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Abstract In a recent paper, Civino et al. considered alternative opera-
tions to mount a differential attack against a block cipher. Such opera-
tions are different from the one used to perform the round-key addition,
and are induced by elementary abelian regular subgroups of the sym-
metric group acting on the plaintext space. It has been shown on a small
cipher how a successful attack can be mounted, even in the in case the
cipher is designed to be resistant to the classical attack. In view of the
potential interest for the application in cryptanalysis, here we study the
relationships between a class of elementary abelian regular subgroups
and the Sylow 2-subgroups of their normalisers in the symmetric group
Sym(Fn

2 ) and their cryptographic implications.

The results contained in this extended abstract are included in a paper by
the same authors submitted to a journal.
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1 Introduction and motivation

Let n > 2 and let (V,+) be an n-dimensional vector space over the field with two
elements, where + denotes the bitwise XOR operation. The conjugacy class of el-
ementary abelian regular subgroups of the symmetric group Sym(V ) has recently
drawn the attention of researchers in symmetric cryptography [CDVS06, CS17,
BCS19], as these subgroups and their normalisers (i.e. isomorphic copies of the
affine group) may be used to detect weaknesses in some symmetric-encryption
methods, i.e. block ciphers. More specifically, cryptanalysts may take advantage
of the alternative operations that these groups induce on the plaintext space and
exploit them to detect biases in the distribution of the ciphertexts by means of
techniques of differential cryptanalysis [CBS18].

A block cipher on the plaintext space V is a family {Ek }k∈K of non-linear
permutations of Sym(V ), called encryption functions, indexed by a set of param-
eters K, called keys. Each encryption function is in general obtained as the com-
position of different layers (non-linear confusion layers, linear diffusion layers,



and affine key-addition layers), each one designed with a precise cryptographic
goal, depending on its role in the employed algorithm (see e.g. [DR13, BKL+07,
NBoS77]). Some of those layers usually provide entropy to the encryption process
by means of bit-wise XOR addition with round keys in V computed by a public
procedure, called key schedule, starting from the user-selected key in K. The
non-linearity of the functions Ek is one of the crucial requirements to provide
security against a large variety of statistical attacks, such as differential [BS91]
and linear [Mat93] cryptanalysis. For this reason, ways of making the cipher’s
components as far as possible from being linear are extensively studied [Nyb93].
The usually considered notion of non-linearity is given with respect to the oper-
ation which is used in the cipher to perform the key addition, and the security
of a cipher depends, among other things, on the requirement that its encryption
functions do not behave as affine functions, i.e. they lie far from AGL(V ), the
group of affine functions on V . However, several isomorphic copies of AGL(V )
are contained in Sym(V ), and each of them corresponds to a different operation
endowing V with a distinct vector space structure. In a more concrete way, us-
ing the terminology of differential cryptanalysis, the fact that the key-addition is
XOR-based does not force an attacker to use the XOR as the operation defining
differentials. As a matter of fact, nothing guarantees that the differential proba-
bilities computed with respect to the XOR are higher than those computed with
respect to different operations, and hence that the security from XOR-based
differential attacks implies the immunity from differential attacks induced by
whatever difference operator [CBS18]. For this reason, a target of a new branch
of research in symmetric cryptography [CDVS06, CS17, CBS18, BCS19] is to
investigate the non-linearity of the encryption functions of a cipher with respect
to these alternative operations. In the remainder of the paper the use of these
operations for differential cryptanalysis is quickly discussed (Sec. 2), and it is
pointed out that a specific class of them is optimal. Such a class needs a thor-
ough study, which is the aim of this paper. Some novel contributions are listed
in Sec. 3. The study of the groups of Sec. 3, moreover, allowed us to derive
some general properties of the affine group and its Sylow 2-subgroups, which
are presented in Sec. 4. Such results are relevant both for their implications in
cryptanalysis as well as from a purely group theoretical point of view.

2 New operations for cryptanalysis

Here and in the remainder of the paper we use the postfix notation for functional
evaluations, i.e. if G is a group acting on V and x in an element of V , we write
xg to mean g(x).

