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Abstract. In 2014, Tamo and Barg have presented in a very remarkable
paper a family of optimal linear locally recoverable codes (LRC codes)
that attain the maximum possible distance (given code length, cardi-
nality, and locality). The key ingredient for constructing such optimal
linear LRC codes is the so-called r-good polynomials, where r is equal
to the locality of the LRC code. In 2018, Liu et al. have presented two
general methods of designing r-good polynomials by using function com-
position, which lead to three new constructions of r-good polynomials.
Next, Micheli has provided a Galois theoretical framework which allows
to produce r-good polynomials.
The well-known Dickson polynomials form an important class of poly-
nomials which have been extensively investigated in recent years under
different contexts. In this paper, we provide new methods of designing
r-good polynomials based on Dickson polynomials. Such r-good polyno-
mials provide new constructions of optimal LRC codes.

1 Introduction

Locally recoverable codes (LRC codes) have recently been a very attractive sub-
ject in the research on coding theory due to their theoretical appeal and appli-
cations in large-scale distributed storage systems, where a single storage node
erasure is considered as a frequent error-event.

An LRC code is said to have locality r if the value at any codeword coordinate
can be recovered by accessing at most r other coordinates. We refer to such a
code as an (n, k, r) LRC code over finite field Fq, if the code is of length n, which
has qk codewords and locality r. For an LRC code with locality r, if a symbol
is lost due to a node failure, its value can be recovered by accessing the value of
at most r other symbols.

Problems of constructing LRC codes and bounding their parameters have
been the subject of a considerable number of publications. Research on bounds
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for LRC codes was initiated in [3] which showed that the minimal distance d(C)
of an (n, k, r) LRC code is bounded as follows: d(C) 6 n − k − dk/re + 2. LRC
codes achieving this bound with equality are called optimal LRC codes. Taking
into account the size of the code alphabet, another upper bound on the minimum
distance of (n, k, r) LRC codes was established by Cadambe and Mazumdar [1].

An ingenious idea in designing optimal LRC codes is due to Tamo and
Barg [9]. By generalizing the Reed-Solomon codes, Tamo and Barg [9] construct-
ed a family of optimal (n, k, r) LRC codes over a finite field of size that slightly
exceeds the code length n. Their method can provide optimal LRC codes for
a lot of feasible triplet of parameters (n, k, r). These optimal LRC codes are
obtained from specially constructed polynomials over finite fields, called r-good
polynomials (see Definition 1), that is to say, an r-good polynomial yields an
optimal (n, k, r) LRC code with n divisible by r + 1. However, there are only
a few known constructions of r-good polynomials. In 2018, Liu et al. [6] have
provided two general methods of designing r-good polynomials by using func-
tion composition, which lead to three new constructions of r-good polynomials.
Very recently, Micheli [7] has provided a Galois theoretical framework which al-
lows to produce r-good polynomials and showed that the construction of r-good
polynomials can be reduced to a Galois theoretical problem over global function
fields. The objection of this paper is to explore more polynomials which could
be good candidates for being r-good polynomials. More specifically, we exploit
Dickson polynomials to provide more families of r-good polynomials leading to
the constructions of optimal LRC codes. This paper is structured as follows.
Section 2 sets main notations, gives some background on polynomials and ex-
ponentials sums over finite fields, and reviews the known explicit constructions
of r-good polynomials. In Section 3, we present new r-good polynomials via
Dickson polynomials.

Due to the limit in space, proofs of the main results are left to the full version
of the paper.

2 Preliminaries

2.1 Background and notation

Let p be a prime and q = ps be an s-th power of p with s being a positive
integer. We denote by Fq the finite field with q elements and by F?q the cyclic
group Fq \ {0}. For positive integers t and s satisfying t|s, let Trst (·) : Fps → Fpt
be the (relative) trace function defined as

Trst (x) = x+ xp
t

+ xp
2t

+ · · ·+ xp
s−t
.

For x ∈ Fps , we briefly use Tr(x) to denote the (absolute) trace of x ∈ Fps over
Fp, i.e., Trs1(x), if there is no risk of confusion.

