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Abstract We study the cycle structure of permutations F(z) = = +
vf(z) on Fyn, where f : Fgn — F,. We show that for a 1-homogeneous
function f the cycle structure of F' can be determined by calculating the
cycle structure of certain induced mappings on parallel lines of vF,. Using
this observation we describe explicitly the cycle structure of permutations
x4+~ Tr(z? 1) over F,2, where ¢ = —1 (mod 3), v € F2 and v = —2%.
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A permutation can be expressed as a unique product of disjoint cycles (up to
reordering). Such a cycle decomposition provides information on both algebraic
as well as combinatorial properties of the permutation. Much of that informa-
tion is retained in the cycle structure of the permutation, which lists the lengths
of the cycles and their frequencies in the cycle decomposition. One of the main
current challenges in the research on permutations of finite fields is finding the
cycle structure for interesting families of permutation polynomials. At present,
this is studied for very few families of permutation polynomials, like monomial,
linearized or Dickson polynomials. In this paper we consider the class of permu-
tation polynomials of shape x +f(z) on Fyn, where v € Fy, and f: Fgn — Fy.
In particular we will show that if f is 1-homogeneous, then it suffices to consider
the induced permutations on certain lines. We use this observation to describe
the cycle structure of permutations x + v Tr(z2¢~1) over Fs2, where ¢ = —1
(mod 3), v € F2 and 73 = —%.

1 Induced Permutations on Lines and Subspaces

The following result is straightforward:

Lemma 1.1. Let F(z) =z +vf(z), where f : Fgn — F, and v € Fgn. Then F
maps every line a +YF,, a € Fyn into itself.

Proof. Let o+ vyu € a + 7F,, then
Fla+7u) = a +yu+1f(a+yu) = a+(u+ fla+yu) € a+1F,.

So F' maps a + 7F, into itself. ad
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The next lemma shows that the converse of the above lemma is also true.

Lemma 1.2. Let v € Fyn. If F : Fgn — Fyn maps every line a +7Fg, o € Fyn
into itself, then F(x) = x +~vf(x) for an appropriate mapping f : Fgn — F,.

Proof. By assumption of the lemma for any o € Fy» there exists a mapping
foa : Fqg — Fg4 such that

Fla+yu) = a+7(u+ fa(u)) = a+yu+7fa(u)

for u € IF,. Let now A be a system of representatives for the cosets of the line vF,
in Fgn. Then every & € Fy» can be uniquely written as a+~yu with o € A,u € F,.
For z = o+ yu with a € A and u € F, we define f(x) = fo(u). Then clearly

F(z) = Fla+yu) = a+yu+vfalu) =z +7f(2),
where f:F; — F,. ad

Remark 1.3. Let F(z) = x + v f(x), where f : Fgn — Fy and v € F}... Further
let L be a subspace of Fy» containing «y. Since every coset of a subspace L in Fyn
is a union of lines a + I, for certain a € Fy», the mapping F' maps any coset
of L into itself.

As an immediate corollary of Lemma 1.1 we get:

Theorem 1.4. Let F : Fgn — Fyn, F(z) =2+ vf(z), where f : Fgn — Fy and
v € Fyn. Then F' permutes Fyn if and only if it permutes every line a+~F, with
o € Fqn .

The next observation follows directly from Theorem 1.4:

Proposition 1.5. Let f : Fgn — Fy and v € F.. If F(z) = x + vf(z) is a
permutation of Fyn, then every cycle in its cycle decomposition has a length not
exceeding q.

Let S4 denote the symmetric group of a set A. Two permutations 7 : A — A
and ' : B — B are called conjugate , if there exists a bijection ¢ : A — B, with
7 =@ ' on’oy. The next well known fact is used often in the sequel:
Proposition 1.6. Let A, B be finite sets with |A| = |B| and F € S4 and G €
Sp. Then F and G have the same cycle structure if and only if there exists a
bijection ¢ : A — B, with F = ¢~ oG o .