Let T
def
= {σv | v ∈ V, x 7→ x+ v } < Sym(V ) be the group of translations

with respect to the XOR. Notice that the function σk acts on the message x ∈ V
as a key-addition layer, i.e. xσk = x + k. Every conjugate T g of T , where g ∈
Sym(V ), defines another operation ◦ on V . This is easily done by letting

∀u, v ∈ V u ◦ v def
= uτv,



where τv is the unique map in T g for which 0 7→ v. For reasons that will be clear
soon, the set

W◦
def
= {k | k ∈ V,∀x ∈ V x+ k = x ◦ k} ∼= T ∩ T g (1)

is crucial. It is called the weak-key subspace, its elements are called weak keys,
and a straightforward check shows that W◦ is a subspace of both (V,+) and
(V, ◦). In the context of differential cryptanalysis the knowledge of W◦ plays an
important role, since it represents the set of round keys for which the XOR-
addition with every message and the ◦-addition give the same result. In another
way, if the round-key is a weak key, differentials with respect to ◦ propagate
through the key-addition layer as differentials with respect to + do.

Notice that, in view of the identification of Eq. (1), if g ∈ Sym(V ) is the element
inducing the operation ◦ by conjugation, for sake of simplicity we may also write
T ∩ T g and dim(T ∩ T g) to mean W◦ and dim(W◦) respectively. The following
result gives a bound on the dimension of the weak-key space.

Proposition 1. If g ∈ Sym(V ) such that T 6= T g, then dim(T ∩ T g) ≤ n− 2.

Proof. Let W◦ be the weak-key space of the operation induced by the group T g,
and assume by way of contradiction that dim(W ) = n − 1. Let { vi }n−1i=1 be a
basis for W◦ and v ∈ V \ W◦. The claim holds if aτv = aσv for any a ∈ V .
If a ∈ W◦ there is nothing to prove, hence without loss of generality we may
assume a = w + v, for some w ∈W◦. Then

aτv = (w + v)τv = (wσv)τv

= (wτv)τv = w(τv)
2 = w

= aσv.

ut

In [CBS18] the problem of the construction of alternative operations is in-
vestigated and several examples are provided. In one of those, the obtained
operation is used to mount a differential attack against a 15-bit Substitution-
Permutation Network, whose 3-bit S-boxes are 2-differentially uniform [Nyb93]
with respect to the XOR and 8-differentially uniform with respect to the new
operation. The success of the attack relies on the aforementioned fact, since the
non-linearity of the confusion layer is highly weakened, as well as on the fact that
the provided diffusion layer is a linear function with respect to both the opera-
tion considered. This allows the differentials computed with respect to ◦ to pass
through the diffusion layer in a deterministic way. However, when the chosen
operation is different from the XOR, used to add the key in the different rounds
of the cipher, differential probabilities have to be introduced when studying the
interaction between ◦-differences and the key-addition layer. For this reason, in
order to make the attack successful a last step is required, i.e. providing condi-
tion granting that ◦-differential probabilities are as high as possible. It has been



shown in [CBS18] that the size of those probability depends on the dimension of
W◦ as a subspace of V , and in particular the highest values are obtained when
dim(W◦) = n− 2, the upper bound of Proposition 1. For now on we concentrate
on operations with such a property, considering the family of second-maximal-
intersection subgroups of Sym(V ), i.e. the families of elementary abelian regular
subgroups of Sym(V ) that intersect T in a subgroup of order 2n−2.

3 Second-maximal-intersection subgroups

As we mentioned earlier, these last sections are devoted to the study of second-
maximal-intersection subgroups, in view of their application in differential at-
tacks of block ciphers. As a first important result, we prove that elementary
abelian regular subgroups that intersect T in a second-maximal subgroup are all
made by affinities.

Theorem 1. Let g ∈ Sym(V ). If dim(T ∩ T g) = n− 2, then T g < AGL(V ).

