Improved Decoders for p-ary MDPC *

Isaac Canales-Martinez!, Qian Guo', and Thomas Johansson?
L University of Bergen, Box 7803, N-5020 Bergen, Norway
{isaac.canales,qian.guo}@uib.no
2 Lund University, Box 117, 221 00 Lund, Sweden
{thomas.johansson}@eit.lth.se

Abstract. The p-ary MDPC scheme is a new NTRU-type lattice-based
post-quantum primitive that employs iterative decoding technique. In
this paper, we present several novel decoding algorithms that reduce
the decryption failure rate (DFR), applying fundamental ideas from bit-
flipping algorithms for binary MDPC/LDPC codes. Such decryption im-
provements are crucial for proposing a practical lattice-based scheme
with very compact key.

Keywords: MDPC - NTRU - p-ary MDPC - lattice-based cryptography
- iterative decoding.

1 Introduction

Searching for secure and efficient post-quantum encryption primitives is one of
the central problems in recent cryptographic research. Standardisation efforts
(e.g., the NIST Post-Quantum Standardisation project [1]) have been made
and among the submitted schemes, the variants of NTRU [10] and MDPC-
McEliece [12] have shown great efficiency and proven their competence in the
realms of lattice-based and code-based cryptography, respectively.

Based upon these two important primitives, the p-ary MDPC scheme was first
proposed at ISIT 2016 [7], which can be viewed as an extension of the MDPC-
McEliece into the Euclidean metric, or as an NTRU-type lattice-based scheme
with iterative decoding. The scheme was further investigated by Deneuville et al.
in [4] to have an efficient Ouroboros-type lattice-based key-exchange protocol.

The goal of using iterative decoding technique in lattice-based cryptography
is to reduce the alphabet size while good error performance is maintained. This
technique can enhance both efficiency and security. On one hand, it allows to
propose a smaller public key size; on the other hand, lattice reduction algorithms
like sieving and enumeration can be less efficient when the alphabet is small —
these attack algorithms are considered as the main threat nowadays.

* Supported in part by the Norwegian Research Council (Grant No. 247742/070), the
Swedish Research Council (Grant No. 2015-04528) and the Swedish Foundation for
Strategic Research (SSF) project RIT17-0005.

2 I. Canales-Martinez et al.

In this paper, we present improved bit-flipping decoding algorithms for the
p-ary MDPC. We focus on the average-case performance and reduce their decryp-
tion failure rate (DFR) by changing the thresholds employed in each decoding
iteration. The improvements are demonstrated by extensive simulation.

The remaining parts of the paper are organised as follows. We present the
background on the p-ary MDPC primitive in Section 2. This is followed by the
main section presenting the different versions of the newly proposed decoders.
We conclude this paper in Section 4.

2 Preliminary

We introduce background on the p-ary MDPC scheme, consisting of basic knowl-
edge on coding theory and a particular instantiation of the p-ary MDPC scheme.
Vectors and matrices will be denoted by bold characters throughout this paper.

2.1 Coding Basics

Let p be a prime integer and let C be a subspace of F); with dimension k and
codimension 7 = n — k. Then C is called an [n, k] linear code of length n and
dimension k. A vector ¢ € C is called codeword. From now on, we will refer to a
linear code simply as a code. The size of a code is the number of codewords, i.e.
IC| = p*. Let G be a k x n matrix whose rows are the vectors of a basis of C, then
we call G a generator matriz and it defines the code as C = {uG | u € F’;}
Likewise, C can be defined by an r x n matrix H, called parity-check matrix, as
C={v eF; | Hv' =0}, ie. Cis the kernel of H. The syndrome of a vector
v € [} is defined as Hv”. Tt follows that for ¢ € C, Hc” = 0 and for ¢ ¢ C,
Hc” # 0. When p = 2, it is customary to call the code binary; otherwise we call
it a p-ary code.

A Low Density Parity Check code (LDPC) is a linear code with a sparse
parity-check matrix. A Moderate Density Parity Check code (MDPC) is a linear
code with a still sparse but denser parity-check matrix.

