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1 Preliminaries

In this section we report some definitions and results which are well-known and
relevant to our work. For details, the reader is referred to [2,6,8,9,10].

We denote the field of two elements, 0 and 1, by F. We will denote any vector
in Fn by v. We use ordinary addition + instead of XOR ⊕. For any set A, |A|
denotes its size.

A Boolean function (B.f.) is any function f from Fn to F and a vectorial
Boolean function (v.B.f.) is any function F from Fn to Fm, n,m ∈ N. However,
we only consider v.B.f.’s from Fn to Fn. We represent the B.f.’s in algebraic
normal form (ANF for short) which is the n-variable polynomial representation
over F given by

f(x1, ..., xn) =
∑
I⊆P

aI

(∏
i∈I

xi

)
where P = {1, ..., n} and aI ∈ F. We will write X = {x1, ..., xn}. The algebraic
degree or simply degree of f (denoted by deg(f)) is maxI⊆P{|I| | aI 6= 0}. The
set of all B.f.’s is denoted by Bn.

For a B.f. f , we say that f is linear if deg(f) ≤ 1 and f(0) = 0, affine if
deg(f) ≤ 1, quadratic if deg(f) = 2 and cubic if deg(f) = 3. The set of all
affine functions is denoted by An. Given a v.B.f. F = (f1, ..., fn), the functions
f1, ..., fn are called coordinate functions and the functions λ · F , with λ ∈ Fn
and “·” denoting dot product, are called component functions. If λ 6= 0, then
λ · F is a nontrivial component. The degree of a v.B.f. F is given by deg(F ) =
maxλ∈Fn\{0}{deg(λ · F )}. We say that F is quadratic if deg(F ) = 2 and cubic if
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deg(F ) = 3. If all nontrivial components of a cubic v.B.f. F are cubic, we call F
a pure cubic.

For m < n, if f is in Bn and depends only on m variables, then we denote
by f�Fm its restriction to these m variables. Clearly f�Fm ∈ Bm. The Hamming
weight of f is given by w(f) = |{x ∈ Fn | f(x) = 1}|. We say that f is balanced
if w(f) = 2n−1. The distance between f and g is d(f, g) = w(f + g) and the
nonlinearity of f is N (f) = minα∈An

d(f, α).
We define the Walsh transform of f , the function Wf from Fn to Z, as

Wf (a) =
∑
x∈Fn

(−1)f(x)+la(x) ,

where la(x) = a · x, for all a ∈ Fn. Let L(f) = max
a∈Fn

|Wf (a)|. We define F(f) as

F(f) =Wf (0) =
∑
x∈Fn

(−1)f(x) = 2n − 2w(f).

Note that f is balanced if and only if F(f) = 0.

Theorem 1. Let f ∈ Bn. Then N (f) = 2n−1 − 1
2L(f).

We say that f ∈ Bn is bent if N (f) = 2n−1 − 2
n
2−1 which can happen only

for n even. Note that the highest possible value for L(f) is 2
n
2 and this bound

is achieved for bent functions (and only them).
The (first-order) derivative of f at a is defined by Daf(x) = f(x+ a) + f(x)

and the (second-order) derivative at a and b is DbDaf(x) = f(x) + f(x + b) +
f(x + a) + f(x + a + b) (these definitions are extended to v.B.f.’s in a similar
way).

Theorem 2. f ∈ Bn is bent if and only if Daf is balanced for any nonzero a.

For n odd, a B.f. f is called semi-bent if N (f) = 2n−1 − 2
n−1
2 . A v.B.f. F in

odd dimension is almost-bent (AB) if all its nontrivial components are semi-bent.

Theorem 3. Let F be a v.B.f. Then F is a permutation if and only if all non-
trivial components are balanced.

Two B.f.’s f, g : Fn → F are said to be affine equivalent if there exist an
affinity ϕ : Fn → Fn such that f = g ◦ ϕ. We denote this relation by ∼A and
write f ∼A g. Observe that ∼A is an equivalence relation.

Proposition 1. Let f, g ∈ Bn be such that f ∼A g . Then w(f) = w(g) and so
f is balanced ⇐⇒ g is balanced.

