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Abstract. We introduce and study a new class of arcs in the projec-
tive geometries over finite chain rings. We call such arcs homogeneous
and point out their connection with the linear codes with homogeneous
weight. We characterize constant weight homogeneous arcs as sums of
neighbor classes of points. We prove some necessary conditions for the
existence of two-weight homogeneous arcs and list all known examples
for such arcs.

Keywords: projective Hjelmslev geometries, finite chain rings, homogeneous
arcs, homogeneous weight, two-weight codes, two-weight arcs, regular arcs

1 Introduction

In this paper we consider finite chain rings R of length 2 with residue field
R/RadR isomorphic to Fq. It is known that for such rings |R| = q2, and |RadR| =
q, where q = ph for some prime p. Moreover, there exist exactly h+1 isomorphism
classes for such rings:

- the factor-rings of skew-polynomial rings in one variable Fq[X, σ]/(X
2), where

σ is an automorphism of Fq; these will be denoted by Sσq , and

- the Galois ring GR(q2, p2), denoted by Gq.

A more in-depth introduction into the structure and basic properties of finite
chain rings the reader is referred to [18,19,20].

The (right) (k−1)-dimensional Hjelmslev geometry PHG(k−1, R) (or just Σk−1

if the ring is clear from the context) is defined as an incidence structure in which



points are the free submodules of Rk
R of rank 1, lines are the free submodules

of Rk
R of rank 2 and incidence is given by inclusion. The free submodules of Rk

R

are called Hjelmslev subspaces of the geometry while the non-free submodules
are called subspaces. In particular, hyperplanes are the free submodules of rank
k − 1. In what follows, we denote by P (resp. H) the set of all points (resp. all
hyperplanes) ofΣk−1. Two points x, y are neighbors (notation x⌢⌣y) if there exist
at least two lines incident with both of them. Two Hjelmlsev subspaces S and T
of the same dimension are neighbors if every point of S has a neighbor on T and,
conversely, every point of T has a neighbor on S. For a point x ∈ P , we denote
by [x] the set of all points that are neighbors to x. Similarly, for an Hjelmslev
subspace S we denote by [S] the set of all Hjemslev subspaces that are neighbors
of S. The factor structure Σk−1(R)/⌢⌣ having as points, lines, planes etc. the
neighbor classes on points, lines, planes in Σk−1(R), respectively, is isomorphic
to PG(k− 1, q). For more facts about projective Hjelmslev geometries as well as
for counting formulae in such geometries, we refer to [8,11,13].

It is known that linear codes over finite chain rings for which the entries in no
coordinate position are entirely contained in RadR are equivalent to multisets of
points (arcs) in PHG(k − 1, q). It turns out however that the Hamming weight
does not describe fully the error-correcting properties of the ring codes. The
minimum Hamming distance of a linear code over a finite chain ring R is equal
to the minimum distance of a rather small subcode – the radical of the code. It
is more appropriate to consider linear codes over chain rings with respect to the
homogeneous metric introduced by Heise and Constantinescu [4,14]. Switching
to the geometric representation of the linear codes, we need a new criterion for
the goodness of an arc. In this paper, we introduce and study a new class of
arcs which we call homogeneous arcs and point out their connection with linear
codes with homogeneous weight. We characterize constant weight homogeneous
arcs and list all known examples of two-weight homogeneous arcs.

The extended abstract is structured as follows. In section 2, we introduce homo-
geneous arcs and point out the connection with the linearly represntable codes
over a q-ary alphabet. In section 3 we define the τ -dual of a multiset and give
a formula for the homogeneous weights of the τ -dual to a given arc. Section 4
contains a characterization of the arcs with one homogeneous weight which is
analogue of a well-known result by Bonisoli about one-weight linear codes and
arcs in PG(k, q) with one intersection number. In section 6 we consider two-
weight homogeneous arcs and prove that every such arc is necessarily regular.
We describe all known arcs with two homogeneous weights.



2 Homogeneous arcs and linearly representable codes

From now on R will denote a finite chain ring of length 2 with residue field
of order q. Let Σk−1 be the (right) projective (k − 1)-dimensional Hjelmslev
geometry over R. Every mapping K : P → N0 from the pointset P of Σk−1 to
the non-negative integers is called a multiset in Σk−1. This definition as extended
to the power set of P by

K :

{
2P → N0

S →
∑

x∈S K(x),
,

where S ⊆ P . Traditionally multisets are viewed as arcs or blocking sets (minihy-
pers) depending on whether we put an upper or a lower bound on the cardinality
K(H) of a hyperplane of Σk−1. We define the homogeneous weight ωK of a sub-
space S in Σk−1 by

ωK(S) = K(S)−
1

q − 1
K([S] \ S), (1)

where [S] is the set of all points that are neighbors to the points in S.