Proposition 1. ([8, Theorem 2.25]) Let Fps be a finite extension of Fpt . Then,

for a ∈ Fps , the equation xp
t−x = a has solutions in Fps if and only if Trst (a) = 0.
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Proposition 2. ([8, Theorem 5.4]) For a finite field Fq with characteristic p,
define ζp = e2πi/p, then ∑

c∈Fq

ζTr(cx)p =

{
0, if x 6= 0,
q, if x = 0.

A q-ary function is from Fq to itself. The extended Walsh-Hadamard trans-
form of a q-ary function F is defined as the complex function

WF (v;w, k) =
∑
x∈Fq

ζTr(vF (x)+wxk)
p , v ∈ F∗q , w ∈ Fq, k is an integer.

For two q-ary functions F and G, the composition G(F (·)) is denoted by G ◦F .
For a, b ∈ Fps , the classical p-ary Kloosterman sum (see e.g. [8]) on Fps is

defined as

Ks(a, b) =
∑
x∈F∗

ps

ζ
Tr(ax+bx−1)
p =Wx−1(b; a, 1). (1)

Dickson polynomials (see e.g. [5]) form an important class of polynomials.
For b ∈ Fq and integer m > 1, let

Dm,b(x) =

bm2 c∑
j=0

m

m− j

(
m− j
j

)
(−b)jxm−2j (2)

denote the Dickson polynomial of degree m over Fq.

Definition 1. A polynomial F over Fps is said to be an r-good polynomial if

1. the degree of F is r + 1,
2. there exist pairwise disjoint subsets {A1, . . . , Al} of Fps with cardinality |Ai| =

r + 1 for i = 1, . . . , l, l > 1, such that the restriction of F to each subset Ai
is constant.

2.2 Known explicit constructions of r-good polynomials

Let p be a prime and gcd(m, p) = 1, then for any integer t > 0, (mpt − 1)-good
polynomials on Fps can be constructed if ps ≡ 1(mod m) and pt ≡ 1(mod m),
see [9]. To the best of our knowledge, if pt 6≡ 1(mod m), then for m > 1,
constructions of (mpt − 1)-good polynomials on the extension field of Fp have
only been examined in [6]. Thus, constructing optimal LRC codes with locality
mpt, where m > 1, gcd(m, p) = 1, and pt 6≡ 1(mod m) attracts a lot of attention.

When we consider r-good polynomials on Fps with r = mpt − 1, where
gcd(m, p) = 1, the following constructions are known.

– If t > 0 and m = 1, then the ps-ary linear function

Fa(x) =

t∑
i=0

aix
pi (3)
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is an r-good polynomial, where a = (a0, . . . , at) ∈ (Fps)t+1, a0 6= 0, at 6= 0
(see [9, Proposition 3.2]). In fact, let Ea = {x ∈ Fps | Fa(x) = 0}, then for
every x ∈ b+ Ea, Fa(x) = Fa(b).

– If t = 0 and ps ≡ 1(mod m), then the ps-ary power function

Gγ(x) = γxm (4)

is an r-good polynomial, where γ ∈ F∗ps (see [9, Proposition 3.2]). In fact, let
Um = {x ∈ Fps | xm = 1} and bUm be the multiplicative coset with b ∈ F∗ps ,
then for every x ∈ bUm, Gγ(x) = Gγ(b).

– If t > 0, m > 1, ps ≡ 1(mod m), and pt ≡ 1(mod m), then the ps-ary
function

F (x) =

 t/e∑
i=0

aix
pei

m

is an r-good polynomial, where e is a divisor of t satisfying pe ≡ 1(mod m),

ai ∈ Fps satisfying
∑t/e
i=0 ai = 0, a0 6= 0, and at/e 6= 0 (see [9, Theorem 3.3]).

– Denote by Im(F ) = {F (x) | x ∈ Fps} the image set of F . Let Gγ and Fa be
defined as in (4) and (3) respectively. Suppose that Fps contains all the roots

of Fa. Set H(x) = Fa(Gγ(x)) =
∑t
i=0 aiγ

pixmp
i

. Then, H is an (mpt − 1)-
good polynomial over Fps if and only if A = {b ∈ Fps \Ea | b+Ea ⊆ Im(Gγ)}
is nonempty, where Ea = {x ∈ Fps | Fa(x) = 0} (see [6, Theorem 4]).

