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Abstract. In this paper we examine and solve an open problem re-
garding the results on the Search with Two Oracles (STO) problem by
Kimmel et al. [14], which demonstrates how two oracles with different
costs, which we interpret as circuit-complexity, can be used to provide
lower quantum resource estimates for quantum search. Their solution to
the STO problem relied upon exact knowledge of the number of targets
that one of the oracles marks and the method can fail if this is unknown.
We demonstrate how to adapt their solution to the realistic case where
we only have knowledge concerning the probability distribution on the
number of elements that that are marked by the cheaper quantum oracle.
We apply these methods to both the single-target AES [12] and Multi-
variate Quadratic problem over Fy [23] preimage search problems to ob-
tain a lower circuit-complexity for low qubit implementations of quantum
search compared to solving these problems using Grover’s algorithm [L3].
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1 Introduction

The solution to many problems in computer science and cryptanalysis can be
reduced to the unstructured search problem (see Definition [I), which can be
solved via classical computers for an expected cost of 0(1\27x) classical queries [L]

or infamously by Grover’s algorithm [13] for a cost of O, /an) quantum queries.
X

Definition 1 (Unstructured search problem).

Let x : {0,1}" — {0,1} and M, = |x~*(1)|. The unstructured search problem
is, given only the ability to evaluate x on elements of the search domain {0,1}"
to find an element x € {0,1}" such that x(x) =1 or prove no such x exists.

This is an abstract definition of the search problem, as in many real-world exam-
ples we have access to the inner workings of x : {0,1}"* — {0,1}. An equivalent
formulation of the search problem is the preimage search problem

Definition 2 (The preimage search problem).

Let h : {0,1}" — {0,1}™, Y C {0,1}™ and My, = |h=*(Y)|. The preimage
search problem is to find an x € {0,1}" such that h(x) € Y or prove no such x
exists. The single-target preimage search problem is the case where |Y| = 1.



By equivalent, we mean that any solution that solves the unstructured search
problem can be used to solve the preimage search problem — and vice versa.
It is clear that that the preimage search problem inherently has more structure
that allows us to make more design choices, such as choosing the method that
we use to perform the set membership test h(x) € Y. Structure is fairly common
in any search problem — though we can only exploit it to provide a polynomial
reduction in the resources required to solve the search problem, compared to
the superpolynomial reductions that are asymptotically interesting. Yet for real-
world problems, a polynomial or constant reduction in resources is important
— and in cryptography if we are extrapolating cryptographic parameters based
upon the concrete hardness of solving certain problems, these asymptotically
negligible reductions are of great importance.

The dangers of extrapolating key-sizes based upon the concrete resources
required to implement quantum search for the Multivariate Quadratic problem
has been previously studied by one of the authors [21] and in this paper we bring
new optimisations of quantum search to light, which impact upon the resources
required for quantum cryptanalysis of the Advanced Encryption Standard [22] in
the logical quantum circuit-model of computation. This an important problem,
as the current NIST post-quantum standardisation effort [25] ties the security
of submissions to the resources required to break AES [26]. These quantum
resources have previously been quantified in literature by examining the logical
quantum circuit-complexity (in terms of the Clifford+T universal quantum gate
set) by using Grover’s quantum search algorithm [13] to solve this problem [12].

1.1 The impact of quantum search on cryptographic parameters

Grover’s quantum search algorithm [[13] solves the unstructured search problem
(see Definition [ll) and its execution cost Fg (the notation E4 can be thought
of as denoting either circuit-depth or circuit-size of the quantum subroutine .A)
can be easily derived by using the formula

T 2n
Eg= Epyen + |—-4/—] - on + 2Egon + O R (1)
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where the diffusion step is a standard piece of quantum circuitry requiring O(n)
quantum gates to implement. The quantum oracle can be implemented by a
quantum circuit which implements a reversible implementation of the boolean
function x : {0,1}" — {0,1} and quantum resource estimates often (if not
always) estimate the cost of search problems by considering this methodology of
quantum oracle construction, relying upon a simple conversion dictionary from
a set of universal boolean gates to a set of quantum gates which implement
reversible versions of these classical gates

