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Abstract. The structure of i-components of Kerdock codes and the
duals of the linear codes with distance 5 of length n = 2m − 1, for
odd m related to AB-functions is investigated. It is proved that for any
admissible length a punctured Kerdock code consists of two i-components
and the dual of any linear uniformly packed code with parameters of
primitive double-error-correcting BCH code is an i-component for any i.
An alternative proof for the fact presented by De Caen and van Dam in
1999 that the restriction of the Hamming scheme to a doubly shortened
Kerdock code is an association scheme is given.
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1 Introduction

In this paper we show that a punctured Kerdock code has two i-components for
any coordinate position i, while the dual of a linear uniformly packed code with
parameters of primitive double-error-correcting BCH code B is an i-component
for any coordinate position i.

By Fn we denote the vector space of dimension n over the Galois field GF (2).
The main definitions and notions can be found in [2]. The kernel Ker(C) of a
code C is {x : x + C = C, x ∈ Fn}. From the definition it is clear that the
code C is a union of cosets of Ker(C). The code obtained from a code C by
deleting one coordinate position is called the punctured code and is denoted by
C∗, the code doubly punctured is denoted by C∗∗. The shortened code of C
is obtained by selecting the subcode of C having zeros at a fixed position and
deleting this position. Such code is denoted by C ′. Doubly shortened code is
denoted by C ′′. For a code C denote by I(C) the set of distances between its
codewords: I(C) = {d(x, y) : x, y ∈ C} and by Ci denote the set of its codewords
of weight i: Ci = {x ∈ C : w(x) = i}.
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Given a code C with minimum distance d consider the graph Gi(C) with the
set of codewords as the set of vertices and the set of edges {(x, y) : d(x, y) =
d, xi 6= yi}. A connected component of the graph Gi(C) is called an i-component
of the code. If the minimum distance is greater than 2 then changing the values
in the ith coordinate position in all vectors of any i-component by the opposite
one in the code leads to a code with the same parameters: length, size and
code distance. Therefore, we can obtain an exponential number (as a function
of the number of i-components in the code) of different codes with the same
parameters. Such approach was earlier successfully developed for the class of
perfect codes. The method of i-components allowed to construct a large class
of pairwise nonequivalent perfect codes and was used to study various code
properties, see the survey [11].

Punctured Preparata codes, perfect codes with code distance 3 and the prim-
itive cyclic BCH code with designed distance 5 of length 2m−1, odd m are known
to be uniformly packed [13], [7]. Therefore, the fixed weight codewords of the ex-
tensions of these codes form 3-designs, which was proved by Semakov, Zinov’ev
and Zaitsev in [13]. An analogous property holds for the duals of these codes.
Let C⊥ be a formally dual code to a code C with code distance d, i.e. their
weight distributions are related by McWilliams identities [2]. By Theorem 9,
Ch. 9, [2] the set of codewords of any fixed weight in C⊥ is (d− s̄)-design, where
s̄ denotes the number of different nontrivial (not equal to 0 and n) weights of the
codewords of C⊥. It is well-known that a Kerdock code and a Preparata code
of the same length are formally dual. Therefore, the fixed weight codewords of a
Kerdock code are 3-designs and the fixed weight codewords of the code orthog-
onal to primitive double-error-correcting BCH code of length 2m− 1, m-odd are
2-designs.

The aforementioned codes are related to association schemes. Let X be a
set, and there are n + 1 relations Ri, i ∈ I that partition X × X. The pair
(X, {Ri}i∈I) is called an association scheme, if there are numbers δki,j(X), such
that

– The relation {(x, x) : x ∈ X} is Rj for some j ∈ I.
– For any i, the relation R−1i = {(y, x) : (x, y) ∈ Ri} is Rj for some j ∈ I.
– For any i, j, k ∈ I and x, y in X, (x, y) ∈ Ri the following holds:

δki,j(X) = |{z : z ∈ X, (x, z) ∈ Rj , (y, z) ∈ Rk}|.

The numbers δki,j(X), i, j, k ∈ I are called the intersection numbers of the asso-
ciation scheme.

Let C be a binary code. Consider the partition of the cartesian square C×C
into distance relations, i.e. two pairs of codewords are in the same relation if
and only if the Hamming distances between the pairs coincide. Such partition is
called the restriction of the Hamming scheme to the code C, see [9]. There are
several cases where the restriction gives an association scheme. In this case, the
code with this property is called distance-regular, see [12]. The duals of linear
completely regular codes are known to be distance-regular (Theorem 6.10, [9]).
In particular, the dual of the primitive double-error-correcting BCH code of



length n = 2m−1 produces an association scheme in case of odd m. Using linear
programming bound, Delsarte in [9] showed that the restriction of the Hamming
scheme to a shortened Kerdock code is an association scheme. An analogous
fact for Kerdock codes was proved in [12] by finding the intersection numbers
of the restricted scheme directly. In work [14], see also [15], it is shown that the
restriction of the Hamming scheme to a doubly shortened Kerdock code is also
an association scheme. The latter fact contributes to a significant part of the
current paper concerning components of a Kerdock code, however we give an
alternative combinatorial proof for this fact as we essentially need a convenient
approach to calculating the intersection numbers of the scheme.