A multiset K is called a homogeneous (N,W )-arc if K(P) = N , ωK(H) ≤ W
for every hyperplane H , and there exists a hyperplane H0 with ωK(H0) = W .
An arc is called projective if the multiplicity of every point is 0 or 1. As in the
classical case, the parameters of the complement are easily computed.

Theorem 1. Let K be a multiset in Σk with homogeneous weights W1 < W2 <
. . . < Ws and maximal point multiplicity t, t = maxx∈P K(x). Then the arc
K′ = tP \ K has weights −Ws < . . . < −W2 < −W1.

A (left) linear code of length n over the chain ring R is defined as a submodule
of RR

n. The shape of the submodule is referred to as the shape of the code. In
[7,8], a general mapping is defined that transforms every R-linear code into a
code (not necessarily linear) over the residue field Fq. In the special case when
R is a ring of length 2 this mapping becomes the Reed-Solomon map:

ψRS :

{
R → Fq

q,
r = r0 + r1θ → (r0, r1)A,

where

A =

(
0 1 ζ . . . ζq−2

1 1 1 . . . 1

)

,

θ is a fixed generator of RadR, ζ is a primitive element of Fq and ri are chosen
from and arbitrarily fixed set Γ = {γi | i = 0, . . . , q − 1} of q elements from



R with γi 6≡ γj (mod RadR). It is well-known that ψRS is an isometry from
(R, dhom) into (Fq

q, dHam). Here

dhom(x, y) =







0 if x = y,
q if x− y ∈ RadR,
q − 1 if x− y ∈ R \ RadR,

and dHam is the Hamming distance. The Reed-Solomon map can be extended to
the n-tuples over R by

ψRS :

{
Rn → Fqn

q

(x1, x2, . . . , xn) → (ψRS(x1), ψRS(x2), . . . , ψRS(xn))
.

Let R be a chain ring of length 2 with residue field of order q, R/RadR ∼= Fq.
A code over the alphabet Fq is said to be linearly representable over the ring R
if it is the image of a R-linear code under the Reed-Solomon map. It is known
from [7,8] that there is a one-to-one correspondence between the classes of semi-
linearly isomorphic left linear codes of full length over R and the classes of
projectively equivalent multisets in the (right) geometry PHG(Rk

R). This corre-
spondence can be used to describe the connection between the parameters of the
linearly representable codes over Fq on one side, and the homogeneous arcs in
PHG(Rk

R), on the other.

Theorem 2. Let R be a finite chain ring of length 2 with residue field of or-
der q. There exists a correspondence between the set of linearly representable
q-ary codes of full length over R with parameters (Nq, q2k1+k2 , (q − 1)(N −W ))
a homogeneous (N,W )-arcs in Σk−1 = PHG(Rk

R), whose support generates a
subspace of Σk−1 of shape (k1, k2).

By this theorem the construction of good q-ary linearly representable codes is
equivalent to the construction of good arcs with respect to the homogeneous
weight.

3 Duality for homogeneous arcs

Let Σk−1 = PHG(Rk
R) and let P denote its set of points. Consider a multiset K

in Σk−1. The type of a hyperplane H in Σk−1 is defined as the triple a(H) =
(a0(H), a1(H), a2(H)), where a0(H) = K(P )−K([H ]), a1(H) = K([H ])−K(H),

a2(H) = K(H). Clearly, ωK(H) = a2(H) −
1

q − 1
a1(H). Denote by WK the set

of all intersection types of hyperplanes with respect to K: WK = {a(H) | H ∈
H}. Following [12] we can define an arc in the dual plane by assigning equal



multiplicities to hyperplanes of the same intersection type. In other words, given
a function τ : WK → N0 we define the τ -dual of K by

Kτ :

{
H → N0

H → τ(a(H))
.

If τ(a) is linear in the components of a, i.e τ(a) = α + βa1 + γa2, α, β, γ ∈ Q,
we can compute the types of the hyperplanes in the dual geometry with respect
to Kτ [12].

Theorem 3. Let K be a multiset in PHG(Rk
R), where R is a chain ring with

|R| = q2, R/RadR ∼= Fq. Let α, β, γ ∈ Q be such that α+ βa1 + γa2 ∈ N0 for all
a = (a0, a1, a2) ∈ WK. For any hyperplane H of type a = (a0, a1, a2), let

τ(H) = τ(a(H)) = α+ βa1 + γa2.