{m @) e {X (X)X} (2)
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It is evident that a number of the submissions to the NIST post quantum stan-
dardisation effort [25] use this approach [9, L0], taking into account the cost of
both the query-complexity and the cost of the quantum oracle in order to extrap-
olate the cost of quantum cryptanalysis via Grover’s algorithm. Other submis-
sions take a safer approach, acknowledging the true cost of quantum search but
using lower-bounds on the resources required to perform cryptanalysis via quan-
tum search [8]. The NIST call for proposals [26] itself ties the security of entries
to the standardisation process to number of quantum gates that must be exe-
cuted to perform cryptanalysis of the Advanced Encryption Standard [22] (AES)
via quantum search, extrapolating the parameters from a previously performed
quantum resource estimation using Grover’s quantum search algorithm [12].

However, many optimisations and variants of quantum search exist in lit-
erature [[15, B] and Grover’s algorithm itself is now viewed as simply a special
case of the quantum subroutine of amplitude amplification [[7]. In this paper we
focus upon applying and improving a previously suggested method to improve
quantum search when there exists structure in the problem [14].

Contributions In this paper we solve an open problem with regards to the
Search with Two Oracles problem [14] for quantum search and demonstrate
that meta-optimisations of quantum search can have an important impact upon
the resources required to perform quantum cryptanalysis when we have both a
bounded and unbounded number of qubits at our disposal. Whilst less important
in terms of the NIST competition, a very real concern (for both industrial uses
of quantum computing and in cryptanalysis) is the timeline of when quantum
computers of certain sizes will be physically realisable — we demonstrate that
certain problems suffer far less from the constraint of few qubits being available
than previously thought.

Outline of this paper For reasons of space, we leave many details to the final
paper. In Section 2 we briefly review of the costs involved in quantum search
and amplitude amplification. In Section 3 we review the definition and existing
solution to the Search with Two Oracles problem, whilst in Section 4 we provide
our modification. In Section 5 we conclude with new quantum resource estimates
for low qubit implementations of quantum search applied to cryptanalysis of AES
and the Multivariate Quadratic problem over Fy and give our conclusions.

2 Amplitude amplification and quantum search

For reasons of space, we provide only a brief introduction to basic theory. Details
may be found in standard resources [17]. Quantum algorithms act upon quantum
states consisting of qubits. An n-qubit quantum state may be written

[v) = Z o, |T) where «, € C and Z lo? = 1. (3)

z€{0,1}m z€{0,1}m



Measurement of this state results in a single bitstring « € {0,1}" with proba-
bility |a,|?. Quantum algorithms manipulate the amplitudes {a, : = € {0,1}"}
of the computational basis states {|z) : x € {0,1}"} so that measurement of the
quantum state results in a bitstring which encodes useful information with high
probability. Computational basis states can be interpreted as bitstrings and re-
versible boolean functions (permutations) that act upon these basis states can
be implemented using a subset of quantum gates {X, A1 (X), A2(X)} (the X,
CNOT and Toffoli gates), analogues of the universal boolean gate set {—, ®, A}.

We additionally use the H (Hadamard), A;(SWAP) (also known as the
Fredkin or controlled SWAP gate) and Ag(X) gates (for & > 2). X and Ag(X)
act upon 1 and k£ 4+ 1 qubit states by mapping

X|z1) = |z ®1l) and A (X)|z1...20)|y) = |21 2n) [y B (1 A - Azn)). (4)

Each of these quantum gates can be decomposed in terms of a universal quan-
tum gate set [17]. In terms of the Clifford+T universal quantum gate set, the
X, A1 (X) and H require a single quantum gate, whilst Ao(X) and A (SWAP)
require 17 quantum gates [24, 2] and Ag(X) requires 72k — 84 (for k > 4) quan-
tum gates [[16]. Full details will be in the final paper, but these gates are sufficient
to implement quantum phase oracles, an integral component of amplitude ampli-
fication, if we possess a classical circuit to solve the unstructured search problem.