Recall that a mapping g : Fgn — F, is called homogeneous of degree 1 or
1-homogeneous, it g(ux) = ug(zx) for any u € F, and « € Fyn. Next we consider a
special class of permutations F'(z) = z+f(x), where f is homogeneous of degree
1. The following theorem shows that the cycle structure of such permutations
has an interesting regularity.
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Theorem 1.7. Let f : Fyn — Fy be 1-homogeneous and v € Fy.. Further let L
and M be subspaces of Fyn such that v € L, L < M and dim(L) = dim(M) — 1.
If F(z) =  + vf(x) permutes Fyn, then F' has the same cycle structure on all
cosets m+ L # L of L in M.

Proof. Let o« € M \ L be fixed. Then for any m € M \ L, the coset m + L
can be represented as at + L with ¢ € F7. By Remark 1.3, the mapping F' is a
permutation on the coset tav + L. Let now [ € L. Then

Fta+1) =ta+1+vf(ta+1) =ta+ Gi(l)

with G¢(1) : L — L, G¢(I) =l + vf(ta 4+ 1). Since G¢(I) = F(ta + 1) — taw and
adding ta is a bijection from L to ta+ L, G¢(l) is a permutation of L that has the
same cycle structure as F' on ta+ L by Theorem 1.6. Hence it remains to show,
that the cycle structure of Gy is independent of ¢. Since ¢ € Fy, multiplying by
t is a permutation of L. Since f is homogeneous of degree 1, we have

G () =t (#+ v f(ta+ ) =t HH + v f(t(a +1))
=t tl+tyfla+D) =1+vf(a+1)=Gi(l).

This shows that G; and G are conjugate permutations in the symmetric group
St and consequently have the same cycle structure. a

For the choice L = ~F, and M any two dimensional subspace of Fy» con-
taining -y, Theorem 1.7 implies that the cycle structure of the permutation
F(z) = z + ~vf(x) is the same on all parallel lines m + vF, # ~F, contained
in M. This is a key observation for understanding the cycle structure of permu-
tations of shape 4+ v f(x) which we summarize in the following theorem:

Theorem 1.8. Let f : Fgn — Fy be 1-homogeneous and v € Fy.. Suppose
F(z) =z +vf(z) is a permutation on Fgn. Then the following properties hold:

(a) Let M be any two dimensional subspace of Fgn containing . Then the cycle
structure of F' is the same on any line m + ~F, # ~F, lying in M.

(b) There are at most 1+ (¢"* —1)/(q — 1) lines in Fyn such that the cycle
structure of F' is pairwise different on them.

Proof. The statement follows from Theorem 1.7 with M of dimension 2 and

the observation that qn;l_ L is the number of pairwise different two dimensional

subspaces containing +. O

In the next sections we demonstrate applications of Theorem 1.8.

2 The Case F(z) = x + v Trgn/q(x*)

In this section we consider the case f(z) = Trgn/q(2*) with k € N and Trgn /g :

Fgn — Fy, where Trgn g(2) = 2 + 29+ --- + 29" is the trace mapping. The
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study of permutations @ -+ Tryn /4 (z*) was originated in [3], where the complete
characterization of such permutations for ¢ = 2 is achieved. Several families of
such permutations are found in [4], [7], [8] and [10]. In this paper we concentrate
on the cases n = 2 and n = 3. The following theorem lists the known families of
such non-linear permutations for n = 2 and n = 3:

Theorem 2.1. The polynomial F(x) = x + Trgn /q(x¥) is a permutation poly-
nomial over Fyqn in each of the following cases:

