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Abstract. In the present paper we present several generalizations of the
isotopic shift construction when the starting function is a Gold function.
In particular we derive a general family of APN functions which produces
15 new APN functions for n = 9.
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1 Introduction

For a prime p and a positive integer n let IF,» be the finite field with p™ elements.
We will denote by F7. its multiplicative group. Throughout the paper, ¢ denotes
a primitive element of Fyn, so that Fy. = (). A map from the field to itself
admits a unique representation as a polynomial of degree at most p™ — 1, F' €
Fpn [CL‘] ’

p"—1

F(z) = Z a;x?, a; € Fpn.

j=0

Given a function F' we set ker(F') to be the set of zeros of F' over Fpn.
The function F is

— linear if F(z) = Y1) cia?';

affine if it is the sum of a linear function and a constant; o

DO (Dembowski-Ostrom) polynomial if F(x) = 3 5<icjcp aija? TP with
ai; € Fpn;

quadratic if it is the sum of a DO polynomial and an affine function.

Let 0 be a positive integer, the function F' is called differentially §-uniform
if for any pairs a,b € Fpn, with a # 0, the equation F(z + a) — F(z) = b
admits at most d solutions. When F' is used as an S-box inside a cryptosystem,
the differential uniformity measures its contribution to the resistance to the
differential attack [2]. The smaller § is the better is the resistence of F' to this
attack. So, 1-uniform functions are optimal and they are called perfect nonlinear
or PN. Hence, defining D, F(z) = F(z + a) — F(x) the derivative of F in the
direction of a, for a PN function for any non-zero a the function D,F(x) is a
permutation. PN functions are also called planar. In even characteristic such



functions do not exist. In this case, the best resistance belongs to functions that
are differentially 2-uniform, these functions are called almost perfect nonlinear
or APN.

Given a function F' € Fn[z] and a linear map L € Fp»[z] the isotopic shift
of F' by L is defined as the map

Fr(z) = F(z + L(x)) — F(z) — F(L(x)).

This notion was introduced in [3] (see also [4]) and is inspired by the notion of
isotopic equivalence of pre-semifields [1]. As we have shown in [3], for the case
p = 2, an isotopic shift of an APN function can lead to APN functions CCZ-
inequivalent to the original function. Moreover, all quadratic APN functions with
n = 6 (which are all known) can be obtained from z3 by isotopic shift, and a
new infinite family of quadratic APN functions is constructed for n divisible by
3 by isotopic shift of Gold functions [3].

In the present paper we consider different generalizations of isotopic shift
construction when the starting function is a monomial with a Gold exponent. In
particular, instead of the expression

2L(z)? + 22 L(z) (1)

provided by the isotopic shift of 22 ! by a linear function L we consider zL (x)% +
22" Ly(z) where both L; and Ly are linear. This leads us to a general family of
APN functions which, for n = 9, provides 15 new APN functions and covers
the only known unclassified example of APN functions, that is, function 8.1 in
[5, Table 11], which is given by the polynomial % + 210 + (4332136, Further we
discuss the case when in (1) the function 2 *' is not necessarily APN. And
finally, we consider the case when in (1) the function L is not necessarily linear.

2 On the generalized linear shift over Fjn

Let n = km for any positive integers m and k. An Fam-polynomial is linear map
given by L(x) = Zj;é A;x¥" | for some A; € Fan. We studied in [3, Theorem
6.3] the linear shift of the Gold function G; = x>+, defined over a finite field
Fan, by a Fom-polynomial, that is,

Gip(z) = 2L(2)* + 2 L(x).

For the case n = 3m this construction leads to an infinite family of APN func-
tions, providing, in particular, a new APN function for n = 9.

In the following we will generalize the isotopic shift construction. This gen-
eralization produces further new APN functions, as will be shown below.

Denote d = ged(2™ — 1, %) and let d’ be the positive integer with the

same prime factors as in d and satisfying ged(2™ — 1, %) = 1. Now denote



U = (¢¥@" 1) the multiplicative subgroup of Fj. of order ( ;m L)/d'. Note
that it is possible to write every element z € F3, as x = ut with v € W and
t € F5,., where W ={(°y:ye U, 0<s<d —1}.

Then it is possible to obtain the following generalization of [3, Theorem 6.3].
The proof use similar ideas as the proof of the theorem mentioned above, and
so we omit it.