Proposition 2. Let f, g ∈ Bn, f ∼A g. Then {|Wf (a)|}a∈Fn = {|Wg(a)|}a∈Fn .

Definition 1. Let f ∈ Bn. For k ∈ N, Lk(f) =
∑
a∈Fn |Wf (a)|k is called the

kth power moment of the Walsh transform.
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Observe that, by Proposition 2, the following corollary holds.

Corollary 1. Let f, g ∈ Bn, f ∼A g. Then Lk(f) = Lk(g) and N (f) = N (g).

From now on, if no confusion arises, for any f, g ∈ Bn that are either f ∼A g
or f ∼A g + 1, we write f ∼A g/ + 1. In the following theorem we report the
classification of quadratic B.f.’s under affine equivalence.

Theorem 4. Let f ∈ Bn be quadratic. Then

(i) f ∼A x1x2 + · · ·x2k−1x2k + x2i+1 with k ≤ bn−12 c if f is balanced,
(ii) f ∼A x1x2 + · · ·x2k−1x2k/+ 1 with k ≤ bn2 c if f is unbalanced.

2 On the weight of Boolean functions

In this section we classify the weight of some particular functions. We determine
some conditions for these functions to be balanced. Any result not done by us
has been cited. To meet the page limit, most proofs have been omitted.

Definition 2. Let f ∈ Bn. We say that f is a splitting function if ∃f̄ ∼A f
such that f̄ = g(x1, ..., xi) + h(xi+1, ..., xn), with i < n, g ∈ Bi and h ∈ Bn−i.

Remark 1. If g(x1, ..., xi) is inBn then w(g) = 2n−iw(g�Fi) and F(g) = 2n−iF(g�Fi).
Furthermore, g is balanced if and only if g�Fi is balanced and also F(g) = 0 if
and only if F(g�Fi) = 0.

Next we consider the weight and balancedness of splitting B.f.’s.

Lemma 1. Let f ∈ Bn be such that f ∼A g(x1, ..., xi) + h(xi+1, ..., xn), with
i < n Then

F(f) = F(g�Fi)F(h�Fn−i) = 2−nF(g)F(h).

Proof. Let x = (x′, x′′) with x′ ∈ Fi and x′′ ∈ Fn−i. So

F(f) =
∑

x=(x′,x′′)∈Fn

(−1)g(x
′)+h(x′′) =

∑
x′∈Fi

(−1)g(x
′)

∑
x′′∈Fn−i

(−1)h(x
′′)

= F(g�Fi )F(h�Fn−i ) = 2−n
(
2n−iF(g�Fi )

) (
2iF(h�Fn−i )

)
= 2−nF(g)F(h).

Remark 2. Recall that X = {x1, ..., xn}. For 1 ≤ i ≤ t, let Xi ⊂ X be such that
all Xi are pairwise disjoint. It is immediate, by Remark 1 and Lemma 1, that if
f(X) = f1(X1) + · · ·+ ft(Xt), with |Xi| = ni, then F(f) = 2n−s

∏t
i=1 F(fi�Fni )

with s = n1 + · · ·+ nt.

Theorem 5. Let f ∈ Bn be such that f ∼A g(x1, ..., xi) + h(xi+1, ..., xn), with
i < n. Then

w(f) = 2n−iw(g�Fi ) + 2iw(h�Fn−i )− 2w(g�Fi )w(h�Fn−i )

= w(g) + w(h)− 21−nw(g)w(h).
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We now present some results on balanced splitting functions.

Theorem 6. Let f ∈ Bn be such that f ∼A g(x1, ..., xi) + h(xi+1, ..., xn). Then
f is balanced if and only if either g or h is balanced.

Proof. f is balanced ⇐⇒ F(f) = 0 ⇐⇒
(
F(g�Fi) = 0 or F(h�Fn−i) = 0

)
⇐⇒

either g or h is balanced.

Proposition 3. Let f ∈ Bn, deg(f) = m, be such that f ∼A
∑k−1
i=0

∏m
j=1 xmi+j.