I.n=2,g==+1 (mod 3), y=-1/3, k=2¢—1,

2.n=2,q=-1 (mod 3), v = —1/27, k =2q — 1,

3. n=2,¢=1 (mod 3),y=1,k=(¢*+q+1)/3,

4' n:2yq:Q2’Q>O;’Y:717k:Q37Q+17

5n=2q¢g=0Q%Q>0,v=—1,k=Q*+Q*>-Q,

6. n=2,q=1 (mod 4), (29)*D/2 =1, k = (¢ + 1)%/4,

7. n=2,q=2% seven, ¥ =1,k=(3¢—2)(¢> +q+1)/3,

8 n=2q¢g=2% sodd, v =1, k= (3¢>—2)(qg+4)/5,

9. n=2,q=2%v€F,, st a>+x+v"! hasno root in ¥y, k = 225724+3.2572
10. n=2,q=2% s=1 (mod 3), y=1, k= (2¢> — 1)(¢ +6)/7,
11.n=2,q¢=2%,s=—-1 (mod 3),y=1, k=—(¢*> — 2)(¢ +6)/7,
12.n=2,q=2% s odd, y\9TD/3 =1, k = (22571 +3.2571 +1)/3,

18. n=2,q=2% seven, y=1, k= (¢> —2q+4)/3,

14 n:2, q:QQ’ Q:2s’ ’YG]F*, k:24s—1 _235—1_;'_223—1_’_25—1,
15. n=2,q=3% s >250" /2 = (y —1)la=D/2 | = 3271 4 35 _ 351,
16. n=3,qodd, v =1, k= (¢* +1)/2,

17 n=3,qodd, v=—1/2, k=¢*>—q+1.

It can be easily seen that in all cases of Theorem 2.1 the integers k& and n
satisfy k =1 (mod ¢ — 1), implying:

Proposition 2.2. If ¢ and k appear in one of the cases of Theorem 2.1, then
z* =z for any x € Fy, and hence the function Trqn/q(ack) is homogeneous of

degree 1.

Consequently every permutation listed in Theorem 2.1 fulfills the conditions
of Theorem 1.8. Thus to determine the cycle structure of these permutations,
it is enough to find the cycle structure of the induced permutations on lines
parallel to vF,. By Theorem 1.8 (b), for n = 2 there are at most two lines with
different cycle structure, and for n = 3 there are at most ¢ 4+ 2 such lines. One
of the lines for which we need to compute the cycle structure is yF,:

Remark 2.5. Let F(z) = x + 7Tryn ,(2*) be one of the cases appearing in
Theorem 2.1. Then the cycle structure of F' on 7F, is easy to determine. Indeed,
for any yu € 7F, it holds F(yu) = (1 + Trgn/q(7"))u, and hence the cycle
containing ~yu has length equal to the multiplicative order of (14 Tryn /q('yk)) in
F

q-
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In some of the cases listed in Theorem 2.1 there are multiple choices for ~
defining permutations. However in some of these cases the choice of v does not
impact the cycle structure of permutations:

Proposition 2.4. Let v, and . define permutations F,, and F, appearing in
one of the cases 2, 6, 8 and 12 of Theorem 2.1. Then F,, and F.,, are conjugate
and hence they have the same cycle structure.

Since the proofs are similar, we only put the proof for case 2.

Proof. Let F(x) =+~ Tryz/q(2%77"), where v* = — 2. One possible choice for
vis —3. Let F*(z) = x — 3 Try24(22771). In the following we proceed similar to
the proof of Theorem 3.2 from [7]: Let w := —37, then w® = 1 and consequently
w2l =1, s.t.

1 1
Flwn) =wz = 50 Trge g0 = (@ = 3 Trge o (e*17))

= wF*(x)

It follows that F' is a conjugate of F'* for any admissible ~, that is the cycle
structure of F' is the same for every such 7. a

Remark 2.5. With notation from the proof of Proposition 2.4 and a = wp, the
mapping ¢ : §+F, = a+~F, given by ¢(z) = wz is a bijection. Consequently
the cycle structure of F' on a + 7F, is the same as the cycle structure of F** on
B + F,. This shows that for all possible choices of v the cycle structure on lines
parallel to 7, is the same as well.

Tables 1 and 2 describe numerical results on the cycle structure on affine
lines [ parallel to v, and I # ~F, for some of the permutations from Theorem
2.1. If a permutation has r; cycles of length mq, ro cycles of length mso, ...and
r; cycles of length m;, where m; < my < --- < m;, we denote its cycle structure
by mitmg?...m;".