– Set I(x) = G1(Fa(x)) =
(∑t

i=0 aix
pi
)m

. Then, I is an (mpt − 1)-good

polynomial over Fps if and only if A′ = {b ∈ F∗ps | bUm ⊆ Im(Fa)} is
nonempty, where Um = {x ∈ Fps | xm = 1} (see [6, Theorem 4]).

3 Constructions of r-good polynomials via Dickson
polynomials

3.1 r-Good polynomials from Dickson polynomials

In this subsection, we consider r-good polynomials via Dickson polynomials over
the finite field Fq.

If x ∈ Fq, then for any b ∈ F∗q , x can be written as x = u + b · u−1 with
u ∈ F∗q2 . More explicitly, define M = {u ∈ F∗q2 | uq+1 = b}, then for u ∈ F∗q2 ,

x = u + b · u−1 ∈ Fq if and only if u ∈ F∗q
⋃
M (see e.g.[4]). It is shown in [8]

that for x = u+ b · u−1 with u ∈ F∗q2 , the Dickson polynomial Dm,b on x equals

Dm,b(x) = um + bm · u−m. (5)

Case 1: q odd In this part, for the finite field Fq, we assume that q is odd.

Theorem 1. ([2, Theorem 9]) For q odd, let x0 ∈ Fq, then the set of preimages
of Dm,b(x0) with b ∈ F∗q and integer m > 1 has gcd(m, q − 1) elements, i.e.,

|D−1m,b (Dm,b(x0)) | = gcd(m, q − 1),
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if x20 − 4b is a square in Fq and Dm,b(x0) 6= ±2bm/2, where b1/2 is a square root
of b in F∗q2 .

Remark 1. For x0 ∈ Fq, denote x0 = u0 + b · u−10 for u0 ∈ F∗q2 . Note that for q

odd, x20− 4b is a square in Fq if and only if u0 ∈ F∗q , and x20− 4b is a non-square
in Fq if and only if u0 ∈M \ F∗q , where M = {u ∈ F∗q2 | uq+1 = b} (see e.g.[2]).

Remark 2. Let m|(q − 1) and m > 3 in Theorem 1. Then, it can be deduced
from Theorem 9 in [2] that for x0 ∈ Fq, |D−1m,b (Dm,b(x0)) | = m if and only if

x20 − 4b is a square in Fq and Dm,b(x0) 6= ±2bm/2.

It is shown that Dm,b(x) 6= ±2bm/2 if and only if um 6= (b · u−1)m, where
x = u + b · u−1 (see [2, Lemma 7]). Suppose b ∈ ξlUm and u ∈ ξiUm, where ξ
is a primitive element of Fq, and ξiUm is the multiplicative coset of Um = {x ∈
Fq | xm = 1} for i ∈ {0, 1, . . . , (q− 1)/m− 1}. Then, it can be easily proved that
um =

(
b · u−1

)m
if and only if 2i ≡ l(mod (q − 1)/m). Since the degree of Dm,b

is m, then from Theorem 1, we can prove the following theorem.

Theorem 2. For q odd, let b ∈ F∗q and integer m > 1. If m|(q − 1), then the
Dickson polynomial Dm,b(x) is an (m− 1)-good polynomial.

Theorem 3. For q odd, let b ∈ F∗q and integer m > 3 satisfying m|(q − 1).
Then, the Dickson polynomial Dm,b(x) is an (m− 1)-good polynomial. Suppose
b ∈ ξlUm for some l ∈ S = {0, 1, . . . , (q − 1)/m− 1}, where ξ is a primitive
element of Fq, ξiUm is the multiplicative coset of Um = {x ∈ Fq | xm = 1}.
Then, the only pairwise disjoint subsets of Fq with cardinality m such that Dm,b

is constant on each subset include

Di =
{
u+ b · u−1

∣∣ u ∈ ξiUm} , for i ∈ I ⊆ S, (6)

