in the EA-equivalence, and
EA-equivalence is a particular case of CCZ-equivalence [13]. Moreover, every
permutation is CCZ-equivalent to its inverse [13].

There are six known infinite families of power APN functions presented in Ta-
ble 1. Some results on CCZ-inequivalence between the functions in Table 1 were

Table 1. Known APN power functions xd over F2n

Functions Exponents d Conditions Degree

Golden 2i + 1 gcd(i, n)=1 2

Kasami 22i − 2i + 1 gcd(i, n)=1 i+1

Welch 2t + 3 n = 2t+ 1 3

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 t+2

2

2t + 2
3t+1

2 − 1, t odd t+1

Inverse 22t − 1 n = 2t+ 1 n− 1

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3

proven in [9]. Recently, in both [16] and [14] Yoshiara and Dempwolff show that
two APN power functions are CCZ-equivalent if and only if they are cyclotomic-
equivalent, i.e. they are EA-equivalent or one is EA-equivalent to the inverse of
the second one. Since the algebraic degree is preserved by the EA-equivalence,
and families in Table 1 have different algebraic degree in general, then all these
families differ up to CCZ-equivalence (although they can intersect in some par-
ticular cases).

There are also thirteen known infinite families of quadratic APN polynomials
CCZ-inequivalent to power functions listed in Table 2.

3 Equivalence between known families

In this section we will show that families C3 and C11 in Table 2 are equivalent
and they are included in family C4.

In [12], the authors present a table of all possible pairwise CCZ-inequivalent
functions which can be derived from the known families of APN functions, up to
dimension n = 11. According to this table, families C3 and C11 are the same on
small dimensions and are contained in C4. Below we prove that this is actually
true for all dimensions.



Table 2. Known classes of quadratic APN polynomial over F2n CCZ-inequivalent to
power functions

N◦ Functions Conditions In

n = pk, gcd(k, 3)= gcd(s, 3k)=1,

C1-C2 x2
s+1 + u2k−1x2

ik+2mk+s

p ∈ {3, 4}, i = sk mod p, m = p− i, [8]

n ≥ 12, u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1,

C3 x2
2i+2i + cxq+1 + dxq(2

2i+2i) gcd(2i + 1, q + 1) 6= 1, dcq + c 6= 0, [7]

d 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, dq+1 = 1

q = 2m, n = 2m, gcd(i,m)=1,

C4 x(x2
i

+ xq + cx2
iq) c ∈ F2n , s ∈ F2n \ Fq, [7]

+x2
i

(cqxq + sx2
iq) + x(2

i+1)q X2i+1 + cX2i + cqX + 1

has no solution x s.t. xq+1 = 1

C5 x3 + a−1Tr(a3x9) a 6= 0 [10]

C6 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a 6= 0 [11]

C7 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a 6= 0 [11]

n = 3k, gcd(k, 3)= gcd(s, 3k)=1,

C8-C10 ux2
s+1 + u2kx2

−k+2k+s

+ v, w ∈ F2k , vw 6= 1, [2, 3]

vx2
−k+1 + wu2k+1x2

s+2k+s

3|(k + s) u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1, i,m odd,

C11 dx2
i+1 + dqxq(2

i+1)+ c 6∈ F2m , γs ∈ F2m , [2]

cxq+1 +
∑m−1

s=1 γsx
2s(q+1) d not a cube

(x+ xq)2
i+1+ q = 2m, n = 2m, m ≥ 2 even,

C12 u′(ux+ uqxq)(2
i+1)2j + gcd(i,m) = 1 and j even [17]

u(x+ xq)(ux+ uqxq) u primitive in F∗2n , u′ ∈ F2m not a cube

a2x2
2m+1+1 + b2x2

m+1+1+ n = 3m, m odd

C13 ax2
2m+2 + bx2

m+2 + (c2 + c)x3 L(x) = ax2
2m

+ bx2
m

+ cx satisfies [6]

the conditions in Theorem 6.3 of [6]

3.1 C11 and C3 are equivalent

First of all, note that, for family C11, the conditions given in Table 2 that i is
odd and d is not a cube are equivalent to request just d /∈ {x2i+1 : x ∈ F22m} (if

i is even we have no choice for d since in this case {x2i+1 : x ∈ F22m} = F22m).
Moreover, for family C3, we have that the coefficients c and d, satisfying the
constrains of Table 2, exist if and only if gcd(2i + 1, 2m + 1) 6= 1. This implies
that m is odd, since i and m are coprime (it can be easily deduced from gcd(22i−
1, 22m − 1) = 2gcd(2i,2m) − 1 = 3).

