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Abstract. Block ciphers are in widespread use since the 1970s. Their
iterated structure is prone to numerous round invariant attacks for ex-
ample in Linear Cryptanalysis (LC). The next step is to look at non-
linear polynomial invariants cf. Eurocrypt’95. Researchers have until
2018 found extremely few such attacks with some impossibility results [2,
3]. Eventually recent papers show how to construct polynomial invariant
attacks for block ciphers, however almost all such results are of degree
2, cf. [6, 17, 4]. Can we find any higher degree attacks? In this paper we
show a new incremental and highly practical methodology for construct-
ing high degree polynomial invariant attacks on block ciphers. A trivial
attack on one cipher setup will be transposed to show the existence of a
more advanced attack on a stronger cipher in several steps. The key tool
is the manipulation of the roots of the so called Fundamental Equation.
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1 Introduction, Non-Linear Cryptanalysis
The concept of cryptanalysis with non-linear polynomials a.k.a. Generalized Lin-
ear Cryptanalysis (GLC) was introduced at Eurocrypt’95, cf. [12]. A key question
is the existence of round-invariant I/O sums: when a value of a certain polyno-
mial is preserved after 1 round. Such properties are notriously hard to find [17,
4]. There are 22

n

possible invariants and systematic exploration is not feasible
[2]. In this paper and unlike in [17] we focus on invariants which work for 100
% of the keys and we focus on stronger invariants which hold with probability 1
for one round. In addition we look at a an expensive government cipher where
encryption is a lot more costly than 3DES, AES, cf. [10]. Here standard cryptan-
alytic attacks simply do not work. However all this complexity is not that useful
if we can discover invariants attacks working for any number of rounds.

Invariants vs. Maths. There exists an extensive theory of multivariate poly-
nomial algebraic invariants [11] which historically has studied mostly invariants
w.r.t. linear transformations and has rarely studied invariants with more than 5
variables and in finite fields of small size. In our work we study invariants w.r.t
non-linear transformations and 36 or more variables over GF (2).

The Question of Weak Keys. There are numerous constructions of weak
ciphers in cryptographic literature, cf. for example work related to the AES S-
box [7, 8], and [1, 3]. In this paper, a weak key or rather a weak long-term key
setup is primarily a tool to find some attack more easily, and the same attack
may be transposed to hold also for another (stronger) cipher setup.



Partitioning Cryptanalysis. A more general approach considers arbitrary
subsets of binary vector spaces and is called Partitioning Cryptanalysis (PC),
cf. [1, 13]. Our work is then a special case: we study only partitions defined by
the value (0/1) for a single Boolean polynomial, cf. [4]. This is less general but
properties are more intelligible and follow clear rules of formal algebra. A serious
theory is nowadays being developed around what is possible or not to achieve
in partitioning and invariant attacks, cf. [2, 3]. There are two major types of
invariants in recent research: linear sub-space invariants [2, 3] and proper non-
linear polynomial invariants [17, 7, 4]. We focus on the latter.

Finding Advanced Invariant Attacks. The primary method proposed in
2018 is through solving the so called Fundamental Equation or FE cf. [4]. Solving
such equation(s), or several such equations simultaneously, guarantees that we
obtain a Boolean function and the polynomial invariant P which propagates
for any number of rounds. However nothing guarantees that the FE equation
has any solutions whatsoever. In this paper we construct polynomial invariants
explicitly by modifying something which worked. A trivial attack on a weak
cipher will be transformed into a better or higher degree invariant attack on a
stronger cipher in several steps. We call this method “invariant hopping”.

This paper is organized as follows. In Section 2 we show explain our objec-
tives, notations and provide formulas which define one round of our block cipher.
In Section 3 we explain that the problem of finding a one-round invariant can
be formalized as the problem of solving the FE. A key tool is looking at dif-
ferent roots of the same equation. In Section 4 we show an example of our first
non-linear attack which can be downgraded to a simple linear attack. Inversely
a linear invariant L on one cipher may hide the existence of another non-linear
invariant property P on the same cipher. We do not stop here: in Section 4.1 we
show that an invariant of degree 4 also exists. Then in Section 4.2. the simpler
invariants will be removed and we keep ONLY one invariant of degree 4. Finally
in Section 4.3. we modify the wiring in order to accommodate a Boolean function
of a higher degree. In few steps a pathological cipher becomes a substantially
stronger cipher and the attack less obvious.

