
Limitation of the BLR testing in estimating
nonlinearity

(Extended Abstract)

Debajyoti Bera1, Subhamoy Maitra2, Dibyendu Roy2, and Pantelimon Stănică3

1 Indraprastha Institute of Information Technology, Delhi, India
2 Indian Statistical Institute, Kolkata, India
3 Naval Postgraduate School, Monterey, USA

dbera@iiitd.ac.in, subho@isical.ac.in, roydibyendu.rd@gmail.com,

pstanica@nps.edu

Abstract. In this paper we concentrate on a limitation of the BLR
(Blum-Luby-Rubinfeld) linearity test on a Boolean function f , which
checks the weight of the function F (x, y) = f(x)+f(y)+f(x+y) for many
random inputs x, y, which should be 0 for a linear function. We point
out that this test, which considers the weight of F and G(x, y) = g(x) +
g(y) + g(x+ y), does not provide proper information on the nonlinearity
ordering of two functions f, g. The problem remains even if we extend
the algorithm to analyze the nonlinearities of F,G, too. In this direction,
we provide examples of functions on any number of input variables, such
that the BLR test (and certain extensions of it) fails to estimate the
nonlinearity hierarchy property. We also consider a quantum algorithm
to demonstrate the problem in maintaining such hierarchy.

Keywords: Boolean functions, BLR linearity testing, Nonlinearity.

1 Introduction

Nonlinearity is one of the most important properties for Boolean functions from
the aspect of cryptology (since it provides resistance against linear attack), cod-
ing theory (covering radius of Reed-Muller codes), and combinatorics. To cal-
culate the nonlinearity for an n-variable Boolean function, one requires O(n2n)
time complexity using the fast Walsh transform. This complexity being exponen-
tial, there are efforts to estimate the nonlinearity of a Boolean function with fewer
runs, both in classical and quantum domain. Despite having a lot of progress in
deciding whether a Boolean function is linear or not by making a few queries
to the function, to the best of our knowledge there has not been much headway
into estimating the “nonlinearity” of the function. Nonlinearity of a function is
defined roughly as the smallest distance of the function to any affine function.
This paper provides evidence that the BLR linearity test (described below) and
its extensions in classical and quantum domain fail to do so.

Our initial findings suggest that further techniques may be needed since
existing (probabilistic) techniques in classical domains [1,4,7,10], do not really
“preserve” the nonlinearity hierarchy. We measure the cost of estimation as the
number of queries (called as query complexity) made to the Boolean function,
say f : {0, 1}n → {0, 1}, that is given to us as a black-box and one can obtain
f(x) giving an input x. Since we can modify a linear function by changing the
output at a single input, deterministic linearity detection requires querying f on
all of the 2n input points. Thus, any sub-exponential query algorithm, say A, is
bound to make an error.

For the BLR algorithm, wt(F (x, y)) plays an important role, where F (x, y) =
f(x) + f(y) + f(x + y). For all the known tests [1,4,7,10], wt(F) = 0 whenever
nl(f) = 0, i.e., f is linear4. The difficulty of using these tests for nonlinearity
estimation is that wt(F) is not monotonically increasing with nl(f). One of the
objectives of this paper is to highlight that there exists a pair of functions, say
f1 and f2 for every input-length (greater than or equal to 4) for which nl(f1) >
nl(f2) but wt(F1) < wt(F2) and nl(F1) < nl(F2), for the classical BLR test and a
quantum linearity test as well. Classical linearity tests are mostly variations and
extensions of BLR, so we explain our observation with respect to BLR. Quantum
linearity testing algorithms, on the other hand, are mostly based on estimating
Walsh coefficients being done using the single-query Deutsch-Jozsa algorithm
and we use such a quantum algorithm to highlight the difficulty mentioned above.

2 Background

A Boolean function on n variables is a map from the n-dimensional vector space
of all binary tuples Fn2 = {0, 1}n into the two-element field F2 = {0, 1}. We will
denote the set of n-variable Boolean functions as Bn, with |Bn| = 22

n

.

An n-variable Boolean function f can be considered to be a multivariate
polynomial over F2. More precisely, f can be written as f(x1, . . . , xn) = a0 +∑
1≤i≤n

aixi+
∑

1≤i<j≤n

aijxixj+· · ·+a12...nx1x2 . . . xn, where the coefficients are in

{0, 1}. This representation is called the algebraic normal form (ANF) of f . The
number of variables in the highest order product term with nonzero coefficient
is called the algebraic degree, or simply the degree of f and denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function
with constant term equal to zero is called a linear function. The set of all n-
variable affine functions is denoted by An. That is, the set of affine functions
contains all the linear functions and their complements.