Then w(f) = 2n−1−2n−mk−1(2m−2)k and w(f+1) = 2n−1+2n−mk−1(2m−2)k.

Proof. Let fi =
∏m
j=1 xmi+j . Then, by Remark 2, F(f) = 2n−mk

∏k−1
i=0 F(fi�Fm ).

But fi�Fm (x) = 0, for all x ∈ Fm \ {1}, so F(fi�Fm ) = 2m − 2. Thus F(f) =

2n−mk(2m − 2)k. Hence w(f) = 2n−1 − 1
2F(f) = 2n−1 − 1

2 [2n−mk(2m − 2)k] =
2n−1−2n−mk−1(2m−2)k and w(f+1) = 2n−w(f) = 2n−1 +2n−mk−1(2m−2)k.

Remark 3. All quadratic B.f.’s split (see Theorem 4) and are of the form given in
Proposition 3 if unbalanced. So, by applying Proposition 3, w(f) = 2n−1−2n−k−1

and w(f + 1) = 2n−1 + 2n−k−1 if f is unbalanced quadratic (note that in this
case m = 2).

Now we study the weight and balancedness of B.f.’s in some particular form.
The weight of a B.f. on Fn can be expressed in terms of the weights of other
B.f.’s on Fn−i, for some i < n.

Any B.f. can be expressed in the form

f = xig(x1, ...xi−1, xi+1, ..., xn) + h(x1, ...xi−1, xi+1, ..., xn).

To simplify this notation, we can write

f = x1g(x2, ..., xn) + h(x2, ..., xn). (1)

Observe that f = x1g(x2, ..., xn) + h(x2, ..., xn) = x1(g + h) + (1 + x1)h. So any
B.f. f on Fn+1 can be written in the form

f ∼A xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn). (2)

We call this form the convolutional product of g and h.
Let g(xm+1, ..., xm+n) and h(xm+1, ..., xm+n) be B.f.’s on Fn with n,m ∈ N.

Note that the convolutional product is a special case of functions inBm+n defined
by

f ∼A

(
m∏

j=1

xj

)
g(xm+1, ..., xm+n) +

(
1 +

m∏
j=1

xj

)
h(xm+1, ..., xm+n). (3)

In fact, for any B.f. f , there exists a positive integer m such that f can be
expressed in the form (3). We show that if the weight of the functions g and h
on Fn is known, then the weight of a B.f. f on Fm+n which can be expressed in
the form (3) is obtained.
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Theorem 7. Let f ∈ Bm+n be a B.f. of the form (3). Then
(i) w(f) = (2m − 1)w(h�Fn) + w(g�Fn),
(ii) f is balanced if both g and h are balanced,
(iii) f is unbalanced if one in {g, h} is balanced and the other is not.

Remark 4. If m = 1 in Theorem 7 (that is, f = (xn+1)g+ (1 + xn+1)h) then we
have w(f) = w(h�Fn) + w(g�Fn).

Finally, we consider the weight of cubic B.f.’s. In general, it is difficult to
determine the weight for B.f.’s of degree greater than 2 (see [7]). Here we present a
result which completely describes the weight of a special class of cubic functions.
This result allows us to construct an algorithm that computes the weight of any
cubic function.

We now state our classification theorem for the weight of the special class of
cubic functions.

Theorem 8. Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn) be a cubic B.f.
such that deg(g),deg(h) ≤ 2. Then g ∼A q = x1x2 + · · ·+x2k−1x2k or g ∼A q̄ =
q+1, with k ≤ bn2 c, if g is quadratic unbalanced; h ∼A r = x1x2 + · · ·+x2`−1x2`
or h ∼A r̄ = r + 1, with ` ≤ bn2 c, if h is quadratic unbalanced. Moreover,

w(f) =



2n if both h and g are balanced

2n−1 if h (resp. g) is bal. quad. and g (resp. h) = 0

2n + 2n−1 if h (resp. g) is bal. quad. and g (resp. h) = 1

2n−1 ± 2n−k−1 if h is unbal. quad. and g = 0

2n + 2n−1 ± 2n−k−1 if h is unbal. quad. and g = 1

2n−1 ± 2n−`−1 if h = 0 and g is unbal. quad.