2 Polynomial Invariant Attacks on Block Ciphers

We call P a polynomial invariant if the value of P is preserved after one round
of encryption, i.e. if P(Inputs) = P(Outputs). This works for any block cipher
except that such attacks are notoriously hard to find [2] in the last 20 years
since [12]. In this paper we are going to work with one specific block cipher with
36-bit1 blocks. The main point is that any block cipher round translates into
relatively simple Boolean polynomials, if we look at just one round. We follow
the methodology of [4] in order to specify the exact mathematical constraint,
known as the Fundamental Equation or FE, so that we could have a polynomial
invariant attack on our cipher. Such an attack will propagate for any number
of rounds (if independent of key and other bits). In addition it makes sense

1 Block size could be increased and our attacks and methods would work all the same.



following [4] to consider that the Boolean function is an unknown. We denote
this function by a special variable Z. We then see that our attack works if an
only if Z is a solution to a certain algebraic equation [with additional variables].
The main interest of making Z a variable is to find some strong attacks in the
cases where the Boolean function is extremely weak case, (e.g. Z is linear) and
transpose them to stronger ciphers where Z will be increasingly complex.

We discard the attacks when the FE reduces to 0 which work for any Z yet such
attacks are quite rare cf. [4] and our later specific trick or method for finding
new attacks by manipulating the roots of FE would not work.

2.1 Notation and Methodology

In this paper the sign + denotes addition modulo 2, and frequently we omit the
sign * in products. For the sake of compact notation we frequently use short
or single letter variable names. For example let x1, . . . , x36 be inputs of a block
cipher each being ∈ {0, 1}. We will avoid this notation and name them with small
letters a− z and letters M − V when we run out of lowercase letters. We follow
the backwards numbering convention of [4] with a = x36 till z = x11 and then
we use specific capital letters M = x10 till V = x1. This avoids some “special”
capital letters following notations used since the 1970s [10, 16, 15]. We consider
that each round of encryption is identical except that they can differ only in
some “public” bits called F (and known to the attacker) and some “secret” bits
called S1 or K and S2 = L. Even though these bits ARE different in different
rounds we will omit to specify in which round we take them because our work is
about constructing one round invariants (extending to any number of rounds).
This framework covers most block ciphers ever made except that some ciphers
would have more “secret” or “public” bits in one round. The capital letter Z is
a placeholder for substitution of the following kind

Z(e1, e2, e3, e4, e5, e6)

where e1 . . . e6 will be some 6 of the other variables. In practice, the ei will
represent a specific subset of variables of type a-z, or other such as L. Later Z
(and maybe another letter like W ) needs to be replaced by a formula like:

Z ← Z00 + Z01 ∗ L + Z02 ∗ c + Z03 ∗ Lc + . . . + Z62 ∗ cklfh + Z63 ∗ Lcklfh

where Zij are coefficients of the Algebraic Normal Form (ANF).

Polynomial Invariants We are looking for arbitrary polynomial invariants.
For example say P(a, b, . . .) = abc + abd + acd + bcd + . . . In this space some
solutions are considered as trivial and are easy to find, for example when P is
a simple product of linear invariants cf. Appendix of [4]. Complex irreducible
polynomials are considered as less trivial and are harder to find. One of the
main points in discovery of innovative attacks on block ciphers is that attacks
with irreducible polynomial invariants of degree higher than 2 are actually at all
possible, and how to construct some (rather than just discover accidentally).