Consider the following function of C11 (without the sum component)

F (x) = cx2
m+1 + dx2

i+1 + d2
m

x2
m(2i+1). (1)



Since c ∈ F22m \ F2m we have F22m = cF2m ⊕ F2m . Let us consider the linear
permutation L such that over cF2m it is the identity map and over F2m it is given
by the power linear function x2

i

. That is, for any x1, x2 ∈ F2m , L(cx1 + x2) =

cx1 + x2
i

2 . Then,

L(F (x))

d2i
= c′x2

m+1 + x2
2i+2i + d′x2

m(22i+2i),

with c′ =
c

d2i
and d′ = d2

i(2m−1). Since, d /∈ {x2i+1 : x ∈ F22m} we have

d′ /∈ {x(2i+1)(2m−1) : x ∈ F22m}. Moreover, since c /∈ F2m

c′2
m

d′ + c′ =
c2

m

d2i
+

c

d2i
6= 0,

implying that F in (1) is equivalent to an APN function contained in C3.
Consider now the general formula of C11:

F (x) = cx2
m+1 +

m−1∑
l=1

γlx
2l(2m+1) + dx2

i+1 + d2
m

x2
m(2i+1).

It is possible to reduce it to a function of the type (1).
Assume 1 ≤ t ≤ m− 1 be such that γt 6= 0. We know that, since γt ∈ F2m , there

exists a non-zero element λt such that γt = λ
2t(2m+1)
t . Applying the substitution

x→ λ−1t x we obtain an equivalent function with γt = 1.
Consider the following linear function with w ∈ F∗2m (we will study its permu-
tation property later)

L(x) = (w + (c+ c2
m

)2
t

)x+ x2
t

+ wx2
m

+ x2
m+t

. (2)

Let u = dx2
i+1, then we obtain

L(F (x)) = (w + (c+ c2
m

)2
t

+ w)[u+ u2
m

] + ((w + (c+ c2
m

)2
t

)c+ wc2
m

)x2
m+1

+ (c+ c2
m

)2
t

x2
t(2m+1) +

m−1∑
l=1

γl(w + (c+ c2
m

)2
t

+ w)x2
l(2m+1)

= (c+ c2
m

)2
t

[u+ u2
m

] + (w(c+ c2
m

) + c(c+ c2
m

)2
t

)x2
m+1

+

m−1∑
l=1,l 6=t

γl(c+ c2
m

)2
t

x2
l(2m+1).

Hence

L(F (x))

(c+ c2m)2t
= u+ u2

m

+ (w(c+ c2
m

)1−2
t

+ c)x2
m+1 +

m−1∑
l=1,l 6=t

γlx
2l(2m+1).



Let c′ = w(c+ c2
m

)1−2
t

+ c, also the condition on c′ is satisfied since we have

c′
2m

+ c′ = w2m(c+ c2
m

)1−2
t

+ c2
m

+ w(c+ c2
m

)1−2
t

+ c

= (c+ c2
m

).

Therefore, we managed, from the original formula of C11, to obtain a similar
one in which the monomial x2

t(2m+1) is not present any more and the rest of the
components of the sum is left unchanged. Iterating this procedure we obtain a
function of the form (1).

Now, we only need to show that L(x) of Equation (2) is a permutation.
We have that

L(x) = (x+ x2
m

)2
t

+ w(x+ x2
m

) + (c+ c2
m

)2
t

x.

Assume that x ∈ F2m then L(x) = (c + c2
m

)2
t

x is null if and only if x = 0.
Otherwise consider x 6∈ F2m and let y = x + x2

m ∈ F∗2m , we have L(x) =

y2
t

+ wy + (c+ c2
m

)2
t

x. If L(x) = 0 then

x =
y2

t

+ wy

(c+ c2m)2t
.

Since w ∈ F2m we have that the right hand-side belongs to F2m that leads to a
contradiction. Therefore, L is a linear permutation.

Conversely, we have that C3 can be reduced to C11 reversing the computation
done for (1). Indeed, let

F (x) = cx2
m+1 + x2

2i+2i + dx2
m(22i+2i),

be an APN function of C3, with c and d satisfying the constrains of C3.
Since d2

m+1 = 1, there exists d′ such that d′2
m−1 = d. Moreover, since d is

not in {x(2i+1)(2m−1) : x ∈ F22m} we have d′ /∈ {x(2i+1) : x ∈ F22m}.
Multiplying it by d′, we obtain

F ′(x) = d′F (x) = d′cx2
m+1 + d′x2

i+1 + d′2
m

x2
m(2i+1).