where

I =



{
0, 1, . . . , l2 − 1, l + 1, l + 2, . . . , l2 + q−1

2m − 1
}
, if l is even, q−1

m is even,{
0, 1, . . . , l2 − 1, l + 1, l + 2, . . . , l2 + q−1

2m −
1
2

}
, if l is even, q−1

m is odd,{
0, 1, . . . , l−12 , l + 1, l + 2, . . . , l2 + q−1

2m −
1
2

}
, if l is odd, q−1

m is even,{
0, 1, . . . , l−12 , l + 1, l + 2, . . . , l2 + q−1

2m − 1
}
, if l is odd, q−1

m is odd.

(7)

The following corollary is a direct consequence of Theorem 3.

Corollary 1. For q odd, let b ∈ F∗q and integer m > 3 satisfying m|(q − 1).

Suppose b ∈ ξlUm for some l ∈ {0, 1, . . . , (q − 1)/m− 1}, where ξ is a primitive
element of Fq. Then, the Dickson polynomial Dm,b(x) is constant on exactly
lDm,b pairwise disjoint subsets with cardinality m, where

lDm,b =


q−1
2m − 1, if l is even, q−1

m is even,
q−1−m

2m , if l is even, q−1
m is odd,

q−1
2m , if l is odd, q−1

m is even,
q−1−m

2m , if l is odd, q−1
m is odd.
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Case 2: q even In this part, for the finite field Fq, we assume that q is even.

Theorem 4. ([2, Theorem 9’]) For q even, let x0 ∈ Fq, then the set of preimage
of Dm,b(x0) with b ∈ F∗q and integer m > 1 has gcd(m, q − 1) elements, i.e.,

|D−1m,b (Dm,b(x0)) | = gcd(m, q − 1),

if x2 + x0x+ b is reducible over Fq and Dm,b(x0) 6= 0.

Remark 3. For x0 ∈ Fq, denote x0 = u0 +b ·u−10 for u0 ∈ F∗q2 . Then, x2 +x0x+b

is reducible over Fq if and only if u0 ∈ F∗q , and x2 +x0x+ b is irreducible over Fq
if and only if u0 ∈ M \ F∗q , where M = {u ∈ F∗q2 | uq+1 = b} (see e.g.[2]). Note
that for q even, any element in F∗q is a square.

Remark 4. Let m|(q − 1) and m > 2 in Theorem 4. Then, it can be deduced
from Theorem 9’ in [2] that for x0 ∈ Fq, |D−1m,b (Dm,b(x0)) | = m if and only if

x2 + x0x+ b is reducible over Fq and Dm,b(x0) 6= 0.

Theorem 5. For q even, let b ∈ F∗q and integer m > 1. If m|(q − 1), then the
Dickson polynomial Dm,b(x) is an (m− 1)-good polynomial.

The following corollary is a direct consequence of Theorem 2 and Theorem 5.

Corollary 2. A Dickson polynomial Dm,b(x) is an (m − 1)-good polynomial if
m|(q − 1) for any q (even or odd).

Theorem 6 below is indeed a special case of Theorem 3, since for q even,
(q − 1)/m must be odd, and the condition m > 2 follows from Remark 4.

Theorem 6. For q even, let b ∈ F∗q and integer m > 2 satisfying m|(q − 1).
Then, the Dickson polynomial Dm,b(x) is an (m− 1)-good polynomial. Suppose
b ∈ ξlUm for some l ∈ S = {0, 1, . . . , (q − 1)/m− 1}, where ξ is a primitive
element of Fq, ξiUm is the multiplicative coset of Um = {x ∈ Fq | xm = 1}.
Then, the only pairwise disjoint subsets of Fq with cardinality m such that Dm,b

is constant on each subset include

Di =
{
u+ b · u−1

∣∣ u ∈ ξiUm} , for i ∈ I ⊆ S, (8)

where

I =


{

0, 1, . . . , l2 − 1, l + 1, l + 2, . . . , l2 + q−1
2m −

1
2

}
, if l is even,{

0, 1, . . . , l−12 , l + 1, l + 2, . . . , l2 + q−1
2m − 1

}
, if l is odd.