2.2 Constructive Approach Given the Cipher Wiring
Our attack methodology starts2 from a given block cipher specified by its ANFs
for one round. Specific examples are shown for T-310, and old Feistel cipher
with 4 branches. This cipher offers great flexibility in the choice of the internal
wiring and entirely compatible with original historical hardware. The block size
is 36 bits and the key has 240 bits. We number the cipher state bits from 1 to
36 where bits 1, 5, 9 . . . 33 are those freshly created in one round, cf. Fig 1. One
round of encryption is then described as 36 Boolean polynomials of degree 6.

y33 = F + xD(9)

Z1
def
= Z(S2, xP (1),. . . ,xP (5)))

y29 = F + Z1 + xD(8)

y25 = F + Z1 + xP (6) + xD(7)

Z2
def
= Z(xP (7), . . . , xP (12))

y21 = F + Z1 + xP (6) + Z2+ xD(6)

y17 = F + Z1 + xP (6) + Z2+ xP (13) + xD(5)

Z3
def
= Z(xP (14), . . . , xP (19))

y13 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xD(4)

y9 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20) + xD(3)

Z4
def
= Z(xP (21), . . . , xP (26))

y5 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xD(2)

y1 = F + Z1 + xP (6) + Z2+ xP (13) + S2 + Z3 + xP (20)+Z4+xP (27)+xD(1)

x0
def
= S1

yi+1 = xi for all other i 6= 4k ( with 1 ≤ i ≤ 36)

In order for our polynomials to be short and compact we further replace the 36
bits x1 − x36 by single letters (avoiding certain letters like F used elsewhere):

Two things remain unspecified: the P and D boxes or the internal wiring.
In T-310 this specification is called an LZS or Langzeitschlüssel which means a
long-term key setup. We simply need to specify two functions D : {1 . . . 9} →
{0 . . . 36}, P : {1 . . . 27} → {1 . . . 36}. For example D(5) = 36 will mean that
input bit 36 is connected to the wire which becomes U5 = y17 after XOR of Fig.
1. Then P (1) = 25 will mean that input 25 is connected as v1 or the 2nd input
of Z1. We also apply a special convention where the bit S1 is used instead of one
of the D(i) by specifying that D(i) = 0. We study invariants for one round and
therefore variables xi and yi are treated “alike” and can be called be the SAME
letter, for example x36 = a and then y36 = a also.
2 Our approach is to find invariant attack starting from arbitrary rounds ANFs is at

the antipodes compared to [7, 8] where the ciphers are very special.



Fig. 1. T-310: a peculiar sort of Compressing Unbalanced Feistel scheme.

Fig. 2. The internal structure of one round of T-310 block cipher.

The Substitutions. In order to have shorter expressions to manipulate we need
further to replace Z1−Z4 by shorter abbreviations Z, Y,X,W respectively. We
also replace S2 by a single letter L. When later in this paper we use some concrete
LZS (for example LZS 551 specified later) this leads to replacing variables and
to some simplifications, as shown in the example below. For example y25 is l and
if D(7) = 20 then xD(7) becomes q, etc, and we get l ← F + Z1 + O + q. This
can be interpreted as one round of encryption is equivalent to replacing l and
all the other letters by our exact formulas, for example with LZS 551 we get:



a← b

b← c

c← d

[. . .]

Z1← Z(L, t, S, d, y,m))

l← F + Z1 + O + q

[. . .]

Z4← Z(w, u, a, h, e, n)

[. . .]

V ← F + Z1 + O + Z2 + q + L + Z3 + i + Z4 + k + K

3 The Fundamental Equation

In order to break our cipher we need to find a polynomial expression P say

P(a, b, c, d, e, f, g, h, . . .) = abcdijkl + efg + efh + egh + fgh

using any number between 1 and 36 variables such that if we substitute in
P all the variables by the substitutions defined we would get exactly the same
polynomial expression P, i.e. P(Inputs) = P(Outputs) are equal as multivariate
polynomials. We obtain:

Definition 3.1 (Compact Uni/Quadri-variate FE). Our “Fundamental Equa-
tion (FE)” to solve is simply a substitution like:

P(Inputs) = P(Outputs)

or more precisely

P(a, b, c, d, e, f, g, h, . . .) = P(b, c, d, F + i, f, g, h, F + Z1 + e, . . .)