A code is quasi-cyclic if there exists an integer s such that for any codeword
¢, a cyclic shift by s positions results in another codeword ¢’. Let C be an [n, k|
quasi-cyclic code with n = sk. Then the generator and parity-check matrices of
C can be constructed by circulant blocks of size k x k. Notice that only one vector
determines the whole block (namely the first row), hence only one vector per
block is needed to completely determine the generator and parity-check matrices.
Moreover, due to the isomorphism between the algebra of these circular matrices
and that of polynomials in F,[X]/(X* — 1), the matrix/vector operations can
be implemented and treated as operations in this polynomial ring.

2.2 p-ary MDPC

The general construction of a p-ary MDPC scheme is firstly presented in [7].
In this paper we employ a concrete instantiation [8] similar to the Ouroboros-E

Improved Decoders for p-ary MDPC 3

key-exchange protocol proposed in [4]. We choose to utilise a parity-check matrix
of two blocks of size k X k.

We can allow other parameter sets based on secure parameter suggestions
from NTRU-based or RING-LWE-based cryptosystems, e.g., choosing a non-
prime alphabet size (denoted by ¢ instead for the general setting), or using the
ring R = Z,[X]/(X*+1) rather than the quasi-cyclic structure. Safe parameters
include ¢ a prime, k a power of 2, and R = Z,[X]/(X* + 1); or ¢ a power of 2,
k a prime, and R = Z,[X]/(X* — 1).

Let d be a positive integer, and define 7, = {-d,...,0,...,d}, h(()d) =

d
|5471(1,0,..,0) and h{® = | 5241(1,0,...,0).

KEY GENERATION:

— Given a parameter d, compute hg = h(()d)—i—flo and h; = hgd)—i—fll, where hy &

7% and hy & Tk. For simplicity, we assume the ring R = Z,[X]/(X* — 1) is
employed and require the sum of the coefficients of hy (fll) to be 0.

— Compute H = (Hy|H;), where Hy and H; are matrices obtained by per-
forming k — 1 cyclic shifts of hy and h;, respectively. If Hy is singular, go to
the previous step and regenerate hy and h;.

— Compute G = (I|Hy "H;).

— Return the private key-public key pair (H, G).

ENCRYPTION:

— Let m € IE‘Z be the plaintext and e & 7y.
— Return the ciphertext c = mG + e.

DECRYPTION:

— Get mG by using a decoder to remove the noise e from c.
— Extract m from the first n entries of mG (because G is in systematic form.)
— Return the plaintext m.

3 Reducing DFR by Varying Thresholds

In this section we show a decoding algorithm for the p-ary MDPC scheme in
Section 2.2. We also improve the decoding performance using varying thresholds
for different iterations, as the bit-flipping decoders in [6,12].

3.1 The State-of-the-Art Bit-Flipping Decoder for p-ary MDPC

The decoder that we present here, in Algorithm 1, is close to the noisy p-ary
bit-flipping decoder for Ouroboros-E [4], with adjustments for the p-ary MDPC.
We set d = 1 for simplicity.

The decoder takes as inputs the ciphertext c, the parity-check matrix H and
a parameter iter specifying the number of iterations. The algorithm outputs the

4 I. Canales-Martinez et al.

Algorithm 1 p-ary bit flipping

Input: The ciphertext c, the private key H, and the number of iterations iter
Output: The error e if success, | otherwise

l: e~ 0€Zy

2: Compute the syndrome s = H - c¢”
3: p+s

4: for i < 1 to iter do
5: € + DECIDE(p)
6: e+ e+e
7: TRANSFORM(e)
8 p+s—H-eT
9: ifp;=0forallje{l,...,k} then

10: return e
11: end if
12: end for

13: return _L

error vector e if decoding was successful, or L (decoding error) otherwise. The
main idea is to recover the error e by iteratively updating the value of each entry
e; according to a decision rule. When the correct value of e is found, we have
that s — H-e” = 0, where s = H - c”. If the computed error e is such that
s — H-eT # 0 after iter iterations, decoding was unsuccessful.