(9)

The following corollary is a direct consequence of Theorem 6.

Corollary 3. For q even, let b ∈ F∗q and integer m > 3 satisfying m|(q − 1).
Then, the Dickson polynomial Dm,b(x) is constant on exactly

lDm,b =
q − 1−m

2m

pairwise disjoint subsets with cardinality m.
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3.2 Constructing r-good polynomials by function compositions
Dm,b ◦ Fa and Fa ◦ Dm,b

Employing Theorem 3 and Theorem 6, one can obtain the following theorem.

Theorem 7. Denote by Im(F ) = {F (x) | x ∈ Fps = Fq} the image set of F .
Let Dm,b and Fa be defined as in (2) and (3) respectively. For i ∈ {0, 1, . . . , (q−
1)/m− 1}, let Di =

{
u+ b · u−1

∣∣ u ∈ ξiUm}, where ξ is a primitive element of
Fq. Suppose that m|(ps − 1), m > 3, and Fq contains all the roots of Fa. Then,

1. H(x) = Dm,b ◦ Fa(x) is an (mpt − 1)-good polynomial over Fq if and only
if A = {i ∈ {0, 1, . . . , q − 2} | i mod q−1

m ∈ I, Di ⊆ Im(Fa)} is nonempty,
where I is defined in (7) and (9) for q odd and q even respectively.

2. H ′(x) = Fa ◦Dm,b(x) is an (mpt − 1)-good polynomial over Fq if and only
if A′ =

{
c ∈ Fq | c+ Ea ⊆ Dm,b

(⋃
i∈I Di

)}
is nonempty, where Ea = {x ∈

Fps | Fa(x) = 0} and I is defined in (7) and (9) for q odd and q even
respectively, and Dm,b

(⋃
i∈I Di

)
= {Dm,b(x) | x ∈

⋃
i∈I Di}.

Proof. Observe that H and H ′ are of degree mpt.
1. Sufficiency. Assume A 6= ∅. Then, there exists i ∈ A such that Di =

{u+ bu−1 | u ∈ ξiUm} ⊆ Im(Fa) for i mod q−1
m ∈ I. Hence, for any ξiUm, there

must exist x ∈ Fq such that u + bu−1 = Fa(x), which is equivalent to saying
that, for any j ∈ {0, 1, . . . ,m− 1}, there must exist xi,j ∈ Fq such that

ξi+j·
q−1
m + b · ξ−i−j·

q−1
m = Fa(xi,j). (10)

Since Fa is linear, i.e., Fa(x + y) = Fa(x) + Fa(y) for any x, y ∈ Fq, then for
any y ∈ Ea = {x ∈ Fq | Fa(x) = 0}, we have Fa(x + y) = Fa(x). Thus, Fa is
constant on x+ Ea for any x ∈ Fq.

Define Ai =
⋃m−1
j=0 (xi,j + Ea). We now prove that the subsets xi,j + Ea,

j = 0, 1, . . . ,m−1, are pairwise disjoint. Let j1, j2 ∈ {0, 1, . . . ,m−1} and j1 6= j2.
Suppose that y ∈ (xi,j1 + Ea)

⋂
(xi,j2 + Ea), then there exist e1, e2 ∈ Ea such

that y = xi,j1 + e1 = xi,j2 + e2, and thus Fa(xi,j1) = Fa(xi,j2). According to
(10), we have

ξi+j1·
q−1
m + b · ξ−i−j1·

q−1
m = ξi+j2·

q−1
m + b · ξ−i−j2·

q−1
m ∈ Di.

Since i mod q−1
m ∈ I, we know that |Di| = |Um| = m, which implies j1 = j2, a

contradiction. Hence, |Ai| =
∑m−1
j=0 |xi,j + Ea| = m|Ea| = mpt, where the last

equation is due to the facts that the degree of Fa is pt and Fq contains all the
roots of Fa. For x ∈ Ai, we have Fa(x) ∈ Di. Since Dm,b is constant on Di, then
the composition H = Dm,b ◦Fa is constant on Ai. Since the degree of H is mpt,
we know that H is an (mpt − 1)-good polynomial over Fq.