2]'771

Theorem 1. Let n = km for m > 1 and set ¢ =2". Let Ly(x) = Zf;ol Az
and Lz(z) = Zf;é B;x?" be two Fam-polynomials. Then, let i be such that
ged(i,m) =1 and F € Fylz] given by

F(z) = 2Li(x)® +a% Lo(z) (2)
is APN over Fy if and only if the following statements hold for any v € W:
— (Ll(v))zi £ L2(v)
— Ifue W\ {1} and (Llizv))gi = Lz(v) , then (Ll(v)) 4 La(uv)

uv

e W 1) and (B B, ey Bl it

The obtained APN function (2) is of the form

k—1
F( ) (A2 + BO) 2041 + Z 2’L+J’7L+1 +B 2J,n+21]

Jj=1
For the linear functions L1 and Lo we obtain also the following properties.

Proposition 1. Let n,q, L1, Ly and F be as in Theorem 1. If F' is APN over
F,, then the following statements hold:

(i) ker(L1(x) + rz) Nker(La(x) + 2 1) ’_: {0} for any r € Fan.
(ii) | ker(Ly(z)?" + rz) Nker(Lo(z) + w? 22")| < 2 for any r,w € Fon.
(#ii) If ker(Li) N ker(Lg( ) +x) # {0}, then ker(L:1(z) + x) Nker(Lz) = {0}.
(iv) ker(Ly(x) + rz®") Nker(Ly(z) + 7 2 (@12’ 1) = {0} for any r € Fan and
J=0.

Proof. For any nonzero a we define the function A,(z) = F(z+a)+F(z)+F(a).
Suppose there exists a non-zero a € ker(Ly () + ra) Nker(Lo(z) + 2 x). As

Au(z) = aLi(2)? + 2L1(a)? + 2% La(a) + a® Lo(z),

we clearly have aFam C ker(A4,), but since m > 1, this contradicts | ker(4,)| = 2.
This establishes (i). A
For (ii), suppose {0, a,b} C ker(L;(x)? + ra) Nker(Lo(z) + w? 2 ). Then

Aa(b) = a(rb) + b(ra) + a® (w2 b*) + b2 (w* a®') = 0.



Next suppose a € ker(Ly)Nker(Ls(z)+x). Then we have A, (z) = a(L1(z)+
)% 4 a? Ly(z). Clearly any b € ker(Li(z) + z) Nker(Ly) satisfies Aq(b) = 0.
Since f is APN, ker(4A,) = {0, a}, so that ker(Li(x) + =) Nker(Ly) C {0,a}.
However, ker(Lq) Nker(L(x) 4+ z) = {0}, so that no non-zero element of F, can
lie in both ker(L;) Nker(Lz(z)+x) and ker(L; (x)+x) Nker(Lz). This establishes
(i)

For (iv), suppose a € ker(L;(x) 4+ rz?") Nker(Ly(z) +r2 22’ =D2'+1) is non-
zero. Then for any t € Fom we have

Ay(ta) = ar? 2 a? " ptar? o 4 (ta)2i7‘21a(2j71)21+1 + a2 r? @ D2+

— 22T (t2i bt 4 t) —0.
so that alFam C ker(4,), a contradiction. O

For the case k = m = 3 we consider generalized linear shift as (2) with L
and Ly having coefficients in the subfield Fos. In Table 1 we list all the known
APN functions for n = 9, as reported in [3, Table I]. In Table 2, we list all new
APN functions obtained from Theorem 1. We see that the family of Theorem 1
covers the only known example of APN functions for n = 9, function 8.1 of Table
11 in [5], which has not previously been identified as a part of an APN family.
Hence, currently we do not have any known example of APN functions for n = 9
which would not be covered by an APN family. Finally, Table 2 indicates 15 new
APN functions all obtained from Theorem 1.

Table 1. Known CCZ-inequivalent APN polynomials over Fqyo

Functions ‘Families‘na Table 11 in [5]‘
z° Gold 1.1
x5 Gold 2.1
z'7 Gold 3.1
213 Kasami 4.1
224 Kasami 6.1
z1? Welch 5.1
255 Inverse 7.1
Trd (%) + z* [6] 1.2
Try(z'® + 2%) + 2® [7] 1.3
Trg(z‘o’6 + mlg) + 23 [7] 1.4
2 4 410 4 (438,136 — 8.1
3BT 129 | (424,66 | ¢2,07 |~ 10 | -34,3 (3] —

We conclude this section with the observation that the isotopic shift can lead
to an APN function also starting from a non-APN function.