Algorithm 2 details the updating decision rule for recovering e. Recall that
each parity check (row) of H has two significant entries, namely, the hél) and h(ll)
parts of hg and hy, respectively. Each of these entries is sampled from {—1,0, 1},
and thus we have 9 different signal points to consider, i.e., {—1,0,1} x{—1,0,1}.
We spread these 9 points throughout [0, ¢] (mod ¢) as shown in figure 1a. In order
to update e for the hgl) part, the set [0,¢] (mod ¢) is divided into 3 intervals.
These intervals are determined by £, 2 and %, and each one has 3 signal points

6 2
and an associated update value, as shown in Figure 1b. Notice that any of these
intervals has “length” % and three signal points which represent the possible

))

update values for the hgl part. Updating e for the hgl part is done in a similar

way as for hél). We divide the set [0, £] (mod %) into 3 intervals determined by

9 g 5q
and 7¢,

5 8 each one having 1 signal point, as shown in Figure lc.

The vector e is updated in line 6 of Algorithm 1. Notice that the addition
of e and € may lead to coefficients equivalent to 2 or —2. We thus employ the
function TRANSFORM to ensure the resulting vector is valid, i.e., from Z7*. In [4],

the function TRANSFORM sets a coefficient to be —1 if it is 2 and 1 if it is —2.

3.2 The Essential Idea

The decision rule in Algorithm 2 keeps the same interval bounds for all iterations
in the main loop of Algorithm 1. We propose to update these bounds. For this, we
introduce a threshold thr(® that determines the new interval bounds in iteration
1,9 =1,...,iter. Figure 2 depicts how the intervals might change throughout the

Improved Decoders for p-ary MDPC 5

Algorithm 2 DECIDE(p)

Input: Vector p

Output: Vector e’ resulting from applying the decision rule to p
1: e« 0

2: for j « 1 to k do

3 if p € [[4],[4]] then

4 ef 1

5 elseif p; € [[4],|%]] then

6: e+ —1

7 end if

8 if (py mod [4]) € [[4], [4]] then
9: €hyy 1

10: else if (p; mod [4]) € [[2],[%¢]] then
11: e;H_]- — -1

12: end if

13: end for

14: return €’

(a) Signal points in [0, ¢] (b) Intervals of [0,¢] (c) Intervals of [0,%

(mod q). (mod ¢) with their signal (mod %) with their signal
points and associated points and associated
values for h(()l). values for hgl).

Fig. 1: Graphical representation of the decoding decision rule. When d = 1, there
are 9 signal points to consider.

main loop. When an entry p; does not lie within any of the intervals for 1 and
—1, we are not able to decide the value for e’ at the corresponding position, and
we set it to zero. Algorithm 3 shows the new decision rule using the proposed
thresholds. In Sections 3.3 and 3.4 we propose new methods for computing thr(®).

Note that this new proposal is a generalisation of the previous decoder: when
thr() = 0, it is equivalent to using the interval thresholds as in Algorithm 2.
Moreover, Algorithm 3 can be further generalised: at iteration i, instead of choos-
ing thr(® only, it is possible to choose different thresholds for the upper and lower
bounds of each of the intervals.

6 I. Canales-Martinez et al.

0 0 0 O
(a)i=1 (b)i=2)i =1dter — 1) i = iter
Fig. 2: Intervals used for iterations ¢ = 1, ..., iter in the new decoding procedure.

Algorithm 3 DECIDETHR(p)

Input: Vector p
Output: Vector e’ resulting from applying the decision rule to p

1: €+ 0

2: Compute thr®

3: for j < 1to k do

4 if pj € [[4] + thr™, [1] — thr™)] then

5: ef 1

6: elseif p; € [[1] +thr™, [2¢] — thr()] then

7 e+ —1

8: endif

9: if (pj mod | 2]) € [[4] + thrD, | &] — thr)] then
100 ey 1

11: else if (p; mod [2]) € [[E]+ thr®, |32 — thr] then
12: €y —1

13: end if

14: end for

15: return €’

3.3 Gallager-B type Decoders

Here we estimate the error probability and derive a series of theoretical values for
the decoding thresholds. The analogue in the Hamming metric is the tree-based
analysis in [6].