The importance of this result is substantial for its application to cryptanalysis.
Indeed, let T g = {τv | v ∈ V } be a second-maximal-intersection subgroup.
Theorem 1 implies that for each v ∈ V there exists an invertible binary matrix
Mv such that τv = Mvσv. Hence, once a basis {vi}ni=1 of V is fixed, the operation
◦ can be computed simply storing the n invertible binary matrix Mvi , for 1 ≤
i ≤ n, making the computation efficient even in the case of a real-life-size block
ciphers. An explicit description of such matrices with respect to the canonical
basis of V is provided next in Proposition 2.

Remark 1. In the hypotheses of Theorem 1, by interchanging the roles of T and
T g, one can easily obtain that also T is a subgroup of AGL(V )g. Notice that
AGL(V )g represents the group of affine functions with respect to ◦ induced by
T g. As shown in [CBS18], the previous property makes the key-addition layer
of the cipher an affine function with respect to ◦, which is crucial in view of
maximising the ◦-differential probabilities in a differential attack.

In order to give a complete description of second-maximal-intersection sub-
groups, it is convenient to give a more practical representation. To this purpose,
let us assume that W◦ is spanned by the last n−2 vectors of the canonical basis
{ei}ni=1 of V . The next result gives a parametrisation and counts the number of
subgroups with such a property.

Proposition 2. Let W
def
= 〈 ei | 3 ≤ i ≤ n 〉. The group Sym(V ) contains 2n−2−1

elementary abelian regular subgroups Tb, indexed by b ∈ W \ { 0 }, such that
T ∩ Tb = W . More precisely, Tb = 〈πb, εb, σei | 3 ≤ i ≤ n 〉, where

πb =

12
0

b(3:n)

0 1n−2

σe1 , εb =

12
b(3:n)

0
0 1n−2

σe2 . (2)



The general problem of parametrising all the elementary abelian regular sub-
groups T g of Sym(V ) and of AGL(V ) according to the size of their intersection
with T is not easy in general. Proposition 2 solves this problem in the case of
second-maximal-intersection subgroups. Partial results have been obtained in
the case T g < AGL(V ) [CS17, CBS18, BCS19]. In [CS17] a result similar to the
following corollary is proved, where AGL(V ) appears in place of Sym(V ). The
present form is a consequence of Theorem 1 and the result is easily derived by
Proposition 2.

Corollary 1. The group Sym(V ) contains tn elementary abelian regular sub-
groups whose intersection with T is a second-maximal subgroup of T , where

tn
def
=

(
2n−2 − 1

) (
2n−1 − 1

)
(2n − 1)

3
.

Proof. The integer tn may be obtained as the product of 2n−2 − 1 and (2n −
1)(2n − 2)/6, respectively the number of elementary abelian regular subgroups
which intersect T in the subspace spanned by the last n − 2 vectors of the
canonical basis and the number of (n− 2)-dimensional subspaces of V . ut

4 On the Sylow 2-subgroups of AGL(V )

In this section, using the contributions of Sec. 3 we establish some algebraic
results on the affine group looking at its Sylow 2-subgroups and the way they
contain second-maximal-intersection subgroups.

Theorem 2. Every Sylow 2-subgroup Σ of AGL(V ) contains exactly one ele-
mentary abelian regular subgroup TΣ intersecting T in a second-maximal sub-
group of T and which is normal in Σ.

The previous theorem has the following converse. The same notation is used.

Proposition 3. If T̄ is an elementary abelian regular subgroup of AGL(V ) such
that

∣∣ T̄ ∩ T ∣∣ = 2n−2, then there exists a Sylow 2-subgroup Σ of AGL(V ) such
that T̄ = TΣ E Σ.

We prove in Theorem 3 that if a Sylow 2-subgroup Σ of AGL(V ) contains a
conjugate in Sym(V ) of T as a normal subgroup, then such a subgroup is either
T or TΣ , where TΣ is as in Theorem 2.

Theorem 3. Let g ∈ Sym(V ) and let Σ be a Sylow 2-subgroup of AGL(V )
containing T g. The subgroup T g is normal in Σ if and only if T g ∈ {T, TΣ }.

From Theorem 3 we can also conclude that second-maximal-intersection sub-
groups are characterised by the fact that their normalisers contain a Sylow 2-
subgroup of AGL(V ).