2 Components of Kerdock code

In the section we fix n to be 2m, for even m, m ≥ 4. Denote by 0n and 1n the
all-zero and all-one vectors in Fn respectively. A Kerdock code K is a binary code
of length n and minimum distance d = (n−

√
n)/2, consisting of the first order

Reed–Muller code RM(1,m) and 2m−1 − 1 its cosets such that the weights of
the codewords in any coset are d or n− d. These codes were firstly constructed
in [5] and further generalizations were obtained in [6], [10].

The weight distribution of a Kerdock code is well-known and is related with
the weight distribution of a Preparata code via McWilliams identities [2].

i The number of codewords of weight i
0 1
d n(n− 2)/2
n
2 2n− 2

n-d n(n− 2)/2
n 1

In order to prove that a punctured Kerdock code consists of two i-components
we use the following properties of the code, that come from its definition. With-
out loss of generality, the all-zero vector 0n is in a Kerdock code.

(K1) Any code K is a union of n/2 cosets of RM(1,m).

(K2) It is true that Kn/2

⋃
{0n,1n} = RM(1,m).

(K3) The distance between codewords from different cosets of RM(1,m) in
the code K is either d or n− d.

(K4) Nonzero distances between codewords in any coset are either n/2 or n.

(K5) RM(1,m) ⊆ Ker(K).

The property below follows from (K2)–(K5):

(K6) If for x, y ∈ K we have w(x+ y) = n/2 then x+ y ∈ K.

Theorem 1. [2][Theorem 9, Ch. 9] Let C be a code of length n and minimum
distance d, C⊥ be a code which is formally dual to C, s̄ = |I(C⊥)\{0, n}|. Then
the set of codewords of any fixed nonzero weight in C⊥ is (d− s̄)-design.



Theorem 1 applied to Preparata and Kerdock codes implies the following:
(K7) (See [2]) Kd, Kn/2, Kn−d are 3-designs.

In order to proceed further we need the following lemma.

Lemma 1. Let x be a vector of weight i, D be 1 − (n, j, λ1)-design. Let the
distances between x and vectors of D take values k1, . . . , ks with multiplicities
δk1 , . . . , δks respectively. Then the following formula holds:

s∑
l=1

δkl · i+ j − kl
2

= iλ1 (1)

and δk1 , δk2 are uniquely defined by δk3 , . . . , δks .

Note that I(K ′′) = {0, d, n/2, n− d}, as we exclude the all-one vector in K ′.
By δki,j(x) we denote the number of codewords of weight j in K ′′ at distance
k from a codeword x in K ′′ of weight i. Obviously, the restriction of the Ham-
ming scheme to K ′′ is an association scheme if δki,j(x) for all i, j, k ∈ I(K ′′) are
shown to be independent on the choice of a codeword x of weight i regardless of
translation of K ′′ by any of its codeword.

Lemma 2. The number δki,j(x) does not depend on the choice of a codeword x
in K ′′i if i or j equals to n/2.

Lemma 3. Let n/2 ∈ {i, j, k}. Then the number δki,j(x) does not depend on the
choice of a codeword x of weight i.

Lemma 4. The number δki,j(x) does not depend on the choice of a codeword x
of weight i for i, j, k ∈ I(K ′′).

Theorem 2. The restriction of the Hamming scheme to a doubly shortened
Kerdock code K ′′ is an association scheme.

Proof. The proof follows from properties (K1)–(K7) of a Kerdock code K and
lemmas 2–4.

In order to find components of the punctured Kerdock code, we need one
more simple lemma.

Lemma 5. Let C be a code of length n′ such that the restriction of the Hamming
scheme to its codewords is an association scheme. Let I(C) be such that I(C) ∩
{n′− i : i ∈ I(C)} = ∅. Then the restriction of the Hamming scheme to the code
C = C

⋃
(1n′

+ C) is an association scheme.

Proof. We have the following equalities:

δki′,j(C) = δki,j′(C) = δk
′

i,j(C) = δk
′

i′,j′(C) = 0.