Definition 3 (Quantum phase oracle).
Let x : {0,1}" — {0,1}. The quantum phase oracle Oy performs the following
action upon the n-qubit computational basis state |x), where x € {0,1}"

Oy |z) = (=1)X) |z) (5)
Quantum phase oracles can be realised by quantum evaluations.

Definition 4 (Quantum evaluation).
Let h : {0,1}" — {0,1}"™. The quantum evaluation &, performs the following
action upon the n + w + m-qubit quantum state, where b € {0,1}™

En [} [07) [b) = [z) |g(x)) [b& h(z)) , (6)
where g(x) € {0,1}¥ is the end state of the memory used to compute h(x).

A quantum phase oracle can be implemented by executing &£, on the state
|z) |0*) |0) and using a single qubit Z gate on the last qubit, which maps
Z|x(z)) = (=1)X®) |x(x)). The quantum evaluation can then be uncomputed
by executing 5;;, which is &, in reverse.

2.1 The cost of implementing amplitude amplification

We will use the notation E 4 to represent the execution cost of an arbitrary
quantum algorithm or gate A. All costs denoted this way will be components
that must be executed in serial, hence the notation F 4 can represent either
circuit-size, circuit-complexity or communication overheads between qubits. The
statement and cost of amplitude amplification can now be given.



Definition 5 (Success probability of a quantum algorithm).

The success probability of a measurement-free quantum algorithm A relative to
the boolean function x : {0,1}" — {0,1} is the probability that measuring the
quantum state A|0™) results in a bitstring x € {0,1}" such that x(z) = 1.

Hence if we are searching for the unique y € {0,1}" such that x(z) =1 and
A" = Y aale), (7)
ze{0,1}"
then the success probability of A relative to y is ay|?.

Theorem 1 (Amplitude amplification [[7]).

Let A be any measurement-free quantum algorithm and the quantum oracles Oy,
and Og be defined by x,7n : {0,1}" — {0,1} where n(z) — 1 iff x # 0™.

Let a > 0 be the success probability of A relative to x and k € Ny. Then there
exists a quantum algorithm B(k) for which the success probability of B(k) relative

to x is sin® ((2k +1) - arcsin \/5) The quantum algorithm B(k) has a cost of

EA+]€(EOX+2EA+EO,—L)~ (8)

Knowledge of a gives us the quadratic advantage in query-complexity for Grover.

Theorem 2 (Quadratic speedup [, 6]).
Let the conditions be as TheoremB and a < % Then choosing k = {MJ

gives B(k) a success probability of at least 1 — a relative to x.

Grover’s algorithm [13] is simply Theorem m with A := H®" (the Hadamard
transform) which applied to the state [0™) produces the uniform superposition

O I 9)

z€{0,1}"
This means that if M, = |x7!(1)| = 1, then the success probability of H®"
relative to x is 2% Theorem E then defines the cost and success probability.

The Search with Two Oracles (STO) problem in Section J§ uses ezact amplitude
amplification to create a deterministic algorithm to solve the STO problem.

Theorem 3 (Exact amplitude amplification [[7]).
Let the conditions be as in Theorem |1 and the success probability of A relative
to x be known. Then there exists a quantum algorithm B(k) with approzimately

the same cost formula as (B) and for which k' = {m—‘ gives a success
probability of B(k') relative to x of exactly 1.

Theorem E will be used to sketch the previously proposed solution [[14] to the
Search with Two Oracles (see Definition problem in Section B.1. We will
use only amplitude amplification (Theorem [If) for our adaptation as we will not

know the exact success probabilities involved at several stages, hence the minor
extra cost that exact amplitude amplification incurs will serve no purpose.