Table 2 shows in particular that in cases 16 and 17 the upper bound ¢ + 1
from Theorem 1.8 for different cycle structures on lines is not achieved. Instead
for ¢ = 25 there are only 6 in both cases and for ¢ = 125 there are 9 in case 16
and 14 in case 17.

Remark 2.6. Although the cycle structure of F(x) = -+ Trgs s (2" +1D/2), which
is case 16 of Theorem 2.1, seems to be complex, this is not the case for the
cycle structure of F o (24" T4-1) = g0 +a-1 4 Trgs /q(x). The latter is explicitly
determined in [5].

Numerical results for case 2 show that the cycle structure of these permuta-
tions on lines || vFq,l # ~F, is always the same as the cycle structure of z3 on
F,, which is known from the next theorem. We denote by ord,(k) the order of k
modulo ¢, i. e. the smallest positive integer m with k™ =1 (mod t).



Table 1. Examples of cycle structure on
lines for n = 2. Here a is a root of z'° +
P+ +2+ 22+ +1in Fi024, b is a
root of 2° + 22 + 1 in F32 and ¢ is a root of
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2° — 2+ 1 in Faus.

case q| 7|cycle structure on any line
L[ vFq,l # 1Fq
1 | 289 11429810
2 | 125 132130%
3 | 289 11429810
4 | 289 114112214228'622801
5 | 289 1581194521 148!
6 | 289 114541985
7 |1024 1]14112919%04210
#1(1%302702802260* 400"
8 12048 12201122144166°88°110!
1322176'19812421
9 1024 L 4163171 .
a|2'6°621186
10 [1024 1410%20°35%60°400*
11 2048 21224552138111652
12 (2048 1682919962
13 |1024 224°30280'320' 540"
14 |1024 1 411352063656051802
b|256
15 | 2431 242"
1261132262782

Table 2. Examples of cycle structure
on lines for n = 3. Here column A
contains the cycle structure on lines
U|| vFq, | # ~vFq and B the number of
planes P > ~F, with such lines.

case

A

16

25

1135361

14213310t

213142191

115391

1t21319110!

11141

125

122132416212391142!

21111342441

2179101501

2114°531

516118%60!

O O OO |O|O|[D||W| W N|T™

14*69*

324291183942

127°10%20?

12213241619112%361

17

25

1131536t

112132416t

132512¢

126117t

214119t

251

125

112231719113115120153!

1314171181391 531

223181481 62!

125'9146'63!

121111630661

61814467!

14225121291 711

251261741

814176t

2232819261811

2251331831

112231428%15'861

112271819tg6!

e} Bej INej INe} IV} IiNo} iN<} iNo} INo}l iNo} JNo} INo} I} JNo} e Nl el o)l IUVH RGUR I V)

128'115¢
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Theorem 2.7 ([1]). The polynomial z* , gcd(k,q — 1) = 1, permuting Fy has
a cycle of length m if and only if m = ordy(k), where t | (¢ — 1). The number
Ny, of those cycles satisfies

m- Ny, =ged(k™ —1,q—1) — Z i+ N;, Ny =ged(k—1,q—1).

i|m,iEm

Remark 2.8. On F,, z* has the additional fixed point = = 0.

In the next section we show, that in case 2 the cycle structure on lines
|| vFy,l # ~F, is indeed the same as the cycle structure of 2% on F,,.

3 Determining the Cycle Structure of x + v Trgz/q (2?77 1).

We write Tr(z) =  + 29 for the trace map from F 2 to F,. In this section we
determine the cycle structure of F(z) = x +~ Tr(22?~ 1), where ¢ = —1 (mod 3)
and 73 = —%.

By Proposition 2.4 and Remark 2.5 for all admissible choices of v the cycle
structure of F' as well as its cycle structure on lines parallel to 7F, is the same.
Hence we consider the case v = f%, for which 7F, = I, holds.