δki′,j′(C) = δk
′

i′,j(C) = δk
′

i,j′(C) = δki,j(C) = δki,j(C). (2)



Theorem 3. Let K∗ be a punctured Kerdock code, i ∈ {1, . . . , n− 1}. The code
K∗ consists of two i-components and codewords are in the same component if
their puncturings in ith position have weights of the same parity.

Proof. Consider any two different coordinates i, j of a Kerdock code of length
n. Denote by K∗ the punctured code obtained from the code K by deleting
ith coordinate position. The code doubly punctured in ith and jth positions is
denoted by K∗∗. Doubly shortened code in ith and jth positions is denoted by
C ′′. Proving that there are just two i-components in K∗ is equivalent to showing
that the minimum distance graph of the doubly punctured Kerdock code K∗∗ has
two connected components (which are actually even and odd weight codewords).
Recall [1] that the minimum distance graph of a code is the graph with vertex
set being codewords and the edgeset being pairs of codewords at code distance.
We show the connectedness of the minimum distance graph of the even weight
subcode of K∗∗ (the latter coincides with K ′′). The codewords of the subcodes
have weights from {0, d − 2, d, n/2 − 2, n/2, n − d − 2, n − d, n − 2}. The proof
significatively relies on the fact that the restriction of the Hamming scheme
to K ′′ is an association scheme which follows from Theorem 2 and Lemma 5.
By Lemma 1 we see that certain intersection numbers of the restriction of the
Hamming scheme to K ′′ are nonzeros.

Lemma 6. The following equalities hold:

δd−2d−2,n/2(K ′′) =
n2 − 6n− 2nd+ 8d

4(n− 2d)
. (3)

δn−d−2d−2,n/2(K ′′) =
n2 − 2nd+ 2n

4(n− 2d)
. (4)

From the values given by (3) and (4) we see that δd−2d−2,n/2(K ′′) and

δn−d−2d−2,n/2(K ′′) are nonzeros, which is equivalent to

δd−2d−2,n/2(K ′′) 6= 0, δd−2n/2,n−d−2(K ′′) 6= 0. (5)

Consider the codewords of K ′′d−2. Obviously, the codewords cannot be at
distance n/2 pairwise apart, which follows, for example, from the Plotkin’s
bound. Therefore there are codewords of weight d − 2 at distance d apart and
δdd−2,d−2(K ′′) 6= 0, which is equivalent to

δd−2d−2,d(K ′′) 6= 0. (6)

From (5) we see that any codeword of K ′′n/2 is at distance d − 2 from at

least one codeword of Kd−2 and a codeword of K ′′n−d−2 is at distance d − 2
from at least one codeword of K ′′n/2. Therefore, K ′′d−2, K ′′n/2, K ′′n−d−2 are

in one connected component of the minimum distance graph of K ′′. Taking into
account the equality (2) this fact is equivalent to the fact that the codewords of
K ′′n−d, K ′′n/2−2 and K ′′d belong to the same component. Finally, the inequality



(6) implies that K ′′d−2 and K ′′d are in the same component, which implies that
the codewords of weights {0, d− 2, d, n/2− 2, n/2, n− d− 2, n− d, n− 2} are in
the same connected component, which is exactly the minimum distance graph
of K ′′.

Remark 1. Theorems 2 and 3 are true for some other Kerdock-related codes. In
particular, by considerations similar to those in proof of Theorem 2 one can show
that a Kerdock and a shortened Kerdock codes produce association schemes,
which gives an alternative (combinatorial) proof for these well-known facts from
[9] and [12]. Analogously to the proof of Theorem 3, one can prove that the
i-components of a Kerdock code coincide with the Kerdock code or equivalently,
the minimum distance graph of a punctured Kerdock code is connected.

Remark 2. According to Theorem 3, new Kerdock codes cannot be constructed
by means of traditional switchings. For convenience we set i = n−1. By the proof
of Theorem 3 we know that two codewords are in the same (n−1)-component of
the Kerdock code punctured in the nth position if and only if their puncturings
in the (n− 1)th coordinate position have weights of the same parity. Therefore,
the codewords of the Kerdock code K could be represented as K00, K11, K01,
K10, where Kab = {x ∈ K : xn−1 = a, xn = b}, with K00 ∪K11 corresponding
to one (n− 1)-component of K∗n and K01 ∪K10 to the other one. Moreover, the
”odd weight” component is the translation of the ”even weight” one, i.e. there
is a codeword (x′01) of RM(1,m) such that (K01 ∪K10) + (x′01) = K00 ∪K11.
Now the switching K = K00∪K11∪ ((x′01)+(K00∪K11)) to K ′ = K00∪K11∪
((x′10) + (K00 ∪K11)) gives an equivalent code, which is obtained from K by
permuting the (n− 1)th and the nth coordinate positions.