Since c+ c2
m

d 6= 0 we have that d′c+ (d′c)2
m

= d′(c+ c2
m

d) 6= 0, so d′c /∈ F2m .
Thus, F ′(x) is an element of C11 and we have the following result.

Lemma 1. Families C3 and C11 are equivalent.

3.2 Equivalence with hexanomials (family C4 Table 2)

In [7], the authors introduced a family of APN hexanomials. In particular the
result is the following.



Theorem 1 ([7]). Let n and i be any positive integers, n = 2m, gcd(i,m) = 1,
and c̄, d̄ ∈ F2n be such that d̄ /∈ F2m . If the equation

x2
i+1 + c̄x2

i

+ c̄2
m

x+ 1 = 0

has no solution x such that x2
m+1 = 1, then the function

H(x) = d̄x2
i(2m+1) + x(2

m+1) + (x2
i+1 + x2

m(2i+1) + c̄x2
m+i+1 + c̄2

m

x2
i+2m)

is APN.

We are going to show below that C3 and C11 are contained in C4. As
proved in the previous section, we can consider only family C11 without the

part
∑m−1
`=1 γ`x

2`(2m+1).
Consider now the function in C11 as in (1). We can transform it in a function

as follows

F (x) = cx2
m+1 + x2

i(2m+1) + dx2
i+1 + d2

m

x2
m(2i+1), (3)

with c ∈ F22m \ F2m and d /∈ {x2i+1 : x ∈ F22m}. Indeed, using linear permuta-
tions as in (2), we can obtain from functions in form (3) all possible functions
as in (1).

Consider a linear permutation of type x + γx2
m

(γ2
m+1 6= 1). Evaluating

F (x+ γx2
m

) and deleting terms of algebraic degree less than 2, we obtain

F̃ (x) = (c+ cγ2
m+1)x2

m+1 + (1 + γ2
i(2m+1))x2

i(2m+1)

+(d+ d2
m

γ2
m(2i+1))x2

i+1 + (d2
m

+ dγ2
i+1)x2

m(2i+1)

+(dγ2
i

+ d2
m

γ2
m

)x2
m+i+1 + (d2

m

γ2
m+i

+ dγ)x2
i+2m

}
= u

Now, using a similar linear permutation as for the sum
∑m−1
`=1 γ`x

2`(2m+1),

it is possible to prove that we can delete the monomial (1 + γ2
i(2m+1))x2

i(2m+1)

since (1 +γ2
i(2m+1)) and u are in F2m . Now, denoting by a = (d+d2

m

γ2
m(2i+1))

and b = (dγ2
i

+ d2
m

γ2
m

) we have

F ′(x) = c′x2
m+1 + (ax2

i+1 + a2
m

x2
m(2i+1) + bx2

m+i+1 + b2
m

x2
i+2m), (4)

where c′ ∈ F22m \ F2m depends on the linear function applied for removing

(1 + γ2
i(2m+1))x2

i(2m+1).

Now, since i and m are odd and gcd(i,m) = 1 we have that x2
m+i+1 is a

permutation of F2n , which means that there exists λ ∈ F∗2n such that λ2
m+i+1 =

b. Then, substituting x 7→ λ−1x in (4) we obtain

F ′′(x) = c′′x2
m+1︸ ︷︷ ︸

c′′F2m

+
a

λ2i+1
x2

i+1 +
( a

λ2i+1

)2m
x2

m(2i+1) + x2
m+i+1 + x2

i+2m︸ ︷︷ ︸
F2m

.



Since F2n = c′′F2m ⊕ F2m we can perform the substitution x 7→ x2
m−i

and then
apply a linear map L which is x1/2

m−i

on c′′F2m and the identity on F2m . Thus,
denoting by c = (c′′)1/2

m−i

, we can obtain the equivalent function

F̄ (x) = L(F ′′(x2
m−i

)) =cx2
m+1 +

a

λ2i+1
x2

m+2j +
( a

λ2i+1

)2m
x(2

m+j+1)

+ x2
j+1 + x2

m(2j+1),

(5)

where j = m− i. Note that j is even and gcd(j,m) = 1.
On the other hand, let i be an integer with gcd(i,m) = 1 and consider a

hexanomial

H(x) = d̄x2
i(2m+1) + x(2

m+1) + (x2
i+1 + x2

m(2i+1) + c̄x2
m+i+1 + c̄2

m

x2
i+2m).