2n + 2n−1 ± 2n−`−1 if h = 1 and g is unbal. quad.

2n ± 2n−k−1 if h is unbal. quad. and g is bal.

2n ± 2n−`−1 if h is bal. and g is unbal. quad.

2n − 2n−k−1 − 2n−`−1 if h ∼A q and g ∼A r

2n + 2n−k−1 + 2n−`−1 if h ∼A q and g ∼A r

2n + 2n−k−1 − 2n−`−1 if h ∼A q and g ∼A r

2n − 2n−k−1 + 2n−`−1 if h ∼A q and g ∼A r.

With the help of Theorem 8, we can give a description of balanced cubic B.f.’s of
the class f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn), with deg(g),deg(h) ≤ 2.

Corollary 2. Using the same notation from Theorem 8, a cubic B.f. f is bal-
anced if and only if one of the following holds: (i) both g and h are balanced, (ii)
g ∼A q and h ∼A q, (iii) g ∼A q and h ∼A q.

Now we consider cubic B.f.’s which cannot be expressed in the form described
in Theorem 8. If a B.f. f is expressed in the form (1), that is, f = x1g(x2, ..., xn)+
h(x2, ..., xn) then w(f) = w((g + h)�Fn−1) + w(h�Fn−1). Since our interest is in
cubic functions, it can be assumed that g is quadratic and h can be affine,
quadratic or cubic. It becomes difficult to find the weight of f if h is cubic
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since in this case it implies that g + h is also cubic and finding w(h�Fn−1) and
w((g + h)�Fn−1) is not easy. However, we can recursively repeat the process of
decomposing the function f so that its weight is the sum of weights of some
affine or quadratic functions on a vector space of dimension < n over F. For
instance, further expressing g + h and h in the form g + h = x2g1(x3, ..., xn) +
h1(x3, ..., xn) and h = x2g

′
1(x3, ..., xn) + h′1(x3, ..., xn), the weight of f becomes

w(f) = w((g1 +h1)�Fn−2) + w(h1�Fn−2) + w((g′1 +h′1)�Fn−2) + w(h′1�Fn−2). We use
this idea to build an algorithm which computes the weight of cubic B.f.’s and its
efficiency and simplicity relies on the known results about the weights of affine
and quadratic functions.

Algorithm 1

The following algorithm computes the weight of any cubic function f on Fn:
Input: f ,
Output: w(f),
Step 1: express f in the form f = x1g(x2, ..., xn) + h(x2, ..., xn) so that

g is quadratic,
Step 2: if deg(h) ≤ 2, compute w(f) by using Theorem 8 and return w(f),
Step 3: otherwise, recursively compute the weights of g + h and h by

applying Step 1 and Step 2,
Step 4: sum up all the weights found to obtain w(f).

3 Nonlinearity of Boolean functions

In this section, we consider the nonlinearity of B.f.’s. We begin with splitting
functions.

Theorem 9 ([9]). Let f be a quadratic B.f. denoted as in Theorem 4. Then
Wf (a) ∈ {0,±2n−k} for a ∈ Fn, and N (f) = 2n−1 − 2n−k−1.

Corollary 3 ([10]). Let f ∈ Bn be a splitting function. Using the notation of
Definition 2,

N (f) = 2iN (h�Fn−i) + 2n−iN (g�Fi)− 2N (g�Fi)N (h�Fn−i)

= N (g) +N (h)− 21−nN (g)N (h).

Now we consider the nonlinearity of a function with terms that depend on
different variables and have the same degree. We claim the following.

Proposition 4. Let f ∈ Bn, deg(f) = m, such that f ∼A
∑k−1
t=0

∏m
j=1 xmt+j

with m > 1. Then N (f) = N (f + 1) = 2n−1 − 2n−mk−1(2m − 2)k.