3 The Search with Two Oracles problem

In this section we examine the original formulation of the Search with Two
Oracles (STO) problem by Kimmel et al. [14] dealing with single-target search.
We recall that E 4 denotes the cost (either circuit-size or circuit-depth) of the
quantum algorithm A and so Fo, is the cost of the quantum phase oracle O,.
Returning to the cost formula for Grover’s algorithm given by ([ll), the cost
of the single-target search case can be written as
~ 2 -2"2. (Bo, +2Byen + Eo,) (10)
where the 7 - 27/2 terms comes from the query-complexity of Grover’s algorithm
and the multiplicative overhead comes from the requirement that we must im-
plement the quantum oracle and diffusion step. It is clear that if the quantum
oracle Fp, is expensive then this will add a large overhead to the cost executing
Grover’s algorithm. Whilst Grover’s algorithm considers the unstructured search
problem (see Definition m), the STO problem examines how we can reduce this
overhead when there exists structure in the problem.

Definition 6 (Search with Two Oracles (STO) [14]).
Let fu, fs:{0,1}™ — {0, 1} be two boolean functions with the property that

M C f5) where M. =|[f1(1)] € {0,1} and Ms = |f§1(1)(| )
11

and which respectively define the quantum oracles O, Og. The Search with Two
Oracles (STO) problem is to locate an element x € {0,1}™ such that f.(x) =1
or prove that no such element exists. It is given that Eo, > Eo,.

This is a realistic scenario in many cases. For a concrete example in classical
computing, we consider the problem of finding a solution to a system of m
equations in n variables over the finite field Fy by classical exaustive search.
In this case, evaluation of a subset of r < m equations on a potential solution
(x1,...,25) € (F3)™ corresponds to a cheap test and evaluation of all m equa-
tions corresponds to the expensive test. It is clear that the set of solutions to
the full set of m equations is a subset of the solutions to r < m equations. We
therefore need only perform an expensive test on a potential solution if it has
passed the cheap test — in essence we can perform a filtering strategy.

This strategy is employed in the Fust Fxhaustive Search (FES) algorithm [4, B]
for enumeration of solutions to systems of multivariate quadratic equations over
F5 to reduce the dependence of the complexity of the search process upon m.
Crucially such strategies impact only upon the cost of testing, not the total
number of elements that we test, hence the query-complexity remains unchanged.

The cost of implementing quantum oracles for the problem of solving degree-
two equations over the finite field Fy has previously been quantified [23, 21],
demonstrating that both expensive and cheap quantum phase oracles exist.

Kimmel et al. [14] assume that we know Mg and if Fp, = Eo,, suggest
we simply use Grover’s algorithm with the quantum oracle O, and ignore Og.
Otherwise, the procedure in the following section is suggested.



3.1 A cost effective solution for STO

Define the quantum algorithm A = H®" (the Walsh-Hadamard transform)
and use exact amplitude amplification to create a quantum algorithm B with
success probability 1 relative to the function fg. By Theorem B, B requires

ki = [ﬁ—‘ ~ T4/ 1\277; applications of Og and 2k, + 1 applications of A.

4 arcsin LG
It is plain the the success probability of B relative to f, is b = ﬁs
We can then define a second quantum algorithm, C, by using exact ampli-
tude amplification with the quantum algorithm set to be B, which has a success
probability relative to f, of ﬁg By Theorem [ll, we can create a quantum algo-
rithm C with a success probability of 1 relative to f.. By Theorem B, C requires
1

k2 = ’774 "
arcsin ~
Mg

This has an approximate cost of 7/ Mg - Eo, + %2\/ 2" - Eog + 7T72\/ 27 . Egen
and so if Egen + Ep, < Epg then we have an efficient solution. If we guess
that Mg = Mg, then the probability of success of C can be shown to be ¢, where

. by —b-b b-byg—b-b
¢ = sin? (2k2+1)-arcsin z- -sin2< T > . g 2+ g —7  (12)
ks + 2 by — b - by by — b - by

_ 1 _ T T a2 T _ z
where by = 57, k2 = Larcsin\/@—" by = sin (—4]%2“), b= e and where

—‘ ~ 7V Mg applications of O, and 2k + 1 applications of B.