Necessity. Suppose that H = Dm,b ◦ Fa(x) is a (mpt − 1)-good polynomial.
Then, there exists c ∈ Fq such that |H−1(c)| = mpt, which implies that there
exists U ⊆ Fq such that {Fa(x) | x ∈ H−1(c)} = {u+ b · u−1 | u ∈ U}. Since the
cardinality of the kernel of Fa is equal to pt, then we have

|U | =
∣∣∣{Fa(x)

∣∣∣ x ∈ H−1(c)
}∣∣∣ =

∣∣H−1(c)
∣∣/pt = m.
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Also, we have that for any u ∈ U ,

um + bm · u−m = Dm,b(u+ b · u−1) = Dm,b(Fa(x)) = c,

where x ∈ H−1(c) such that u + b · u−1 = Fa(x). According to Theorem 3 and
Theorem 6, we know that the only pairwise disjoint subsets of Fq with cardinality
m such that Dm,b is constant are Di =

{
u+ b · u−1

∣∣ u ∈ ξiUm}, i ∈ I. Since
|U | = m and for any u ∈ U , Dm,b(u+ b · u−1) = c, then we have U = ξiUm for
some i ∈ I. Therefore, Di = {u + b · u−1 | u ∈ U} = {Fa(x) | x ∈ H−1(c)} ⊆
Im(Fa), where i mod q−1

m ∈ I, and thus A is nonempty.

2. Sufficiency. Assume A′ 6= ∅. Then, there exists c ∈ Fq such that c+Ea ⊆
Dm,b

(⋃
i∈I Di

)
=
{
ξim + bm · ξ−im

∣∣ i ∈ I}. For any e ∈ Ea, there must exist

ie ∈ I such that c + e = ξiem + bm · ξ−iem. Define Be = {ξie+j(q−1)/m + b ·
ξ−ie−j(q−1)/m | j = 0, 1, . . . ,m− 1}. It is easy to see that Be1

⋂
Be2 = ∅ for any

e1, e2 ∈ Ea and e1 6= e2, since e1 6= e2 implies ie1 6= ie2 and thus Die1

⋂
Die2

= ∅
(due to Theorem 3 and Theorem 6). Hence, |

⋃
e∈Ea Be| =

∑
e∈Ea |Be| = mpt,

where the last equation is from |Be| = m since ie ∈ I for any e ∈ Ea. Then, for
any x ∈ Be, e ∈ Ea,

Fa(Dm,b(x)) =Fa

(
Dm,b(ξ

ie+j(q−1)/m + b · ξ−ie−j(q−1)/m)
)

=Fa(ξiem + bm · ξ−iem) = Fa(c+ e) = Fa(c),

which implies H ′ = Fa ◦ Dm,b is constant on
⋃
e∈Ea Be ⊆ Fq with cardinality

mpt. Since the degree of H ′ is mpt, we know that H ′ is an (mpt − 1)-good
polynomial over Fq.

Necessity. Suppose that H ′ = Fa ◦ Dm,b is an (mpt − 1)-good polynomial.
Then, there exists d ∈ Fq such that |H ′−1(d)| = mpt, which implies

H ′−1(d) = {x ∈ Fq | Fa(Dm,b(x)) = d}

=
⋃
i∈I
{x ∈ Di | Fa(Dm,b(x)) = d}

=
⋃
i∈I

Fa(ξim+b·ξ−im)=d

Di.

Define J = {i ∈ I | Fa(ξim + b · ξ−im) = d}. Then, since |Di| = m for i ∈ I, we
have mpt = |H ′−1(d)| = m|J |, and thus |J | = pt. Set Bd = {ξim + b · ξ−im) | i ∈
J} ⊆ Dm,b

(⋃
i∈I Di

)
. Clearly, for any z1, z2 ∈ Bd, we have Fa(z1)−Fa(z2) = 0,

and thus z1 − z2 ∈ Ea, which implies Bd ⊆ c + Ea for some c ∈ Fq. Since
J ⊆ I, we know that |Bd| = |J | = pt. Therefore, there exists c ∈ Fq such that
Bd = c+ Ea ⊆ Dm,b

(⋃
i∈I Di

)
, and thus A′ is nonempty.