3 Components of duals of BCH codes

In the section we fix n = 2m, m odd. We investigate the i-components of the
dual code B⊥ of a primitive cyclic BCH code B with zeros α and α3 with
designed distance 5 by i-components, of length n − 1 = 2m − 1, m odd, here α
is a primitive element of the Galois field GF (2m). The code shares many similar
properties with a Kerdock code. We prove that B⊥ is an i-component for any
coordinate position i.

Further we use the following properties of the code B⊥.

(B1) (See [2].) The minimum distance of the code B⊥ is d = n−
√
2n

2 . The
code B⊥ has the following weight distribution:

i The number of codewords of weight i
0 1
d (n− 1)(n

4 +
√

n
8 )

n
2 (n− 1)(n

2 + 1)
n-d (n− 1)(n

4 −
√

n
8 )

The fact below follows from Theorem 1 and the property (B1).



(B2) Any set of fixed weight codewords of B⊥ forms a 2-design.
The code B is uniformly packed, see [7]. In [9], Theorem 6.10 it was shown

that any code that is dual to a linear completely regular code gives an association
scheme.

(B3) (See [9]) The restriction of the Hamming scheme to B⊥ is an association
scheme.

Lemma 7. Any codeword of the punctured code of B⊥ of weight d is at distance
d− 1 from at least one codeword of weight d− 1.

The proof follows from the property (B2) and Lemma 1.

Lemma 8. The minimum weight codewords of B⊥ span the code.

Proof. The code B⊥ is the direct sum of the Hadamard codes H1 and H2,
both consisting of n − 1 nonzero codewords having weight n/2. The number of
codewords of weight d in B⊥ is greater then n (see (B1)). Therefore one can
find three codewords in the codes H1 and H2 with distances d or n/2 pairwise,
e.g. x, x′ ∈ H1 and y ∈ H2, such that d(x, x′) = n/2 and d(x, y) = d(x′, y) = d.
Hence, by the property (B3), we have that the intersection number δdd,n/2(B⊥)

is nonzero, i.e. any codeword of weight n/2 is at distance d from at least one
codeword of weight d in B⊥.

The number of codewords of weight n−d is less than the number of codewords
of weight d, therefore any codeword of weight n−d is at distance d from at least
one codeword of weight n/2 or d. So, the codewords of weight d generate the
code B⊥.

Theorem 4. The code B⊥ of length n = 2m − 1, m odd, consists of one i-
component for any coordinate position i. Equivalently, for any i ∈ {1, . . . , n} the
code B⊥ is spanned by minimum weight codewords with ones in ith coordinate.

Proof. By Lemma 7 any codeword of B⊥ of weight d with 0 in the ith coordinate
position is at distance d from a codeword of weight d with 1 in the ith coordinate
position. By Lemma 8, this implies that the set of all codewords of weight d
having 1 in the ith coordinate position generates the code B⊥, i.e. the code B⊥

is an i-component for any i ∈ {1, 2, . . . , n− 1}.

Note that the properties (B1)–(B3) and the proof of Theorem 4 are the
same for any code that is dual to a linear uniformly packed code with the same
parameters as the BCH code. In particular, the cyclic code C1,2j+1 of length
2m − 1, (j,m) = 1, m odd, corresponding to the Gold function, as well as
the other linear codes obtained from almost bent functions (AB-functions) are
uniformly packed [8] and therefore the dual of any such code is an i-component
for any i.

Corollary 1. The dual of a linear uniformly packed code with parameters of the
BCH code B of length n− 1 = 2m, m-odd is an i-component for any coordinate
position i.



Conclusion. We considered the duals of two such well-known classes of uni-
formly packed codes as Preparata and 2-error correcting BCH codes. The dual
codes have large minimum distance, few nonzero weights and are related to
designs and association schemes. We proved that i-components of these codes
are maximum. It would be natural to study the structure of i-components
of Preparata codes that are formally duals of Kerdock codes. For n = 15
these classes meet in the self-dual Nordstrom-Robinson code that has two i-
components for any coordinate position i.

By computer-aided investigation we showed that B⊥ of length 2m − 1 is an
i-component for any i for even m also for m = 6, 8, 10 and the BCH code B of
length 2m− 1 consists of two i-components for any coordinate position i for any
m: 5 ≤ m ≤ 8 as well as Z4-linear Preparata code of length n = 64. Another
challenging problem is finding i-components of the BCH code for any m and
their duals for even m. The solution for the problem would directly imply the
existence of minimum weight basis for this code. Note that extensions of these
codes possess minimum weight basis [3], as well as the extensions of cyclic codes
related to Gold functions [4].
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