M
Ms

S

2 - . Ms . ™ ag —a-ag a-ag—a-ag
z = sin ((2k1 + 1) ~arcsm\/Mé . sin? (41%1 +2)> . <ag —a-dg> + P—— . (13)
_ Mg o A2 _ M
where a, = 57, k1 = [m—‘, 4g = sin (4EL2) and a = 5.
Two errors are introduced which stem from the ratio Mg : Mg. This leads
to the algorithm potentially terminating with a high probability of failure if this
ratio is large. We suggest a modification to control this ratio in the next section.
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Fig. 1: Success of C with n = 128, M, = 1 and varied Mg.



4 Adapting STO to problem instances

Essentially, our modification uses only amplitude amplification (see Theorem m)
in the same way as the original STO algorithm uses exact amplitude amplifi-
cation (see Theorem ), but tames the ratio Mg : Mg by artifically introduc-
ing new targets into the intermediate search space, so that the ratio becomes
(Mg + 2%) : (M + 2%), which approaches 1 as ¢ increases. This introduction of
artificial targets can be implemented by a relatively cheap operation.

Theorem 4 (A modified solution to the STO problem).

Let fs, fv : {0,1}" — {0,1}, M, = |f71(1)| = 1 and Mg = |f5'(1)| define an
instance of the STO problem, where Mg is unknown. Let M§ € N and € € [0,1]
be such that PriMs > M| < € and lett € N be such that 0 <t < n. Let Oz be as
in Theorem |I. Then there exists a quantum algorithm with a success probability
relative to f. of at least

(I—e) sin? T -2 HL (14)
2arcsin,/2—1t Mg +2!

9 T 2t

My +2t 2n
271,

where

b =sin

2 arcsin

The algorithm has a total execution cost of
k2 (Eo,, + Ex)
+ (2k1 + 1)(2/€2 + 1)EH®n (16)
+ (2k2 + Dk1(Eo,, + En,_(x) + En,_,(x) + Eryx) + Er)

where

™

1 1
il =~ and ko = 3" (17)
4 arcsin 4/ MSQ,T 2 4 arcsin 2—1,

Whilst somewhat unwieldy, this formulation allows us to easily derive the success
probabilities and costs for particular problem instances via numerical simulation.

k1=

PROOF: Let S = f5'(1) and define Z, = {1"7*||2’ : 2’ € {0,1}'} to be the
set of 2! bitstrings of length n whose first n — t values are 1.

Let fsuz, : {0,1}" — {0,1} where fsuz, (z) — 1 if and only if fs(z) =1 or
x € Zy. Let Mguz, = |f§dzt (1)|. This defines the quantum oracle

=) if (fs(x) =)V (z € Z)

18
|) otherwise. (18)

OSUZt |.’L'> — {



Using amplitude amplification (see Theorem m) with the quantum algorithm

A = H®" the quantum oracle Ogyz, and setting k; = # - %J
4 arcsin ‘g:

results in a quantum algorithm B(k;) with success probability b, where

1 M,
b = sin? (2{ T — — §J + 1) - arcsin ;:Zt) (19)
4 arcsin ngz
2 ™ 2t) /
. —2) 4/ =) =V. 20
> sin (( MLro ) on (20)

2 arcsin

on

We therefore have the that success probability of B(k1 ) relative to fsyuz, isb > V.