First, we assume that the noise random variable in each iteration is Gaussian
with mean 0 (due to the intuition from the central limit theorem) since it is a
sum of many small noise variable with mean 0. For a fast estimation, we ignore
the independence issue that may occur in the decoding process. We track the
change of the average error variance in each iteration.

Every entry p; in p is a sum of the contribution e;[4] + ey 5[] and a

second part called noise, denoted N;, where IV; (h([)},h[1 })e and hg 2
h; cyclically shifted j steps. The noise variance o2 is initially 22 o= 89k. We now
only record the probability that a signal point (e, ex4;) is wrongly decoded to

its neighbour in the torus, e.g., (0,0) to (0,-1) or (0,1); (1,1) to (-1,-1) or (1,0).

means

Improved Decoders for p-ary MDPC 7

Let us denote .
S (Wm)
i =
’ V20, ’
4 thr’+1
11, = erfc 182) .
h < V20,
Let e be the original error vector and () be the guessed error vector in the
i-th iteration. We have é(© = 0 and we get

p) =s—He® = H(e — &),

and

which is the input to the DECIDETHR() procedure in the i-th iteration.

We know that for 1 < j < k, e; and epy; are distributed uniformly in
T = {—1,0,1} before the first iteration. If e;1; = 0, the coefficient e; is almost
certainly correctly decoded. If the signal point is (0, 1) with probability 1/9, then
the probability to wrongly decode e; to 1 is 0.5y 4. If the signal point is (1, —1)
with probability 1/9, then the probability to wrongly decode e; to 0 is 0.5 _.
If the signal point is (1, 1) with probability 1/9, then the probability to wrongly
decode e; to 0is 0.5(m;,— —my 4) and to —1 is 0.5m; 4. We can compute the error
variance by symmetry for the rest signal points. The noise variance introduced
by the first part of the error vector can be estimated as % . %(771,_ + 2m).
Similarly, we estimate the noise variance introduced by the second part of the

error vector as %%(WL_ + 2m;.4+). We can compute the noise variance o? as

oi=2. %(WL_ + 27 4).

Since the error occurring in the first k& positions is much easier to correct
than the errors in the last k positions, we track only the noise variance from the
last k positions of the error vector, from the second iteration. Let 7; denote the

S}r y is correct. Thus, we have that

Tipr = (1 = Tip1,4) + (1 = mi) (1 — migr,—),

probability that the decision on the position é

and mp = 1/3.
Finally, we can iteratively estimate the value of the remaining noise in the
(i 4 1)-th iteration, o7, as

2k
ol = 3 (mimip14+ + (1= m) (i1, — + L5mip14)), (1)

for i > 1. We can also alternatively introduce a new parameter® ¢, > 1 to have
better performance heuristically, i.e., we compute O'i2+1 by
9 2k
Tipp =g (mimip1,4+ + (1= m) (i1, + L5mip14)), (2)
for i > 1.
We choose the thresholds ¢thr() such that the noise variance o? is minimised,

which can be solved numerically. We denote by G1 and G2 the decoders using
thresholds computed from Equations (1) and (2), respectively.

3 We have ¢y > 1 since the error contribution of the first k positions is omitted in
Equation (1).

8 I. Canales-Martinez et al.

3.4 Heuristic Decoders

Here we present three heuristic decoders called H1, H2 and H3, respectively.
The three decoders are similar to their Hamming counterpart from [11,12] for
MDPC-McEliece. Let A be the set of nine signal points, i.e.,

A:=A0,1q/91, [24/91,- .., [8¢/91}-

In the i-th iteration of H1, we compute

O T @) _
thrma = 1g e fin lp;” — al,

to make a parity-check equation with its updated syndrome py) closest to a

non-zero signal point corrected (flipped). The threshold in the i-th iteration is
thr® = max(0, thr() —§), (3)
where a positive constant § determined by simulation is used to reduce the
required number of iterations in the average case.
The decoder H2 is a variant of H1 and provides comparable (or even better)
error performance in some simulations. In the i-th iteration, we compute

thrp = _min |p —al.
acA

The threshold in the i-th iteration is
thr® = thr®) 15 (4)

for a positive constant § determined by simulation.