Corollary 2. Let g ∈ Sym(V ) \AGL(V ) such that T g is an elementary abelian
regular subgroup of Sym(V ). If |AGL(V ) | = 2mt, with t an odd integer, then

|T ∩ T g | = 2n−2 ⇐⇒ 2m | |AGL(V ) ∩AGL(V )g | .

Proof. If |T ∩ T g | = 2n−2, then by Theorem 1, both T and T g are subgroups of
AGL(V ). Moreover, since T is contained in every Sylow 2-subgroup of AGL(V ),
at least one of them, which we denote by Σ, contains both T and T g as normal
subgroups. Thus Σ ≤ AGL(V ) ∩ AGL(V )g. Conversely, if this is the case, T
and T g, being contained in every Sylow 2-subgroup of their own normalisers, are
distinct normal subgroups of Σ. Therefore, Theorems 2 and 3 yield {T, T g } =
{T, TΣ }, hence |T ∩ T g | = 2n−2. ut

The previous result is important in view of its cryptographic application, since
AGL(V )g represent the group of affine functions with respect to the operation
◦ induced by T g. So the group AGL(V ) ∩AGL(V )g contains as a subgroup the
group of all the invertible binary matrices which are linear with respect to both
the operations, which can be used to select a suitable diffusion layer for a trap-
door cipher.

The last contributions of this section, which are derived from the previous
results on elementary abelian regular subgroups for cryptography, are impor-
tant for their group-theoretical relevance. It was already known to P. Hall (see
e.g. [CF64]) that if Ξ is a Sylow 2-subgroup of Sym(V ), then NSym(V )(Ξ) = Ξ.
In the remainder of the paper we establish a similar result for Sylow 2-subgroups
of AGL(V ).

Theorem 4. If Σ is a Sylow 2-subgroup of AGL(V ), then

[NSym(V )(Σ) : Σ] = 2.

The result which follows is the counterpart in AGL(V ) of the result due to P.
Hall on the Sylow 2-subgroups of Sym(V ). It also allows us to count the number
of distinct Sylow 2-subgroups of AGL(V ).

Theorem 5. If Σ is Sylow 2-subgroup of AGL(V ), then NAGL(V )(Σ) = Σ. In
particular,

[AGL(V ) : Σ] =

n−1∏
j=0

(
2n−j − 1

)
. (3)

is the number of distinct Sylow 2-subgroups of AGL(V ).

Proof. By Theorem 4, if |AGL(V ) | = 2mt, with t an odd integer, then we
have |Σ | = 2m and

∣∣NSym(V )(Σ)
∣∣ = 2m+1. Since NAGL(V )(Σ) ≤ AGL(V ) and

NAGL(V )(Σ) ≤ NSym(V )(Σ), then
∣∣NAGL(V )(Σ)

∣∣ = 2m. ut



Corollary 3. The number sn of Sylow 2-subgroups of AGL(V ) which contain
as a normal subgroup the same group T g such that dim(W ) = n − 2, where
σW = T ∩ T g and g ∈ Sym(V ), is given by the formula:

sn = 3

n−1∏
j=3

(
2n−j − 1

)
.

Proof. Let |AGL(V ) | = 2mt, with t an odd integer. First we recall that t is the
integer displayed in Eq. (3). The claim follows from Corollary 1, since sn = t/tn,
where tn is the number of elementary abelian regular subgroups in AGL(V )
whose intersection with T is a second-maximal subgroup of T . ut

5 Conclusion and open problems

We already mentioned that the conjugates in Sym(V ) of T are very important in
the cryptanalysis of block ciphers. For this reason, a complete parametrisation
of them in terms of the size of their intersection with T is needed. Recall that the
elements of such intersections are in one-to-one correspondence with the weak
keys corresponding to the alternative operations. In this paper, the aforemen-
tioned problem has been addressed in the case where the weak-key subspace
has dimension n − 2. This last case turned out to be one of the most relevant
for cryptanalysis, since the corresponding operations may be used to perform a
differential attack [CBS18]. We have computational evidence that also the case
of lower dimensional weak-key spaces might be interesting from a cryptographic
point of view, though it may require an entirely different technical approach.
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