Remark 5. In Proposition 4, f is a quadratic bent function if m = 2 and k =
n/2 for n even but it is impossible for f to be bent when m > 2. Otherwise,
2n−mk−12k(2m−1 − 1)k would be equal to 2

n
2−1 for some positive integer k,

contradicting the fact that (2m−1 − 1) - 2
n
2−1 since (2m−1 − 1) is odd and 2

n
2−1

cannot be divisible by an odd number.
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Theorem 10. Let f be a B.f. of the form (3). Let a = (a′, a′′) ∈ Fm × Fn with
a′ = (a′1, ..., a

′
m) and a′′ = (a′′1 , ..., a

′′
n) . Then

(i) Wf (a) =

{
(2m − 1)Wh�Fn (a′′) +Wg�Fn (a′′) if a′ = 0

(−1)λ
(
Wg�Fn (a′′)−Wh�Fn (a′′)

)
otherwise,

with λ = a′1 + · · ·+ a′m,
(ii) N (f) ≥ (2m − 1)N (h�Fn) +N (g�Fn).

Remark 6. Note that if m = 1, the nonlinearity of f ∼A xn+1g+ (1 + xn+1)h in
Theorem 10 is N (f) ≥ N (h�Fn) +N (g�Fn).

It is immediate from Theorem 9 and Remark 6 that the following corollary holds.

Corollary 4. Let f be as described in Theorem 8. Then

N (f) ≥


2n−1 − 2n−k−1 if g is quadratic and h affine,

2n−1 − 2n−`−1 if g is affine and h quadratic,

2n − 2n−k−1 − 2n−`−1 if both g and h are quadratic.

Corollary 4 suggests a way of constructing B.f.’s with high non-linearity.

4 A Characterization of APN Functions

Our main results here are Theorem 13, its consequences and Theorem 16.

4.1 APN functions

In this subsection we present some definitions and known results on APN func-
tions which can be found in [1,2,5,6].

Definition 3. Define δF (a, b) = |{x ∈ Fn|DaF (x) = b}|, for a, b ∈ Fn and
v.B.f. F . The differential uniformity of F is δ(F ) = maxa6=0,b∈Fn δF (a, b) and
always satisfies δ(F ) ≥ 2. We call a function with δ(F ) = 2 Almost Perfectly
Nonlinear (APN).

Next we state the result which connects the fourth power moment of Walsh
transform and any APN function.

Theorem 11. Let F be a v.B.f. Then∑
λ∈Fn\{0}

L4(λ · F ) ≥ 23n+1(2n − 1).

Moreover, F is APN if and only if equality holds.

As a consequence of Theorem 11, the following corollary holds.

Corollary 5. If F is APN then ∃λ ∈ Fn \ {0} such that L4(λ · F ) ≤ 23n+1.
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4.2 The parameter M(f)

In this subsection we define an integer which is denoted by M(f), for a given
B.f. f .

Definition 4. For a ∈ Fn and f ∈ Bn, define Za(f) := {b ∈ Fn|DbDaf = 0},
Ua(f) := {b ∈ Fn|DbDaf = 1} and Ma(f) := |Za(f)| − |Ua(f)|. We define the
parameter M(f) by

M(f) :=
∑

a∈Fn\{0}

Ma(f).

Proposition 5. Let f ∈ Bn. Then

(i) Za(f) is a vector space and has nonzero dimension for all a ∈ Fn,
(ii) Ua(f) is either a coset of Za(f) or the empty set,

(iii) Ma(f) ∈ {0, 2j} for some j ∈ {1, ..., n}.

Proposition 6. If g1, g2 ∈ Bn are such that g1 ∼A g2, then M(g1) =M(g2).

Proposition 7. Let f ∈ Bn be a B.f. with deg(f) ≤ 3 and let a ∈ Fn. Then
Ma(f) = 0 ⇐⇒ Daf is balanced and Ma(f) = 2n ⇐⇒ Daf is constant.

Next we state the result which characterizes a quadratic or cubic bent func-
tion f byM(f). By Theorem 2 and Proposition 7, the following theorem holds.

Theorem 12. For a quadratic or cubic f ∈ Bn, f is bent ⇐⇒ M(f) = 0.

4.3 Relationship between M(f) and APN functions

In this subsection, for a given B.f. f , a relationship between the fourth power
moment of the Walsh transform and the value M(f) is established, and con-
sequently a characterization of APN functions based on the latter quantity is
derived.