The decoder H3 is also a variant of H1 and provides the best error perfor-
mance in simulations. We choose § = dy, for some value §g. In the i-th iteration,
we compute thrr(rfe),x and thr® as in H1. If decoding is unsuccessful, decrease
the value of & by 1 and restart the process. This is repeated until decoding is
successful or 6 = 0 (decoding failure).

3.5 Experimental Results

Here we give the experimental results using the decoders presented in Sections
3.3 and 3.4. We compare the proposed decoders with the reference decoder [4].
Note that the values of k and q are only chosen for testing the error performance.

For G1 we computed the theoretical thresholds as in Section 3.3; the thresh-
olds and variances obtained are shown in Table 1 when ¢, = 1.00. For G2 we
computed the thresholds varying the value of ¢y from 1.0 to 2.0 by steps of 0.01.
We heuristically chose to use for our experiments the values shown in Table 1,
with ¢y > 1.00. For both, G1 and G2, let i be the smallest integer such that

Improved Decoders for p-ary MDPC 9

kg CA\ i=1 i=2 i=3 | i=4 i=5 i>6
lthr(” [af [thr(l)[0‘? [thr(” [a? [thr(” [0'12 [thr“’)[0‘? [thr(” [o?
491[345[1.00 8[288.32 7[123.64 4]31.30 2 0.12 0 0.0000 0]0.00
491(345(1.01 8(288.32 7|124.87 5(32.18 2 0.14 0 0.0000 0[0.00
491(345(1.24 8(288.32 7|153.31 6(54.80 3 2.71 0 0.0000 0[0.00
491(345(1.31 8]288.32 7(161.96 6(62.49 4 4.72 1| 5.65 x10~5 0[0.00
491[360(1.00 8]269.43 7[101.18 4[15.16 1[3.70 x10—° 0 0.00 0[0.00
491(360|1.17 8(269.43 7/118.38 5(24.94 2 0.01 0 0.00 0[0.00
491(360(1.43 8(269.43 7/144.69 6|43.97 3 0.65 0 0.00 0[0.00
491(360(1.66 8]269.43 7|167.97 6/64.39 4 4.15 1]4.36 x10—20 0[0.00

Table 1: Computed theoretical thresholds for the Gallager-like decoders.

thr() = 0. Then we have that thr() = 0 for j > 4. However, in the exper-
iments we kept on using the last non-zero threshold up to iteration ”2”, ie.,
thr() = thr@=Y for j =4,..., " and thr() = 0 for j = % +1,... iter. If
we had not made this, both decoders would have been different to that in [4] in
the first ¢ — 1 iterations only.

For the heuristic decoders, we first executed some moderate size experiments
(100 MDPC instances and 1000 decoding executions per instance) to determine
the best values of 5. We used these values to execute the experiments reported
here.

Table 2 summarises the results obtained from the experiments. One exper-
iment comprises the random generation of 10000 MDPC instances and 1000
decoding executions per instance. The entries in the table show the number of
decoding errors among 107 decoding executions. For decoder G2, columns Cx,2,
cy,3 and cy 4 show the results when using the thresholds in the 2nd, 3rd and
4th rows of Table 1, respectively, for the different values of k and ¢. In general,
our proposals have better performance than the reference decoder. The heuristic
decoders present the best decoding failure rate. Decoder H3 presents a very low
failure rate with the parameters in table 2. We also executed this decoder with
k =491, ¢ = 375 obtaining 0 decoding errors for iter = 20.

We noted in the experiments that the execution time of the reference decoder
was significantly higher than that of the decoders we propose. This difference in
performance is due to the number of iterations required to finish the decoding
procedure in the average case.

4 Conclusions and Future Works

In this paper, we have presented novel iterative decoders for the p-ary MDPC
scheme by varying the thresholds used in each iteration. These thresholds are
determined either by numerically optimising the error level in the next itera-
tion, as was done by Gallager [6], or by applying heuristic methods. We have
demonstrated improved decoding performance by simulation.