For x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both in Fn2 , we define the inner
product by x · ω = x1ω1 + · · · + xnωn. A Boolean function `(x) is affine if
`(x) = ω · x+ ω0 for some fixed ω ∈ Fn2 , ω0 ∈ F2 (if ω0 = 0, then it is linear).

4 Without loss of generality, throughout the paper, we consider the functions where
f(0, 0, . . . , 0) = 0. The analysis may be changed accordingly when f(0, 0, . . . , 0) = 1.

2

For f ∈ Bn, the Walsh transform of f(x) is an integer valued function over

Fn2 , defined as f̂(ω) =
∑
x∈Fn

2

(−1)f(x)+x·ω.

The fastest known classical algorithm to calculate all the Walsh spectrum
values of f ∈ Bn, i.e., f̂(ω) at each of the 2n points ω, is of O(n2n) time com-
plexity. Calculation of the Walsh spectrum value at a specific point requires
O(2n) time in classical domain. The nonlinearity of an n-variable function f is
nl(f) = min

g∈An

(d(f, g)), i.e., the minimum distance from the set of all n-variable

affine functions. In terms of Walsh spectrum, the nonlinearity of f is given by
nl(f) = 2n−1 − 1

2 maxω∈Fn
2
|f̂(ω)|.

The (Hamming) weight wt of a vector is the number of 1’s in the vector. The
weight of a Boolean functions is the weight of its truth table (output values).
If wt(f) = 2n−1, then f is called a balanced function. In terms of the Walsh

coefficients, f ∈ Bn is balanced if and only if f̂(0, . . . , 0) = 0. The distance
between two vectors is the weight of their sum, that is, d(u, v) = wt(u+ v).

3 Linearity testing

Testing whether a Boolean function (given as an oracle) is affine or not is an
important question in the field of computational complexity [4,3]. For further
results in this area of property testing, one may refer to [2,8,9].

Definition 1. Given two n-variable Boolean functions f and g, we say that

f, g are ε-far if
|{x ∈ Fn2 : f(x) 6= g(x)}|

2n
=
d(f, g)

2n
> ε, Further, an n-variable

Boolean function f will be called ε-far from a subset S of n-variable Boolean
functions if f is ε-far from all the functions g ∈ S. Naturally, the definition of

ε-close is just the opposite, i.e., f, g are ε-close if
|{x∈Fn

2 :f(x) 6=g(x)}|
2n = d(f,g)

2n ≤ ε.

The classical probabilistic test for linearity is well known as the BLR (Blum-
Luby-Rubinfeld) test [4] that exploits the property of a linear function `(x+y) =
`(x) + `(y), ∀x, y ∈ Fn2 , with `(0) = 0. When the testing fails, we can conclude
(with some probability) that the function in consideration is not linear.

Below, we provide the detail description of the BLR linearity testing. The
prime goal of this test is to test the linearity of a function without considering all
possible inputs of the Boolean function. If the function f ∈ Bn is approximately
a linear function, then f(x + y) = f(x) + f(y) for many random x, y ∈ Fn2 . To
be more precise, let F : F2n

2 → F2 be such that F (x, y) = f(x) +f(y) +f(x+y),
where x, y ∈ Fn2 . If f(x + y) = f(x) + f(y) for many random x, y, then F (x, y)
will be zero for randomly many inputs of F . Hence, wt(F) should reflect the
linearity of f .

The BLR algorithm follows a few simple steps and returns whether the func-
tion is approximately linear or not:

1. Select random x, y.
2. Check the satisfiability of f(x+ y) = f(x) + f(y).

3

3. If item 2 is satisfied for many randomly chosen x, y, then the function f is
probably linear.

As the algorithm is based on random sampling, it is a probabilistic test. We
assume that p is the probability that BLR is successful in the linearity testing
of f . Further, one is interested in checking the relation between this probability p
and function f . This relation can be obtained from the existing proof of the BLR
linearity test. The result states that, if the function is ε-close (then p = 1 − ε),
then maxa∈Fn

2
f̂(a) ≥ 1− 2ε.