First we determine the cycle structure of F' on Fy:

Lemma 3.1. Let ¢ = —1 (mod 3) and p be the characteristic of F,. Then the
permutation F(z) = z — 3 Tr(z?77") reduces to F(z) = sz on the line F,.
Consequently, it has one fixed point and #1)(13) cycles of length ord,(3) on Fy.

Proof. Let x € Fy, then

1 1 2 1
F(z)=2z— gTr(J:Zq*l) =x— gTr(a:) =% -gT= 3.

So x = 0 is a fixed point and the n-th iterate of F is (%)n x. Therefore if x # 0 it

is contained in the cycle (x, %x, cey (%)k x) where k = ord, (%) =ordy(3). O

To determine the cycle structure on the other lines parallel to F,, we only
need to pick one of them and find the cycle structure on it. The following lemma
will be used for a suitable choice of this line.

Lemma 3.2. If ¢ = —1 (mod 3) and odd, then —% is a nonsquare of Fy.

Proof. Let p be the characteristic of Fy, then p = —1 (mod 3) and ¢ = p™, where
p and n are odd. —3 is a nonsquare of F, if and only if #? + % is irreducible in

Fy[z]. Since ¢ = p™ with odd n, 22 + £ is irreducible in Fy[z] if and only if it is
irreducible in Fp[z]. 22 + § is irreducible in F, [2] if and only if —3 is a nonsquare
in F,. Consequently it suffices to show that —% is a nonsquare of the prime field
F,, where p = —1 (mod 3) and odd. Obviously —% is nonsquare if and only if
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—3 is nonsquare. The rest follows from the law of quadratic reciprocity for the
Now we consider two cases.

Legendre symbol:
5)-G)G)
p p/)\p)
For p =1 (mod 4), we have

@)1 Q-0-( - ()ren-n

For p =3 (mod 4), we have

()= ()~ -)--cn-res () -coo

In both cases (*73) = —1, implying —3 and so —% are nonsquares of I,,. a
Now we are ready to determine the rest of the cycle structure of F.

Theorem 3.3. Let ¢ = —1 (mod 3) and a € Fp2 \ Fy. Then the permutation

F(z) = x—% Tr(2?771) has the same cycle structure on a+Fy as the permutation

3
x° on Fy.

Proof. According to Corollary 1.8 the cycle structure of F' on a line a + F, is
the same for any choice of o € F,2 \ Fy. As in the proof of Theorem 1.7 for
any o and | € Fy the following holds: F(a +1) = a + G,(1) where Gy (1) =
I 4+ ~vTr((a + 1)?7~1) permutes F, and has the same cycle structure as F on
o + F,. Next we show that for a suitable choice of «, the permutation G, is a
conjugate of m(x) = 2% in Sr,. This choice depends on the parity of q.

If ¢ is even, then G () = I + Tr((a + 1)?271). Since ¢ = p" with n odd,
z?+x+1 is irreducible over F,. This means we find a € F 2 \F, with o® = a+1.
Consequently

P =ala+1)=a*+a=1,
Tr(e?) = Tr(a + 1) = Tr(a) = 1, Tr(a
and

(a+)T = (a+D)(a?+1]) = (a+])(a+1+]) = ® +atal+al+1+1? = P+1+1.

Using these equations we see that
7+ 1)?
W) =1+T R P Cal
Go()=1+Tr((a+ DY =1+ r( P
q 2 2 q 3
:l+(a +1) +(cu—%—l) :l+(a +10)° + (a+1)
o+l ad +1 (a+1)(ad+1)
Tr((a+1)%) 4 203 + 312 Tr(a) 4 31 Tr(a?) + Tr(a?)
(a+1Datl — P+i+1
P+l PHPHI+P+L P
2+1+1 P+1+1 CR+I+T

=[]+
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Now we can show that G, = f~' omo f for

141 ,1#£0,

792 _
F) =1 +1_{1 o

by the following computations.
(f 0 Ga)(0) = f(0) =1 =m(1) = (mo [)(0).
If I # 0 then

P+l+1 1 1 1 1 3
(fOGO‘)(l):+13++1:l3+12+l+1:<l+1> = (mo f)(1).