Two more interesting problems will be further investigated in an extended
paper. Firstly, we intend to propose a better worst-case decoder, as was studied

10 I. Canales-Martinez et al.

, G2 H1 H2 H3

k ‘ a |iter]] ‘ Cllcyalens| eaals = 16]6 = 17‘5 =2[§ = 3|80 = [%]
491[345]100][271] 11| 14] 17] 27 1 5[2] 6 0
491(345| 75 || 405| 19| 24| 17| 22| 10| 13| 5| 11 0
491(345| 50 || 992| 60| 53| 49| 98| 20| 23] 27| 28 0
491[345| 25 ||14543|909| 949| 911|1309| 346 367| 402| 402 12
191[360] 100 5[1| 2| 3] 1 1 1 o o 0
491(360| 75 4] 2| 2| 3] 2 4 2 1| 1 0
491(360| 50 17| 10| 11| 2| 11 5 gl 1| 5 0
2

491|360| 25 267|163| 131| 122| 188 44 32 32 48

Table 2: Decoding failure rate (x10~7) of experiments for different parameters.
Each experiment comprises the random generation of 10000 MDPC instances
and 1000 decoding executions per instance.

in [3] for the binary MDPC. We will also test the heuristic independence assump-
tion made in [7] for proposing parameters with an arbitrarily small decryption
error probability. The latter can be crucial to resist the potential reaction at-
tack [9,5] that is already a threat to the MDPC/LDPC-based cryptosystems.

References

1. NIST Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization, accessed: 2018-09-24

2. IEEE International Symposium on Information Theory, ISIT 2016, Barcelona,
Spain, July 10-15, 2016. IEEE (2016), http://ieeexplore.ieee.org/xpl/
mostRecentIssue. jsp?punumber=7532279

3. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for mceliece cryptosys-
tem. In: IEEE International Symposium on Information Theory, 2016, Barcelona,
Spain [2], pp. 1366-1370, https://doi.org/10.1109/ISIT.2016.7541522

4. Deneuville, J., Gaborit, P., Guo, Q., Johansson, T.: Ouroboros-e: An efficient
lattice-based key-exchange protocol. In: 2018 IEEE International Symposium on
Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018. pp. 1450-1454.
IEEE (2018), https://doi.org/10.1109/ISIT.2018.8437940

5. Fabsic, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T.: A re-
action attack on the QC-LDPC McEliece cryptosystem. In: Post-Quantum Cryp-
tography - 8th International Workshop, PQCrypto 2017. pp. 51-68. Springer, Hei-
delberg, Germany, Utrecht, The Netherlands (Jun 26-28 2017)

6. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Information Theory
8(1), 21-28 (1962), https://doi.org/10.1109/TIT.1962.1057683

7. Guo, Q., Johansson, T.: A p-ary MDPC scheme. In: IEEE International Sympo-
sium on Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016 [2], pp.
1356-1360, https://doi.org/10.1109/ISIT.2016.7541520

8. Guo, Q., Johansson, T.: The p-ary MDPC — an iterative trapdoor in lattice-based
cryptogrpahy (In preparation)

9. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Advances in Cryptology — ASIACRYPT 2016,
Part I. Lecture Notes in Computer Science, vol. 10031, pp. 789-815. Springer,
Heidelberg, Germany, Hanoi, Vietnam (Dec 4-8, 2016)

10.

11.
12.

Improved Decoders for p-ary MDPC 11

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J. (ed.) Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1423, pp. 267-288. Springer (1998),
https://doi.org/10.1007/BFb0054868

Huffman, W.C., Pless, V.: Fundamentals of error-correcting codes (2003)
Misoczki, R., Tillich, J., Sendrier, N., Barreto, P.S.L.M.: Mdpc-mceliece: New
mceliece variants from moderate density parity-check codes. In: Proceedings of
the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey.
pp. 2069-2073. IEEE (2013), https://doi.org/10.1109/ISIT.2013.6620590