Table 2. APN polynomials over Fyo derived from Theorem 1. All are either new or
correspond to the one known but unclassified case.

i, L1, Lo Function Eq. to known ones

i=1,

Ly = 365404 4 (1468 4 | -219,120 4 +202,66 | 292,17 4 219,10 | 3 new

Lo = (292404 4 (219,8
i=1,

Ly = 438,00 4 4388 4 | £365,129 | +202,66 | (365,17 4 ~73,10 4 ;3 new

L2 — 4292164 + C73z8
i=1,

Ly = ¢438504 4 (73,8 | o |¢365,129 4 865,66 4 ~146,17 | (365,10 4 ;3 new

Lo = (365404 4 (365,8
i=1,

Ly = (188504 4 (146,8 | (365,120 | (210,66 | (292,17 | (73,10 | ;3 new
Lo = ¢219464 4 (73,8 1 4
i=1,

Ll — 4292I64 + C292x8 C7330129 + <365m66 + 473‘,1‘,17 + C73x10 + :US new
Lo = 365464 4 (73,8 L o
i=1,

L= ¢*38554 4 o (365,120 4 438,66 4 +292,10 4 3 new

Lo = 4-438:1;64 + <292.’IJ8

i=1,
Ll — C438164 + 4365I129 + mGG + 443811(J + wS new
L2 — 164+ C4SSLES
i=1,
Ll — C292-’E54 + (73z129 + C292I66 + 110 + .123 new
Lo = (292564 4 ;8
i=1,
L, = <292x54 + C365x8 {7390129 + 256 + <219x17 + 23 new
Lo = 264 +x
i=2,
L, = c~292$64 +z C146m257 + C438$68 + 4438$12 + 25 new
Lo = C438z64 + <438m8
i=2,
Ly = C292164 + C219w8 C146$257 + Cseswss + C365w12 + o eq. to 8.1
Ly =¢%%%2% 4o in [5, Table 11]
i=2,
L, = C14%64 4 28 <73z257 + C146I68 + 23 4 28 new
Lo = C145$54 +a
i=2,
L, = C219x64 + <219x8 +x 43651257 n C438x68 + <365x33 + C438112 4 2b new
Lo = 4438;864 + <438z8
i=2,
L, = ngzmm + <146I8 +xz C146m257 + szzss + 473$33 4212 4 g8 new
Lz — 42199364 +I8
i=2,
L, = C145z54 + <219z8 (7395257 + C219z68 + §355133 425 new
Ly = (219504 4 o
i=4,
L, = C1463554 tz 4292333 + C146x80 + C73x24 +3c17 new

Lo = C146$64 + C73m8




Remark 1. Tt is possible to generate an APN map with a linear shift starting
from a function that it is not APN. For example, consider Fys, where the function
F(x) = 2° is not APN. With L(z) = (2® we construct the APN map

Fr(z) = 2*L(z) + o L(z)* = ¢a'? + ¢*a33,

where Fr(z) = M(23) for the linear permutation M (z) = (a* + (*232.

3 Isotopic shifts with nonlinear functions

In this section we consider the case when the function used in the shift is not
necessarily linear.

In [3], it has been proved that in even dimension an isotopic shift of the
Gold function, with a linear function defined over Fy[z], cannot be APN. In the
following, we show that for any quadratic function in even dimension we cannot
obtain APN functions shifting by any polynomial with all coefficients in F.

Proposition 2. Let n be an even integer and consider a quadratic function F.
An isotopic shift Fy, for any L € Fy[z] cannot be APN.

Proof. Given F(z) =Y, bija® 2 L5 b + ¢ we have
= Zbij [achL(a:)Qj + xsz(x)Qi] +c
i<j
and L(2?) = L(z)% Let Fy = {0,1,,a + 1}. Defining A, (x) = Fr(x + a) +
Fr(x) + Fr(«), we have

Aala+1) = bij[Lla+1)° a1+ (@+ 1) Lia+1)

1<j

+ L(a)azjﬂ. + aL(a)iji]zi +ec

When j — i odd, the term of the sum is zero since o =a+1, L? " =
L(a+1) and L(a+1)?"" = L(a ) In the case j — ¢ even, the term of the sum is

also zero due to the fact that a? '~ = o and L(a )2] = = L(a). So the function
cannot be APN. O

3.1 Nonlinear shift for the Gold functions

If we consider an isotopic shift of a Gold function without the restriction L(x)
linear function, then L(z) = Y ¢;27 and the isotopic shift will be of the form

Gir(z) = 2% L(z) + 2L(2)* . (3)

We have G; 1, (z2)2 = 22 M(z)+xM(z)?', where M = ¥ cjzflxj, and (271G, [ (Cx) =
2% N(z) +xN ()%, where N(z) = 3" ¢;¢?~'a7. Hence we obtain the following.