where again Z1−Z4 are replaced by Z, Y,X,W . In the next step, Z will be
replaced by an Algebraic Normal Form (ANF) with 64 binary variables which
are the coefficients of the ANF of Z, and there will be several equations, and
four instances Z, Y,X,W of the same Boolean function Z:

Definition 3.2 (A Multivariate FE). At this step we will rewrite FE as
follows. We will replace Z1 by:

Z ← Z00 + Z01 ∗ L + Z02 ∗ j + Z03 ∗ Lj + . . . + Z62 ∗ jhfpd + Z63 ∗ Ljhfpd

Likewise we will also replace Z2:

Y ← Z00 + Z01 ∗ k + Z02 ∗ l + Z03 ∗ kl + . . . + Z62 ∗ loent + Z63 ∗ kloent

and likewise for X = Z3 and W = Z4 and the coefficients Z00 . . . Z63 will be
the same inside Z1−Z4, however the subsets of 6 variables chosen out of 36 will
be different in Z1− Z4. Moreover, some coefficients of P may also be variable.



In all cases, all we need to do is to solve the equation above for Z, plus a variable
amount of extra variables e.g. Z63. This formal algebraic approach, if it has a
solution, still called Z for simplicity, or (P, Z) will guarantee that our invariant
P holds for 1 round. This is, and in this paper we are quite lucky, IF this equation
does not depend on three bits F,K,L. This is the discovery process of [4].

In this paper we do NOT use this process. We will work by attack hopping.
From one attack we will derive the existence of another attack on a different ci-
pher (!). Thus we completely avoid all the most difficult questions in [4]: Do such
equations have any solutions? If they have, can the solution be the same for sev-
eral permutations simultaneously? We concentrate on transposing some working
attacks to another cipher setup or where the Boolean function is modified.

4 KT1 Keys and Higher Degree Invariant Attacks

Most invariants on block ciphers published so far were of degree 2 [6, 4, 17] and
finding any such invariants was quite difficult. The LZS examples were also not
very good. The East German government cryptologist have mandated that for
an LZS to be approved for “official” use, it must satisfy a certain very complex
specification called KT1 which takes one full page to describe, cf. Appendix B in
[9]. Our starting point will be a simple invariant from [4] which actually works
for a genuine KT1 key, something considered hard to do until recently.

551: P=17,4,33,12,10,8,5,11,9,30,22,24,20,2,21,34,1,25,

13,28,14,16,36,29,32,23,27 D=0,12,4,36,16,32,20,8,24

P = eg + fh + eo + fp + gm + hn + mo + np

with this short P the Fundamental Equation FE will have very few terms:

P(a, b, c, d, e, f, g, h, . . . , V ) = P(b, c, d, F + m, f, g, h, F + Z + O,

. . . , F + Z + O + Y + q + L + X + i + W + j + K)

Y (g + o) = m(g + o)

and one solution which makes our cipher weak is Z = 1+d+e+f+de+cde+def .
The fact that our FE contains none of F,K,L implies that our polynomial P is
an invariant which works for any key and any IV and for any number of rounds.

An Essential Insight It is easy to see that P is irreducible and no linear attack
exists for this cipher setup. Interestingly we have P = AC + BD where:

A
def
= (e + m)

B
def
= (f + n)

C
def
= (g + o)

D
def
= (h + p)

Now do A,B,C,D have any concrete significance for our cipher? To see this let
us consider a yet simpler case when Z(a, b, c, d, e, f) = f . Then it is possible to
check that our cipher would have 4R linear invariant D → C → B → A → D
which however is totally absent when Z = 1 + d + e + f + de + cde + def .



Downgrading Our Invariant: Now we show that our non-linear attack hides
the existence of a yet simpler attack with a degenerated Boolean function. To
shows this we observe that input f of Y is P [12] = m, i.e. last input of Z2 is
precisely connected to m with LZS 551. What happens if Y = m i.e. Z = f? We
have another degenerated solution of our FE being (Y −m)(g + o) = 0 and we
have in fact found a root for a proper factor (Y −m) = 0 of our general FE.

Next Step. An interesting question is can we do this in a reverse direction?
Find a cipher setup where the FE is a multiple of (Y −m)(g + o) = 0 ? Yes!