Now we specify the function Fa which is equal to Fα(x) = xp
t − αp

t−1x.
We derive the following results. The first one concerns the function composition
Dm,b ◦ Fα.
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Theorem 8. Let Fα(x) = xp
t − αpt−1x, where Fpt ⊆ Fq = Fps , α ∈ Fq. Then,

for b ∈ F∗q and integer m > 3 satisfying m|(q−1), Dm,b ◦Fα is an (mpt−1)-good
polynomial if and only if there exists i ∈ I such that

Trst

(
α−p

t (
uj + b · u−1j

))
= 0

holds for all j = 0, 1, . . . ,m− 1, where I is defined in (7) and (9) for q odd and
q even respectively, uj = ξi+j(q−1)/m, and ξ is a primitive element of Fq.

As a consequence, one can obtain the following result.

Corollary 4. For q odd, let Fα(x) = xp
t − αp

t−1x, where Fpt ⊆ Fq = Fps ,
α ∈ Fq. Let integer m > 3 such that m|(q − 1) and (q − 1)/m is even, and let b
be a non-square in F∗q . Then, Dm,b ◦ Fα is an (mpt − 1)-good polynomial if and
only if N > m, where

N =
1

ptm

∑
ci∈Fpt
i=1,...,m

Ks

(
α−p

t

(
m∑
i=1

ciξ
i(q−1)/m

)
, α−p

t

b

(
m∑
i=1

ciξ
−i(q−1)/m

))
,

(11)

Ks(·, ·) is the Kloosterman sum on Fq, and ξ is a primitive element of Fq.

The second result is dealing with the function composition Fα ◦Dm,b.

Theorem 9. For q odd, let Fα(x) = xp
t − αp

t−1x, where Fpt ⊆ Fq = Fps ,
α ∈ Fq. Let integer m > 3 such that m|(q − 1) and (q − 1)/m is even, and let
b be a non-square in F∗q , then Fα ◦Dm,b is an (mpt − 1)-good polynomial if and

only if there exists (u1, . . . , upt) ∈
(
F∗q
)pt

such that

umi +
(
bu−1i

)m − um1 − (bu−11

)m
= αθi−2,

hold for all i = 2, . . . , pt, where θ is a primitive element of Fpt .

We now present several new r-good polynomials over Fps with r = mpt − 1,
where m > 1, gcd(m, p) = 1, pt 6≡ 1(mod m), and ps ≡ 1(mod m). Let lF be the
number of pairwise disjoint subsets with cardinality r+1 on which F is constant.
The examples are found by MAGMA.

Example 1. Let Fa(x) = xp
t −apt−1x, where a is a primitive element of Fps . Let

p = 3, t = 1, m = 4. Define

H(x) = Dm,−a ◦ Fa(x) = (x3 − a2x)4 + a(x3 − a2x)2 + 2a2.

1. If s = 4, then H(x) is a 11-good polynomial on F34 , and lH = 2.
2. If s = 6, then H(x) is a 11-good polynomial on F36 , and lH = 11.
3. If s = 8, then H(x) is a 11-good polynomial on F38 , and lH = 95.
4. If s = 10, then H(x) is a 11-good polynomial on F310 , and lH = 803.
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Example 2. Let Fa(x) = xp
t −apt−1x, where a is a primitive element of Fps . Let

p = 3, t = 1, m = 4. Define

H(x) = Fa ◦Dm,−a(x) = (x4 + ax2 + 2a2)3 − a2(x4 + ax2 + 2a2).

1. If s = 8, then H(x) is a 11-good polynomial on F38 , and lH = 6.
2. If s = 10, then H(x) is a 11-good polynomial on F310 , and lH = 34.

4 Concluding remarks

In this paper, we explored the new methods on constructing r-good polynomials
via combining Dickson polynomials with linear functions. We found that there
may exist a large number of such r-good polynomials besides the known ones.

Acknowledgement. We would like to thank Gaojun Luo for the discussion
on r-good polynomials via Dickson polynomials in Hangzhou, China.
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