The success probability of B(k;) relative to f. is therefore Msbuz and a lower
t

bound on this success probability is ﬁ;zt' It is plain that ﬁ;zt < ﬁuzt < 2—1,

We then use amplitude amplification again with the quantum algorithm

— s _ 1
B(k1), the quantum oracle Oy, and set ko = Lamsin\/g QJ

quantum algorithm C(ke) with a success probability relative to f. of ¢, where

1 b
¢ = sin? ((2 LL - ,J +1)- arcsin 4 | M7) (21)
4 arcsin \/ 57 2 SUZ:

b/
> sin? (L—Q)-Hi =c. (22)
( 2arcsin,/2% Mé+2t)

We therefore have a good lower bound on the probability of success for our
algorithm assuming that Mg < MY, the probability of which occuring is 1 — €.

to obtain a

This allows us to compute a firm computational lower bound on the success rate
of our solution to the STO problem. For intuitive purposes, if we assume the
condition that Mg < M} < 2! < 2™ and use the approximation arcsin(z) ~ =,
then it is easily seen that b’ &~ 1 and ¢’ ~ 1. We now examine the costs involved.
Implementing Oy, ,,,. We assume that we possess a circuit to compute the
quantum evaluation £y . The identity AV B = A& B & (A A B) implies we can
implement fsuz, : {0,1}"™ — {0,1} via computing

fsuz,(2) = fs(x) @ (z € Z) ® (fs(x) A (z € Z1)), (23)

and Oy, can be implemented via one A, —;1.1(X), one A,—(X) and one A (X)

gate for a cost of O(n —t) quantum gates, a cost usually dominated by Eg,_.
Derivation of the cost F and therefore E¢ can be derived by considering the

cost equation (f) from Theorem [l| applied to the procedure described above. O



5 Applications to low qubit quantum oracles

We highlight two applications to cryptanalysis that have previously been studied
in literature — single-target cryptanalysis of symmetric-key encryption systems
and the Multivariate Quadratic (M Q) problem over Fy. Both problems share an
essential structure — there exists a basic decomposition of the boolean function
x : {0,1}" — {0, 1} defining the search problem so that

x(@) = x1(z) A A xg(x) where xi{0,1}" — {0,1}. (24)

In this way, x(z) = 1 if and only if x1(z) = --- = xx(z) = 1. In relation to the
STO problem we can construct the function fg(z) — xi, (®)A---Ax;, (z) for some
r < kand f.(x) — x1(z)A---Axr(x). The optimal choice of r indices that define
fs will be problem-specific and depend both upon the individual cost of each
E, and the expected probability distribution of the value |x;.*(1)N---Nx; ' (1)].

5.1 Low qubit implementations

We focus upon optimising the quantum circuit-size of low-qubit implementations
in this paper and assume that we only have access to n + w + 2 qubits, where
n is the number of bits required to represent the elements of the search space,
w = max {w1, ..., wy} (where w; is the number of qubits that each O, requires
for working memory), one qubit is to allow efficient realisation of the A, (X) gate
and one qubit is kept in the state |—) to enable conditional phase inversion.
Schwabe and Westerbaan suggested a low-qubit strategy for evaluating the
problem over Fy [23] — this is easily extended to the above decomposition
(@)Qand details may be found their original paper. For reasons of space we simply
note that computing O, in this inherently serial manner uses n+w+ [log, k| +3
qubits and has an execution cost (circuit-depth or circuit-size) of at most

k
Z4EX; — 2max {EX;} + 2Llog2(k)J (E/\l(SWAP) + E/\z(X)) + E‘/\UQgz k)+1(X)> (25)
i=1

where E,, is the cost of O;( Assuming that the E,, terms dominate the cost,
the counter-based approach is roughly a factor of 2 times more costly in terms of
circuit-size than an approach where we are not limited by the number of qubits
and simply evaluate each O} in parallel and use the a compute, output |x(x))
using a Ar(X) gate and run each O} | in reverse to uncompute the garbage bits.

5.2 A note on probability distributions

In order to choose Mg we can simply apply Markov’s inequality. This gives us
that Pr [MS > E[Mg]e’l] < ¢, letting us derive a choice for Mg based upon our
chosen e and problem-specific E[Mg]. As both the AES and M Q problems can be
modelled as the preimage search problem for a pseudorandom function [[12, [11],
the expected number of solutions to these problems can be easily computed.