Lemma 2. Let F : Fn → Fn be a v.B.f. of deg(F ) ∈ {2, 3}. Then∑
λ∈Fn\{0}

L4(λ · F ) = 23n(2n − 1) + 22n
∑

λ∈Fn\{0}

M(λ · F ).

By Lemma 2 and Theorem 11, the following theorem holds.

Theorem 13. Let F : Fn → Fn be a v.B.f. with deg(F ) = 2 or 3. Then∑
λ∈Fn\{0}

M(λ · F ) ≥ 2n(2n − 1).

Moreover, F is APN if and only if equality holds.

As a consequence of Theorem 13, the following corollary holds.
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Corollary 6. If a v.B.f. F : Fn → Fn is a quadratic or cubic APN then there
is a nonzero λ ∈ Fn such that M(λ · F ) ≤ 2n.

We call V (f) = {a ∈ Fn | Daf is a constant} the linear subspace of a B.f. f .

Theorem 14. For any quadratic f , M(f) = 2n(2k − 1) where k = dimV (f).

Proof. Ma(f) = 0 ⇐⇒ Daf is balanced and Ma(f) = 2n ⇐⇒ Daf
is a constant (see Proposition 7). For a quadratic function f , Daf is con-
stant ⇐⇒ a ∈ V (f) and Daf is balanced ⇐⇒ a /∈ V (f). Thus M(f) =∑
a∈Fn\{0}Ma(f) =

∑
a∈V (f)\{0}Ma(f) = 2n(2k − 1), with k = dimV (f).

Lemma 3. For n odd, a quadratic B.f. f is semi-bent ⇐⇒ dimV (f) = 1.

Proof. Let f ∈ Bn be quadratic. So f is semi-bent ⇐⇒ N (f) = 2n−1 − 2
n−1
2

⇐⇒ f ∼A x1x2 + · · ·+ xn−2xn−1 + xn or f ∼A x1x2 + · · ·+ xn−2xn−1/+ 1
(see Theorem 9) ⇐⇒ dimV (f) = 1.

By Theorem 14 and Lemma 3, the following corollary holds.

Corollary 7. For n odd, a quadratic B.f. f is semi-bent ⇐⇒ M(f) = 2n.

By Theorem 14, the following corollary holds.

Corollary 8. Let F : Fn → Fn be a pure quadratic function. Then∑
λ∈Fn\{0}

M(λ · F ) = 2n
∑

λ∈Fn\{0}

(2dimV (λ·F ) − 1). (4)

Example 1. Let F (x1, x2, x3) = (f1, f2, f3) where f1 = x1x3 + x2x3 + x1, f2 =
x2x3 + x1 + x2 and f3 = x1x2 + x1 + x2 + x3 are all in B3. One can verify that
all nontrivial components are quadratic. By Corollary 8,

∑
λ∈F3\{0}M(λ · F ) =

23 ·(23−1) = 56 and so, by Theorem 13, we conclude that F is an APN function.
Moreover, all components are balanced, implying that F is an APN permutation.

By applying Lemma 3, Corollary 8 and Theorem 13, we can deduce the only
well-known result present in this subsection.

Theorem 15 ([4]). Let F : Fn → Fn, with n odd, be a pure quadratic function.
Then F is APN if and only if it is AB.

4.4 Second-order derivatives of APN functions

In this subsection, the Walsh transform in zero of the second-order derivatives
of a function is linked to the fourth power moment, and consequently a natural
characterization of APN functions is given based on the former.

Lemma 4. For a v.B.f. F : Fn → Fn ,∑
λ∈Fn\{0}

L4(λ · F ) = 23n(2n − 1) + 2n
∑

λ,c∈Fn\{0};b∈Fn

F(DbDcλ · F ).
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Theorem 16. Let F : Fn → Fn be a v.B.f.Then∑
λ,c∈Fn\{0};b∈Fn

F(DbDcλ · F ) ≥ 22n(2n − 1).

Moreover, F is APN if and only if equality holds.
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