4 Limitation of BLR test in nonlinearity hierarchy

It is natural to wonder whether one can get some estimates on the nonlinearity
of a function f given the weight (or even the nonlinearity of the corresponding
function F), by running the BLR test (or modifications of it) and attempt to
provide a range [nl(f) − a, nl(f) + b] in which the nonlinearity of f lies with
certain probability. It is the purpose of this section to give further proof that
this is not quite realizable with just the BLR test (or slight modifications of it).

It is clear that the BLR test is a probabilistic algorithm and errors may
occur. However, we like to point out a major problem here. Even in case we
consider all the inputs, the weight wt(F), where F = f(x) + f(y) + f(x + y)
does not provide a correct picture. Consider two 4-variable functions f1, f2 such
that 3 = nl(f1) < nl(f2) = 5 (we computed and there are 560 choices for f1
and 448 choices for f2). We chose randomly two such functions with truth tables
f1 = 0000000100011000, f2 = 0000000100010111. However, 114 = wt(F1) >
wt(F2) = 90 and 98 = nl(F1) > nl(F2) = 90. Thus, the BLR algorithm, by
itself, cannot take care of the actual distance even when calculated over all the
inputs.

One may wonder if by taking all Walsh transforms values of F , perhaps we
can provide some improvement in the testing. Calculating the Walsh transform
value of F at a point ω = (α, β) amounts to calculating the weight of the func-
tion Fα,β(x, y) = F (x, y) + Lα,β(x, y) = f(x) + f(y) + f(x + y) + Lα,β(x, y),
where Lα,β(x, y) = (α, β) · (x, y) = α · x+ β · y, for some fixed α, β (when there
is no danger of confusion, and α, β are fixed, we shall use L in lieu of Lα,β). We
can use Fα,β in the BLR linearity testing with the same probability of success.
The process is described below:

Extended (α, β)-BLR linearity testing:

1. Choose random x, y.
2. Query Fα,β(x, y) = f(x) + f(y) + f(x + y) + L(x, y), for many randomly

chosen x, y.
3. If Fα,β(x, y) = 0 for many randomly chosen x, y, then we say that f is

approximately linear.

We assume that the above is successful with probability p = Pr[f(x)+f(y)+
L(x, y) = f(x+y)]. If the function f is ε-close to L, then we will have 1−ε = p =

4

Pr[f(x)f(y)L(x, y) = f(x+ y)], where f(x) = (−1)f(x) and L(x, y) = (−1)L(x,y).

Theorem 2. For f ∈ Bn and α, β ∈ Fn2 (writing L for Lα,β), we have

Pr[f(x) + f(y) + L(x, y) = f(x+ y)] = E

[
1

2
+

1

2
f(x)f(y)L(x, y)f(x+ y)

]
=
∑
c∈Fn

2

f̂(c)f̂(c+ α)f̂(c+ β) ≤ max
c∈Fn

2

f̂(c).

Proof. First,
1

2
+

1

2
f(x)f(y)L(x, y)f(x + y) = 1, if f(x)f(y)L(x, y) = f(x + y),

otherwise it is 0. Now, p = Pr[f(x) + f(y) + L(x, y) = f(x+ y)] becomes

p = E

[
1

2
+

1

2
f(x)f(y)L(x, y)f(x+ y)

]
=

1

2
+

1

2
E [f(x)f(y)L(x, y)f(x+ y)] . (1)

Next, we compute

E [f(x)f(y)L(x, y)f(x+ y)] = E

 ∑
a,b,c∈Fn2

f̂(a)f̂(b)f̂(c)λa(x)λb(y)λc(x+ y)λα(x)λβ(y)


=

∑
a,b,c∈Fn2

f̂(a)f̂(b)f̂(c)E [λa+c+α(x)]E [λb+c+β(y)]

=
∑
c∈Fn2

f̂(c)f̂(c+ α)f̂(c+ β) ≤

∣∣∣∣∣∣
∑
c∈Fn2

f̂(c)f̂(c+ α)f̂(c+ β)

∣∣∣∣∣∣
≤

∑
c∈Fn2

(
f̂2(c)f̂2(c+ α)

) 1
2
∑
c∈Fn2

(
f̂2(c+ β)

) 1
2

(by Cauchy–Schwarz’s inequality)

≤ max
c∈Fn2

f̂(c)

∑
c∈Fn2

(
f̂2(c+ α)