4.1 Construction of Higher Degree Invariants.

Such invariants if they exist are NOT uniquely determined, they may depend
on the choice of the Boolean function Z in the previous step (!). For the current
pair LZS,Z as above we found that the following P of degree 4 also works:

P = efgh + fghm + eghn + ghmn + efho + fhmo + ehno + hmno+

efgp + fgmp + egnp + gmnp + efop + fmop + enop + mnop

where in fact P = ABCD. Interestingly, no other invariants being polyno-
mials in A,B,C,D exist. We conjecture however that no invariants other than
AC+BD (irreducible) and ABCD (not irreducible) exist for 1 round3 and prob-
ably not in general4. For sure we have verified that no linear invariants exist here
for LZS 551 and Z = 1 + d + e + f + de + cde + def .

Study of FE. If P = ABCD what is the FE? A quick computation gives

mBCD = Y BCD

This decomposition implies that any solution Z which is a solution to the
previous FE will also work here but NOT vice versa.

4.2 A More Autonomous Example of An Invariant of Degree 4

Until now we have seen that a weak cipher with linear invariants A,B,C,D
shared the same non-linear invariants with a cipher where the only attacks are
the non-linear ones AC + BD and ABCD. Is it possible to remove the first
attack and keep the second? Yes and it is requires minimal change. We recall
that AC + BD will be an invariant each time our Boolean function satisfies:

Y C = mC

and in order for ABCD to be an invariant, Z needed to satisfy:

mDCB = Y DCB

3 For 2 rounds we have closely related invariants AC → BD → AC with AC and BD
being invariants for 4 rounds. All these do not use F,K,L either.

4 In fact it is hard to be sure, no method to explore all possible invariants with 36
variables at higher degrees is known and possibly such method does not exist



All we have to do now is to find a solution Y which satisfies one FE and not
the other FE! For example we can find a solution to an alternative equation:

mB = Y B

which is different than the most trivial solution Y (......) = m and which then
will satisfy only the first equation. For example 1 + n + nm + f + mf using
the same variable names. An actual solution forces us to modify LZS 551 very
slightly: we just need to make sure that letters f and n are actually inputs of Y .
Only two modifications are needed. Here is a solution found by a SAT solver:

558: P=17,4,33,12,10,8,23,24,31,25,16,10,20,2,21,34,

1,25,13,28,14,16,36,29,32,23,27 D=0,12,4,36,16,32,20,8,24

Z(a,b,c,d,e,f)=1+a+ab+c+bc

We have checked that no other invariants at degree up to 3 exist with all the
36 state variables for 1, 2, 3, 4, 5, . . . and various numbers of rounds. All simple
invariants were removed with the new Boolean function and only ABCD is left.

4.3 A Yet Stronger Example

One step further, we try to find a non-trivial (proper) solution to:

mBC = Y BC

Here we will need to use as inputs of Z all the 5 variables which appear in
this equation. A nice trick to quickly find a solution which is a “proper” root of
(m+Y )BC is to first create a new equation FE′ which implies the previous one
by multiplying both sides by B, yet at the same time FE′ actually imposes the
presence of the two variables f, n in B, and another 6− th variable, for example:

(Y + m)(f + n) = (Rnf + Rf)go

Again just one invariant ABCD remains after changing the Boolean function
but now our Boolean function must use 6 quite specific variables which must be
connected to inputs of Z2 = Y . One possible solution is as follows:

550: P=17,4,33,12,10,8,22,23,24,31,30,20,20,2,21,34,

1,25,13,28,14,16,36,29,32,23,27 D=0,12,4,36,16,32,20,8,24

Z(a,b,c,d,e,f)=1+b+c+d+aef+abef

Quick Conclusion. This paper demonstrates a novel invariant hopping tech-
nique. An attack on a pathologically weak cipher setup is transposed to break
another stronger cipher. In several steps we remove the trivial attacks and keep
less trivial ones. The complexity and algebraic degree for the invariant and the
Boolean function, and the number of variables needed increase progressively.
Further more complex invariants of degree 8 can also now be constructed, cf. [5].
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