Proposition 3. Let g =2", F, = ({) and G; = 22+ be APN over F,. Suppose
Gi.1 is constructed with L(z) = 23252 bjzl. Then G; 1, is linear equivalent to

Gi.m, where M(x) = Z?lgg(bjg“k(j_l))?xj for any k.t integers.

Hence it is possible to restrict the search of one possible non-zero coefficient of
the function.

Theorem 2. Over Fon with n an odd integer, consider F(x) a known APN
power function (excluding the Dobbertin function). Then there exists a monomial

L(z) and a Gold function G; = 22+ such that the shift G; 1. s equivalent to F.

Proof. 1. Consider the Kasami function 22 2 If ¢ s odd, ther{ let i be an
n—1i n—1i n—i+t—
integer such that n = 2i+¢. Then, considering L = qz?" +2" " 42"

we have

2 2 2n—i+2n—i+l_44+2n—i+t71+2i

7 t
Gip =0a" 2* +azx

i t irot t+1 2t—1
— a2 a2 a2
i ot P02t ot
— o2 2 g a2,
. . . . . i i+1 3i—1
If t is even, let i be an integer such that ¢ = 2i. Then, with L = qz? 2" 12
O gi 92 _gthy 931
we have G; 1, =a° x +azx® .

2 22t

2. For the inverse function, 2" 2, considering L(x) = az* ~2, where t is such
that n = 2t + 1, we have G, | = a?22(2"=2) 4 qq2"

3. Let n = 2t + 1 and consider the Welch function z2 3. If ¢ is odd, then
consider 4 such that ¢t = 2i — 1. With L(z) = az?+2"" we obtain GiL =

a2 22" @73 4 022 If ¢ is even, then consider i such that ¢ = 2i. Using
L(z) = az?” "+ we obtain G, , = a% ¢t 4 ax? T @43,

4. For n =2t+1, with t odd, let t = 2¢ — 1. Then, with L = az?" 2" we obtain

gLL _ a27‘,1:2i722i+1 Yar— a2ix22i(2—i+2—2i71) 1 az

_ azix22i(23i—l+22i—l_1) 2ix22i(2(3t+1)/2+2t

+ar =a 4 ax

is equivalent to the Niho function (indeed (3t+1)/2 = (6i—3+1)/2 = 3i—1).
If ¢ is even, let ¢ = 2. Then with L = az2" +2" "wt2"7!

i oi n—i_ on—it1 n—1_ oi
gi,L _ a2 1,2 + a:r2 +2 L2 +2

2

% 3 n—1i i—1 24
_ a2 2 4 qp? 22T 2%

_ aQiin i azzn—i(27‘,71+22i)
is equivalent to Niho function.
5. Let n = 2i + 1 and j be an integer such that ged(n,j) = 1. Then with
L=az?"~2
g4 L= a2ix221+]‘722i+1 i a$211+j
L —

i 62i(0j | o—2i_ itj
— 2 2@ 2 D 4 qa2

i 62000 itj
_ o2 2241 4 a2



is equivalent to Gold with parameter j.

4 Conclusions

We presented some generalizations of the isotopic shift construction introduced
in [3] for the case when the starting function is a Gold power function. In partic-
ular, using a generalized form of the isotopic shift with [F;-polynomials, we were
able to construct a general family of quadratic APN functions. This allows us to
classify into an infinite family the only previously known unclassified example of
APN functions for n = 9, and to provide 15 new APN functions on Fas. We also
investigated the case of constructing an isotopic shift with a nonlinear function.
In this case, for any odd n we can obtain all known power APN functions (except
the Dobbertin case) using a nonlinear monomial function.

Clearly, the introduced ideas of generalized isotopic constructions are appli-
cable also in case when the starting function is not necessarily a Gold function,
but this is currently a matter for further investigations.
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