) 1
2
∑
c∈Fn2

(
f̂2(c+ β)

) 1
2

= max
c∈Fn2

f̂(c),

since E[λa+c+α(x)] = 1, if a = c+α, and 0, otherwise, as well as, E[λb+c+β(y)] =
1, if b = c+ β, and 0, otherwise. ut

Corollary 3. Let f ∈ Bn, α, β ∈ Fn2 , L(x, y) = (α, β) · (x, y), and Pr[f(x) +

f(y) + L(x, y) = f(x+ y)] = 1− ε. Then, we have
1

2
+

1

2
max
c∈Fn

2

f̂(c) ≥ 1− ε, that

is, maxc∈Fn
2
f̂(c) ≥ 1− 2ε, similarly as in the BLR linearity test.

Computational data revealed (as we pointed out in the beginning of Section 4)
that the BLR and the Extended (α, β)-BLR test provide incorrect estimates on
the nonlinearity even if we consider all possible inputs on the function f .

5

4.1 Limitation of BLR test on Boolean functions involving higher
number of variables

In this section we prove the existence of functions in n ≥ 4 number of variables
on which BLR test does not preserve nonlinearity hierarchy. We start with a
result that gives the convolution of the functions involved in Fα,β , which will be
useful to us to achieve our goal.

Theorem 4. Let f, Fα,β be Boolean functions in n, respectively, 2n variables
such that Fα,β(x, y) = f(x) + f(y) + f(x+ y) +αx+ βy, where α, β are random

but fixed n-length vectors. Then F̂α,β(x, y) = 2−n
∑
v∈Fn

2

f̂(v)f̂(α+x+v)f̂(β+y+v).

Proof. For x, y ∈ Fn2 × Fn2 , denote f1(x, y) = f(x), f2(x, y) = f(y), f3(x, y) =
f(x+y), f4(x, y) = αx+βy. We shall be using throughout the following relation

from [6, Thm. 2.17] for a Boolean sum g+h: ĥ+ g(x) = 2−n
∑
u∈Fn

2

ĝ(u)ĥ(u+x), as

well as the fact that f̂(x, y) = ĝ(x)ĥ(y), if f(x, y) = g(x) + h(y). For F := Fα,β ,
this becomes

F̂ (x, y) = 2−2n
∑

(u1,u2)∈F2n
2

f̂1 + f2(u1, u2)f̂3 + f4(x+ u1, y + u2)

= 2−4n
∑

(u1,u2),(v1,v2)∈F2n
2

f̂(u1)f̂(u2)f̂3(v1, v2)f̂4(x+ u1 + v1, y + u2 + v2).

Now, using [6, Lemma 2.9] and the Kronecker function δ0(w) = 1, respectively
0, if w = 0, respectively, w 6= 0, we compute

f̂3(v1, v2) =
∑

(w1,w2)∈Fn
2

(−1)f(w1+w2)+v1w1+v2w2

=
∑

(w1,z)∈Fn
2

(−1)f(z)+v1w1+v2w1+v2z

=
∑
z∈Fn

2

(−1)f(z)+v2z
∑
w1∈Fn

2

(−1)w1(v1+v2) = 2nf̂(v2)δ0(v1 + v2),

so, f̂3(v1, v2) = 0 unless v1 = v2, when f̂3(v1, v2) = 2nf̂(v2). Further, under
v1 = v2, a similar analysis will render

f̂4(x+ u1 + v1, y + u2 + v1) = 22nδ0(α+ x+ u1 + v1)δ0(β + y + u2 + v1).

Thus, the expression is 0, unless u1 = α + x + v1, u2 = β + y + v1. Putting all

these together, we obtain F̂ (x, y) = 2−n
∑
v1∈Fn

2

f̂(v1)f̂(α + x + v1)f̂(β + y + v1),

and the theorem is shown. ut

The following lemma is known and easy to show.

6

Lemma 5. The Walsh transform of the concatenation f ′ = f‖f̄ , that is, f ′(u, un)

= f(u)+un, where u = (u0, . . . , un−1) is given by f̂ ′(u, un) = f̂(u)
(
1 + (−1)un+1

)
.

For easy referral, we define the following properties on two Boolean functions
f1, f2 in n variables and their corresponding 2n-variables BLR relevant functions
F1, F2 with Fi(x, y) = fi(x) + fi(y) + fi(x+ y):

(P1) : nl(f1) < nl(f2) and wt(F1) > wt(F2);

(P2) : nl(f1) < nl(f2) and nl(F1) > nl(F2).