Applying the linear permutation (as in (2)) L(x) = (w+(d̄+d̄2
m

)1/2
i

)x+wx2
m

+

x1/2
i

+ x2
m−i

for some w ∈ F∗2m , we obtain

H ′(x)=
L(H(x))

(d̄+ d̄2m)1/2i
=d̄′x2

i(2m+1) +(x2
i+1 +x2

m(2i+1) + c̄x2
m+i+1 + c̄2

m

x2
i+2m).

Since F22m = d̄′F2m ⊕F2m we can apply a linear permutation which is x(1/2
i) on

d̄′F2m and the identity on F2m in order to obtain the equivalent function

H ′′(x) = d′′x2
m+1 + x2

i+1 + x2
m(2i+1) + c̄x2

m+i+1 + c̄2
m

x2
i+2m , (6)

where d′′ = d̄′(1/2
i). Then, the family of the hexanomials can be expressed as

pentanomials and the constrain on the coefficient c̄ is the same of the hexanomi-
als. Indeed, following the same steps of the proof in [7, Theorem 2], a function
H ′′ as in (6), with d′′ /∈ F2m and i such that gcd(i,m) = 1, is APN if and only if

x2
i+1 + c̄x2

i

+ c̄2
m

x+ 1 = 0

has no solution x such that x2
m+1 = 1.

Coming back to our function in (5), since F̄ (x) is APN and c′′ /∈ F2m , denot-

ing ā =
(

a

λ2i+1

)2m
, we have that

x2
j+1 + āx2

j

+ ā2
m

x+ 1 = 0

has no nonzero solution such that x2
m+1 = 1. So, the function F̄ (x) is equivalent

to a hexanomials.

Then we have proved the following result:

Theorem 2. Families C3 and C11 coincide and they are included in C4. In
particular, the hexanomials admit a representation in the following form

Hi(x) = d̄x2
m+1 + x2

i+1 + x2
m(2i+1) + c̄x2

m+i+1 + c̄2
m

x2
i+2m ,



with d̄ /∈ F2m and c̄ such that the equation

x2
i+1 + c̄x2

i

+ c̄2
m

x+ 1 = 0

has no solution x such that x2
m+1 = 1.

Moreover, when m is odd, a pentanomial Hi(x) for i odd is equivalent to a
pentanomial Hj(x) (always in C4) with j = m− i even.

Proof. We need to prove only that when m is odd the case i odd is equivalent
to a pentanomial relative to the even case j = m− i. This can be done with the
same steps used above to compute F̄ (x) in (5) from F ′′(x) of (4), with the only
difference that in this case the coefficient a of F ′′(x) is equal to 1.

In Table 3 we list all the known families of APN functions which are CCZ-
inequivalent to power functions and that are pairwise CCZ-inequivalent to each
other.

Table 3. Known classes of quadratic APN polynomial over F2n CCZ-inequivalent to
power functions

N◦ Functions Conditions In

n = pk, gcd(k, 3)= gcd(s, 3k)=1,

F1-F2 x2
s+1 + u2k−1x2

ik+2mk+s

p ∈ {3, 4}, i = sk mod p, m = p− i, [8]

n ≥ 12, u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1,

F3 sxq+1 + x2
i+1 + xq(2

i+1) c ∈ F2n , s ∈ F2n \ Fq, [7]

+cx2
iq+1 + cqx2

i+q X2i+1 + cX2i + cqX + 1

has no solution x s.t. xq+1 = 1

F4 x3 + a−1Tr(a3x9) a 6= 0 [10]

F5 x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a 6= 0 [11]

F6 x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a 6= 0 [11]

n = 3k, gcd(k, 3)= gcd(s, 3k)=1,

F7-F9 ux2
s+1 + u2kx2

−k+2k+s

+ v, w ∈ F2k , vw 6= 1, [2, 3]

vx2
−k+1 + wu2k+1x2

s+2k+s

3|(k + s) u primitive in F∗2n
(x+ xq)2

i+1+ q = 2m, n = 2m, m ≥ 2 even,

F10 u′(ux+ uqxq)(2
i+1)2j + gcd(i,m) = 1 and j ≥ 2 even [17]

u(x+ xq)(ux+ uqxq) u primitive in F∗2n , u′ ∈ F2m not a cube

a2x2
2m+1+1 + b2x2

m+1+1+ n = 3m, m odd

F11 ax2
2m+2 + bx2

m+2 + (c2 + c)x3 L(x) = ax2
2m

+ bx2
m

+ cx satisfies [6]

the conditions in Theorem 6.3 of [6]
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