Then the type of an arbitrary hyperplane x∗ = xR ∈ P in the dual geometry is
b = (b0, b1, b2), where

b0 = αq2k−2 + βnq2k−4(q − 1) + γnq2k−4

−
(

βq2k−4(q − 1) + γq2k−4
)

K([x]),

b1 = αqk−2(qk−1 − 1) + βnqk−3(qk−2 − 1)(q − 1) + γnqk−3(qk−2 − 1)

+
(

βqk−3(qk − 2qk−1 + qk−2 − 1) + γqk−3(qk−1 − qk−2 + 1)
)

K([x])

−(γ − β)q2k−4K(x),

b2 = αqk−2 ·
qk−1 − 1

q − 1
+ βnqk−3(qk−2 − 1) + γnqk−3 ·

qk−2 − 1

q − 1

+
(

βqk−3(qk−1 − qk−2 + 1) + γqk−3(qk−2 − 1)
)

K([x])

+(γ − β)q2k−4K(x).

This theorem enables us to compute the homogeneous weight of a hyperplane
x∗, x ∈ P , in the dual geometry Σ∗

k−1.

Corollary 1. Let R, K and τ be as in Theorem 3. Then the homogeneous weight
of the hyperplane x∗ with respect to the dual arc Kτ is given by

ωKτ (x∗) =
(γ − β)qk−2

q − 1
(qk−1K(x) −K([x])).

4 Constant weight homogeneous arcs

It is known that a linear code in which all non-zero words assume the same
weight is a direct sum of simplex codes [1]. For arcs in PG(k − 1, q) this means



that if all hyperplanes have the same multiplicity with respect to some arc then
it is the sum of several copies of the whole projective space. The theorem below
is an analogue of this result for arcs with constant homogeneous weight.

Lemma 1. Let K be an (N,W )-homogeneous arc in Σk. For an arbitrary hy-
perplane H0 ∑

H∈[H0]

ωK(H) = 0,

where the sum is over all hyperplanes of Σk−1 that are neighbors to H. In par-
ticular, if K is an arc in Σk−1(R) for which all hyperplanes have constant ho-
mogeneous weight W then W = 0.

Theorem 4. Every (N, 0)-homogeneous arc is a sum of neighbor classes of
points.

Proof. Order linearly the points xi and the hyperplanes Hi, in such way that

xi⌢⌣xj (resp.Hi⌢⌣Hj) iff ⌊i/q⌋ = ⌊j/q⌋. Here i runs the integers 0, 1, . . . , qk−1 qk−1
q−1 −

1. For this linear ordering of points and hyperplanes, define the square matrix

A = (aij) of size q
k−1 qk−1

q−1 by

aij =







1 if xi ∈ Hj ,
− 1

q−1 if xi 6∈ Hj but xi⌢⌣Hj ,

0 otherwise.

(2)

With every homogeneous arc K we associate a vector

xK =

(

K(x0),K(x1) . . . ,K(x
qk−1 qk−1

q−1
−1

)

)

.

If K is a (N, 0) arc then xKA = 0, where 0 = (0, 0, . . . , 0) is of length qk−1 qk−1
q−1 .

Now we are going to prove that rkA = (qk−1 − 1) q
k−1
q−1 . Consider the matrix

A′ = (a|B), where B is a qk−1 qk−1
q−1 by qk−1

q−1 matrix whose columns are the
incidence vectors of the neighbor classes of points:

bij =

{
1 if xi ∈ [xjqk−1 ]
0 if xi 6∈ [xjqk−1 ].

The characteristic vectors χ(Hi) of the hyperplanes of Πk belong to the vec-
tor space spanned by the columns of A′. Since the incidence matrix of all s-
dimensional versus all t-dimensional Hjelmslev subspaces is of full rank, the
matrix A′ is of full rank [17], i.e.

rkA′ = qk−1 q
k − 1

q − 1
.



This implies that

rkA ≥ qk−1 q
k − 1

q − 1
−
qk − 1

q − 1
= (qk−1 − 1)

qk − 1

q − 1
.

On the other hand, we have

∑

j:⌊j/qk−1=a⌋

A(j) = 0,

for all a ∈ {0, 1, . . . , q
k−1
q−1 −1}. Here A(j) are the columns of A. This implies that

rkA = (qk−1 − 1)
qk − 1

q − 1
,

and the space of all solutions is spanned by the vectors

ba = (0, 0, . . . , 0
︸ ︷︷ ︸

aqk−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

qk−1

, 0, 0, . . . , 0
︸ ︷︷ ︸

qk−1 qk−1

q−1
−q−1

),

where a = 0, 1, . . . , q
k−1
q−1 − 1. ⊓⊔

By Theorem 4 it suffices to consider only arcs in which every neighbor class of
points contains a 0-point.