Our proof below considers only the two properties above, but it is easy to
construct examples for any number of variables where the inequalities are re-
versed (hence our claim that the weight/nonlinearities hierarchy is not pre-
served) by starting the inductive procedure with a pair of functions satisfy-
ing whatever inequality we wish. For example, taking f1 = 0000000000001110,
f2 = 0000000000001111, then nl(f1) = 3 < nl(f2) = 4 and nl(F1) = 90 <
nl(F2) = 96, we then apply the method in the proof below.

Theorem 6. For any value of n, there exist two functions f1 and f2 on which
the BLR test do not preserve the weight and nonlinearity hierarchy, namely the
properties P1 and P2 hold.

Proof. From the discussion of Section 4 we know that there exist two func-

tions f
(4)
1 , f

(4)
2 on 4 variables satisfying P1. We further consider F

(4,4)
1 (x, y) =

f
(4)
1 (x) + f

(4)
1 (y) + f

(4)
1 (x+ y) and F

(4,4)
2 (x, y) = f

(4)
2 (x) + f

(4)
2 (y) + f

(4)
2 (x+ y).

As discussed, nl(f
(4)
1) < nl(f

(4)
2) but wt(F

(4,4)
1) > wt(F

(4,4)
2). We use an induc-

tive method to show the existence of such functions involving n variables. We

define two functions f
(5)
1 , f

(5)
2 involving 5 variables, such that f

(5)
1 (x0, . . . , x4) =

f
(4)
1 (x0, . . . , x3) + x4 and f

(5)
2 (x0, . . . , x4) = f

(4)
2 (x0, . . . , x3) + x4. It can be ob-

served that nl(f
(5)
1) and nl(f

(5)
2) will follow the same relation, i.e., nl(f

(5)
1) <

nl(f
(5)
2). We further note that

F
(5,5)
1 (x0, . . . , x4, y0, . . . , y4)

= f
(5)
1 (x0, . . . , x4) + f

(5)
1 (y0, . . . , y4) + f

(5)
1 (x0 + y0, . . . , x4 + y4)

= f
(4)
1 (x0, . . . , x3) + x4 + f

(4)
1 (y0, . . . , y3) + y4 + f

(4)
1 (x0 + y0, . . . , x3 + y3) + x4 + y4

= F
(4,4)
1 (x0, . . . , x3, y0, . . . , y3).

Similarly F
(5,5)
2 (x0, . . . , x4, y0, . . . , y4) = F

(4,4)
2 (x0, . . . , x3, y0, . . . , y3). Hence the

weight of F
(5,5)
1 and F

(5,5)
2 will also satisfy wt(F

(5,5)
1) > wt(F

(5,5)
2). So from our

two functions involving 4 variables (see Section 4) we can construct two new
functions involving 5 variables on which the BLR test satisfies P1.

In general, if we have two functions f
(n)
1 and f

(n)
2 on n number of vari-

ables which follow the same relation as in Section 4
(
nl(f

(n)
1) < nl(f

(n)
2) but

wt(F
(n,n)
1) > wt(F

(n,n)
2)

)
, we can construct two functions f

(n+1)
1 , f

(n+1)
2 on n+1

number of variables on which BLR test fails to predict the correct nonlinearity

7

relation, that is P1 is satisfied. Here f
(n+1)
1 (x0, . . . , xn) = f

(n)
1 (x0, . . . , xn−1)+xn

and f
(n+1)
2 (x0, . . . , xn) = f

(n)
2 (x0, . . . , xn−1) + xn. Hence the first claim of our

theorem follows.
Next, for the same concatenation construction generating f

(n+1)
1 , f

(n+1)
2 in

n + 1 variables from f
(n)
1 , f

(n)
2 , and computing the Walsh coefficients of the

corresponding F
(n+1)
1 , F

(n+1)
2 , by using the convolution Theorem 4 and Lemma 5

we obtain (we let x = (x0, . . . , xn−1), y = (y0, . . . , yn−1), v = (v0, . . . , vn−1))

F̂i(x, xn, y, yn) = 2−(n+1)
∑

(v,vn)∈Fn+1
2

f̂i(v)
(
1 + (−1)vn+1

)
· f̂i(x+ v)

(
1 + (−1)xn+vn+1

)
f̂i(y + v)

(
1 + (−1)yn+vn+1

)
= 2−n

∑
v∈Fn

2

f̂(v)f̂i(x+ v) (1 + (−1)xn) f̂i(y + v) (1 + (−1)yn) .