If ¢ is odd, then f% is a nonsquare of F, (according to Lemma 3.2) and we

find o € Fp2 \ Fy with o = —1. Consequently (a?)? = (a?)? = o? and thus
al = —a, Tr(a)=Tr(-a)=0, Tr(a?) =22 Tr(a®)="Tr(-a®) =0.

Using these equations we see that

Ga(l) =1 = 5 Te((a+ )™ ) =1~ é(o‘ HYH Y <(a+1l)3)

== 3@+ e+ 1) <(aiZ)3 i (aqil)i")

2.(a+l)3+(oﬂ+l)3ilil.
(l2_a2)3 - 3 12_a2
121 4317 Tr(@) + 31 Tr(0?) + Tr(a?)
3 12 — 2
1 203 +6la? 1 213-21 1
-z - g -Z.Z = a2 =_=
3 2—-qa? 3 12413’ 3

1212 —2) I(312+1)—1(21*—-2) I(I*>+3)

3241 32+1 3241

=1--(*-a?

l

-1

Now we can show that G, = f~ omo f for

= (he ) 1m {

by the following computations.

[

_5 7l7£_17
7l:_17

| =
e+

(oG- =1 (D) = -1 = 1 = m(-1) = (me H(-1)
Tf 1 % —1 then
T i B S B A
(foGa)(l) = 1+l(12jrr3> T 14343248 <1+l> = (mof))

312+1
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We now see that in any case there is an o € Fp2 \ Fy, such that G, is a
conjugate of 23 on Sr,- Consequently f has the same cycle structure on a + L
as z° on F, and since F' has the same cycle structure on any one of these lines
the assertion follows. O

We conclude by describing explicitly the cycle structure of F' in the general

case 7> = —2%:

Theorem 3.4. Let ¢ = —1 (mod 3), p be the characteristic of Fy and v € F e

with v3 = —2—17. Let Ny, be defined by the following recursion:

. 1, q even
Ny =ged(3™ —1,9—-1) — “N;, Ny =ged(2,q—1)={" :
m - Ny, = ged( g—1)— Y i-Ni, Ny =ged(2,q—1) {27 ¢ odd

ilm,i#m
Then F(x) =z 4+ v Tr(z?~) permuting Fy2 has

1. one fized point and #pé) cycles of length ord,(3) on vF, and
2. one fized point and N, cycles of lenght m for any m = ord¢(3), where
t|(qg—1), on any of the ¢ — 1 affine lines o +~Fy, o € F2 \ 7F,.

Proof. As we mentioned at the beginning of this section, the choice of v is
irrelevant for the cycle structure of F' and for the cycle structure on lines parallel
to vIFy, so we can w.l.0.g. choose v = —%. In this case we get vIF, = F,. Then
part 1 is Lemma 3.1 and part 2 follows in this way: According to Theorem 3.3
the cycle structure of F' on o + 4F, is the same as the cycle structure of 23 on
F,, which is known (see Theorem 2.7). O

If we count the fixed points of F' we get:

For p = 2, there are ¢ fixed points on 7F, and 1+ ged(3 —1,¢9 — 1) = 2 fixed
points on any of the ¢ — 1 affine line o + 7Fy, in total ¢ +2(¢ — 1) = 3¢ — 2.

For p # 2, there is 1 fixed point on ~4F, and 1+ ged(3 — 1,9 — 1) = 3 fixed
points on any of the ¢ — 1 affine lines o + 7F,, in total 1 +3(¢ — 1) = 3¢ — 2.

Corollary 3.5. Let ¢ = —1 (mod 3) and v € Fp2 with v = —2—17. Then the

permutation F(z) = x 4+ v Tr(2??~1) has 3q — 2 fized points on F .
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