5 Two-weight homogeneous arcs

An arc with two homogeneous weight is called a two-weight homogeneous arc. If
the two weights are W1 and W2, we have obviously W1 < 0 < W2. By Lemma 1
every neighbor class of hyperplanes contains hyperplanes of both homogeneous
weights. A two-weight homogeneous arc with homogeneous weights W1 and W2

is called a homogeneous arc of type (W1,W2). An arc K is called regular if the
multiplicity of every neighbor class of points is constant.

Lemma 2. Let K be a regular arc with s different hyperplane multiplicities

U1 < U2 < . . . < Us.

If K([x]) = c then K is an arc with s homogeneous weights Wi, i = 1, . . . , s,

where Wi =
q

q − 1
Ui −

c

q − 1
.



It follows by this lemma that for regular arcs it makes no difference whether we
consider homogeneous or classical arcs. An arc with two homogeneous weights
must necessarily be regular.

Theorem 5. Let K be an arc in Σk−1(R) with two homogeneous weights. Then
K is regular.

The existence of a homogeneous arc K of type (W1,W2) in the right geometry
PHG(k− 1, R) with |K| = N is equivalent to that of a left linear code C < RR

N

of full length with two homogeneous weights w1 = N −W1 and w2 = N −W2.
Hence the projective homogeneous arcs with two weights determine strongly
regular graphs with parameters (V,K, λ, µ), where

V = |C|,

K =
(N − w2)|C|+ w2

w1 − w2
,

λ =
NK

(
1− (1− w1

N )2
)
+ w2(1−K)

w1 − w2
,

µ =
NK

(
1− (1− w1

N )(1 − w2

N )
)
− w2K

w1 − w2
,

as noted in [2,5,15]. The following theorem was proved in a slightly different
form in [5]. It is analogous to a divisibility result by Calderbank and Kantor [3]
(Corollary 5.5).

Theorem 6. Let K be a two-weight homogeneous arc of type (W1,W2) in Σk−1.
Let (x,H) be a point-hyperplane pair with x ∈ H. Then

(i) K([x] ∩H) divides qk−2;

(ii) for every two hyperplanes H ′, H ′′ ∈ [H ], (q − 1)(W2 −W1) divides

qk−2 (K([x] ∩H ′)−K([x] ∩H ′′)) .

Below we we present the known classes of homogeneous two-weight arcs.

Example 1. For every chain ring R of length 2 take s, 1 ≤ s ≤ q, points in every
neighbor class of points. We have

W1 = −
s

q − 1
, W2 =

q − s

q − 1
.



Example 2. For a chain ringR of length 2 with charR = p, i.e.R = Fq[X ;σ]/(X2)
take the points of a subgeometry isomorphic to PG(2, q). Then

W1 = −
1

p− 1
, W2 = p.

Example 3. Take s parallel hyperplane segments with all possible directions in
PHG(Rk

R). Then

N = sqk−2 q
k − 1

q − 1
, W1 = −

sqk−2

q − 1
, W2 = qk−2(s−

s− 1

q − 1
).

In particular, if we set s = 1, k = 3, and take the points of q2 + q + 1 line
segments in PHG(RR

3) with all possible directions in the factor plane

N = q(q2 + q + 1), W1 = −
q

q − 1
, W2 = q.

Example 4. Let R = Fq[X ;σ]/(X2). Take line segments in all possible directions
containing the points of PG(2, q), but delete the points of PG(2, q). Then

N = (q − 1)(q2 + q + 1), W1 = −1, W2 = q +
1

q − 1
.

Example 5. A hyperoval in PHG(RR
3), where R is a chain ring of length 2 and

characteristic 4 (the Galois ring Z4[X ]/(f)), i.e. q = 2r. Then

N = q2 + q + 1, W1 = −
q + 1

q − 1
, W2 = 1.

Example 6. The complement to the dual of a hyperoval in PHG(RR
3), where R

is a chain ring of length 2 and characteristic 4, i.e. q = 2r. Then

N =

(
q

2

)

(q2 + q + 1), W1 = −

(
q + 1

2

)

, W2 =
q

2(q − 1)
.

In particular, for r = 2, q = 4 we get an optimal (126, 8)-arc with W1 = −10,
W2 = 2/3.

Example 7. A sporadic (39,5)-arc in PHG(Z3
9). W1 = −2,W2 = 3/2 (cf. [6]).
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