If xn = 1, or yn = 1, then F̂i(x, xn, y, yn) = 0, otherwise

F̂i(x, 0, y, 0) = 4× 2−n
∑
v∈Fn

2
f̂i(v)f̂i(x + v)f̂i(y + v) = 4F̂i(x, y), showing that

max
(x,xn,y,yn)∈Fn+2

2

|F̂i(x, xn, y, yn)| = 4 max
(x,y)∈Fn

2

|F̂i(x, y)|, which will imply P2. ut

5 Nonlinearity hierarchy and limitations of a quantum
linearity test

Most quantum algorithms operating on Boolean functions are adaptations of the
famous Deutsch-Jozsa (equivalently, 1-level Bernstein-Vazirani) quantum algo-
rithm, that we refer to as DJ [11]. This is due to the amazing property of the
DJ algorithm which, when given an input f , the distribution of its observed
outputs is exactly (and somewhat magically) f̂2(w)/22n for all w ∈ Fn2 , that also
after making only one quantum query to f .

All the currently known quantum tests for linearity [8,5] are also based upon
the DJ algorithm. We show below how to extend the Deutsch-Jozsa circuit to
obtain a linearity-testing circuit using 2 queries that we call as DJLIN . We use
the fact that f is nonlinear if and only if there are two points w 6= y ∈ Fn2 such

that |f̂(w)| > 0 and |f̂(y)| > 0. Our linearity-testing circuit is slightly simpler
compared to the earlier solutions [8,5] but uses the same underlying idea.

To model the black-box access to f , it is customary in quantum algorithms to
use an unitary operator of the form Uf |x〉 = (−1)f(x)|x〉 for making queries 5. For
n-bit f , DJ can be implemented as Hn · Uf ·Hn applied to an n-qubit register
that is initialized to |0n〉. It is easy to show that the output state becomes∑
w∈Fn

2

f̂(w)
2n |w〉 after only one query to Uf .

The circuit for DJLIN starts with two n-bit and one single bit registers ini-
tialized to |0n〉|0n〉|0〉 and then applies DJ twice, independently, on the first two

5 One can also use an operator with the transformation |x〉|b〉 7→ |x〉|x〉|b⊕f(x)〉. Both
the operators can be easily converted to the other by using Hadamard gates.

8

registers. We would get 1
22n

∑
x

∑
y f̂(x)f̂(y)|x〉|y〉|0〉. Now apply the following

operation on all three registers: |a, b〉|c〉 7→ |a, b〉|c⊕NEQ(a, b)〉; here, NEQ(a, b)
is a Boolean function that outputs 1 whenever a 6= b and the final operation can
be easily implemented by using, say, CNOT and Toffoli gates.

The output state of the DJLIN circuit can be written as

1

22n

∑
x

f̂2(x)|x, x〉|0〉+
1

22n

∑
x 6=y

f̂(x)f̂(y)|x, y〉|1〉.

Our quantum algorithm will measure the third register and outputs “linear” if it
observes it in |0〉. We now discuss the suitability of DJLIN for linearity testing.

Lemma 7. DJLIN uses two queries and always outputs “linear” if the input f
is linear. On the other hand, if f is nonlinear, then the probability of incorrectly
outputing “linear” is 1

24n

∑
w∈Fn

2
f̂4(w) which can be at most 1

22n maxw∈Fn
2
f̂2(w).

Proof. The number of queries is clearly 2. For the next claim, recall that for a
linear f , f̂(x) is non-zero (actually, ±2n) for exactly one point, say w. In that
case, the output state is going to be |w,w〉|0〉 and so, DJLIN will always output
“linear”.

For the final claim, take any nonlinear f and let τ = 1
2n maxw∈Fn

2
|f̂(w)|. The

probability that |0〉 is observed at the end is 1
24n

∑
w∈Fn

2
f̂4(w) ≤ 1

22n

∑
w τ

2f̂2(w)

(since 1
2n |f̂(w)| ≤ τ). Applying Parseval’s equality, we get the upper bound of

τ2 on the error probability. ut

We will use p(f) to denote the probability that our algorithm outputs an
incorrect answer for input f ; based on the above lemma, p(f) = 0 if f is lin-

ear and p(f) = 1
24n

∑
x f̂

4(x) if f is nonlinear. Our quantum linearity testing
algorithm is better compared to the classical BLR algorithm since, not only the
former uses two queries against three queries by the latter, but also the error
probability of the latter was shown to be upper bounded by 1

2 + 1
2τ

2 by Blum
et al. [4] and Aumann et al. [1]. However, the error probability of our algorithm
is at most τ2 which is always less than that of the BLR test.

Having shown a quantum linearity testing algorithm that is comparable, if
not better, to the classical BLR algorithm, we next elaborate on the observa-
tion that linearity is not preserved even by this quantum algorithm. For this,
we construct a fairly simple counter-example on functions with n number of
variables for any n ≥ 4. Consider two n-bit Boolean functions, f1 such that
f̂1(00n−1) = f̂1(10n−1) = 1√

2
2n (therefore, f̂(w) = 0 for all other w ∈ Fn2)

and f2 such that f̂2(a0n−2) = 1
22n for a ∈ {00, 01, 10, 11} (therefore, f̂(w) = 0

for all other w ∈ Fn2). It is easy to show that nl(f1) = (1 − 1√
2
)2n−1 and

nl(f2) = 2n−1

2 ; therefore, nl(f1) < nl(f2). However, using Lemma 7, p(f1) = 1
2

whereas p(f2) = 1
4 , i.e., p(f1) > p(f2) demonstrating the violation of nonlinearity

hierarchy even for quantum tests.
The earlier quantum algorithms [8,5] use different approaches to reduce the

probability of error of DJLIN to get a better trade-off in the number of calls to

9

f and the error compared to classical algorithms, but because they all follow the
Lemma 7 at their core, they suffer from the same limitation of not preserving
nonlinearity.

6 Conclusion

In this paper we concentrate on the BLR (Blum-Luby-Rubinfeld) linearity test in
classical and quantum domains and its limitations in revealing any information
on the nonlinearity or weight of the involved function. We ultimately show both
in the classical and quantum domain the existence of a pair of functions, say f1
and f2 for every input-length n ≥ 4, for which nl(f1) > nl(f2) but wt(F1) <
wt(F2), and/or nl(F1) < nl(F2), for the currently known classical and quantum
linearity tests, where Fi(x, y) = fi(x) + fi(y) + fi(x + y) is the relevant BLR
function, corresponding to fi, i = 1, 2.

Acknowledgements. The authors would like to thank the reviewers for their
excellent comments, which significantly improved the editorial and technical
quality of the paper.

References

1. Y. Aumann, J. H̊astad, M. Rabin, M. Sudan. Linear consistency testing. J. Comput.
Syst. Sci. 62 (2001), 589–607.

2. M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi and M. Sudan. Linearity testing
over characteristic two. IEEE Trans. Inform. Theory 42 (1996), 1781–1795.

3. E. Bernstein and U. Vazirani. Quantum complexity theory. Proceedings of the 25th
Annual ACM Symposium on Theory of Computing, (ACM Press, New York, 1993),
pp. 11–20.

4. M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to
Numerical Problems. J. Comput. Syst. Sci. 47:3 (1993), 549–595.

5. K. Chakraborty and S. Maitra. Improved quantum test for linearity of a Boolean
function. arXiv:1306.6195 [quant-ph], 2013.

6. T. W. Cusick, P. Stănică. Cryptographic Boolean Functions and Applications (Ed.
2). Academic Press, San Diego, CA, 2017.

7. J. H̊astad and A. Wigderson. Simple analysis of graph tests for linearity and PCP.
Random Structures and Algorithms 22:2 (2003), 244–254.

8. M. Hillery and E. Andersson. Quantum tests for the linearity and permutation in-
variance of Boolean functions. Review A 84, 062329 (2011), 1–7.

9. T. Kaufman, S. Litsyn and N. Xie. Breaking the ε-soundness bound of the linearity
test over F2. SIAM Journal of Computing 39:5 (2010), 1988–2003.

10. A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the 32nd ACM symposium on Theory
of Computation, pp. 191–199, 2000.

11. D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. In
Proc. Royal Society of London A. 439 (1992), 553–558.

10

	Limitation of the BLR testing in estimating nonlinearity (Extended Abstract)