10



For the M@ problem involving m equations in n variables over o, this function
is F: {0,1}" — {0, 1}, where m is the number of equations we are evaluating.
For AES-k, where k € {128,192, 256}, we have F : {0, 1}* — {0,1}'2%" where
r is chosen such that k£ < 128r to ensure that we have a single-target and r
corresponds to the number of quantum circuits of AES-k we have to evaluate.

When the domain is smaller than the co-domain we cannot guarantee that
there will exist only one solution, hence AES-k is often overdefined in crypt-
analysis to ensure that there is only a single element — the key that encrypts r
known plaintexts into r known ciphertexts. In the case of the M Q problem eval-
uating only [ < m equations leads to the function F : {0,1}" — {0, 1}!, which
allows us to create an underdefined problem where there exist many solutions.

This allows us to optimise the low-qubit version of quantum search applied to
the binary M Q problem, where we use the low-qubit implementation from [23]
in conjunction with Theorem M. We use the suggested parameters for the Gui
cryptosystem as a benchmark [20, [18, [19], where A means that it should require
at least 2* quantum gates to find a preimage of two MQ systems. We were only
able to break the case of A = 256 by using our method with just the counter-
based oracle, but a hybrid approach that uses an intermediate number of qubits
and only the counter-based oracle for the more expensive oracle was able to
break all parameters. Full details will be in the final paper.

A|n=m 23] [23] (counter) [21] Our method |Our method (counter)|Our method (hybrid)
80| 117 |2509/237/1| 2579/127/1 [27F/230/1 2777 /237/0.9999 |  2%0¥/127/0.9999 2799 /153/0.9999
128] 209 [2™97/421/1] 2707 /220/1 |27 /415/1|2™77 /421/0.9999] 2257 /220/0.9999 2775 /246/0.9999
256] 457 |2%°%7/915/1] 2777 /468/1 |2%%7/905/1]27%%% /915/0.9999]  27°*F /468,/0.9999 27539 /497/0.9999
Table 1: Comparison quantum circuit-size/qubits/probability of success for var-

ious approaches to quantum search applied to cryptanalysis of Gui [20, [1§].

We apply the same methodology to cryptanalysis of the Advanced Encryption
Standard (AES) using a previously studied implementation of a quantum oracle
for this problem [[12]. We note that for the single-target case, we only require
r = 2 plaintext-ciphertext pairs to ensure that we uniquely identify a single
user’s key for AES-128 and AES-192 and r = 3 plaintext-ciphertext pairs to
uniquely identify a user’s key for AES-256. We give our results in Table 2 below.
In this case the more expensive oracle evaluates r plaintexts with a key, whilst
the cheaper oracle evaluates only 1 plaintext with that key.

AES-k|[12] (r = 2/3) |Our method (r = 10)|Our method (counter) (r = 10)
128 |2%%7/1969/1 28553 /1969/1 25553 /988 /1
192 (217973 2225/1  2"¥89/2225/1 21889 /1115/1
256 |27°196/4009/1]  2%51-%3/4009/1 215105 /1340 /1

Table 2: Comparison of quantum resource estimates for Grover vs the modified
STO algorithm applied to cryptanalysis of single-target AES

11



As we can see from Table 2, even choosing an extremely large value of r
to uniquely specify the user’s key, we have that this method is essentially the
same cost as if we used the bare minimum (r = 2/3) to ensure that the keys are
uniquely identified. Full details and parameters will be in the final paper.

Conclusions We have extended the results of Kimmel et al. [14] and intro-
duced a modified solution to the STO problem that solves an open problem. We
additionally have found that it offers favourable quantum resource estimates for
well-studied quantum resource estimates for cryptographic problems.

Caution must evidently be applied in choosing parameters for quantum-
resistant cryptosystems in relation to quantum resource estimates, particularly
if these estimates are based upon current best-known attacks using Grover’s al-
gorithm, as it is simply a special-case of amplitude amplification. We note that
these optimisations do not impact upon query-complexity, hence basing parame-
ters upon query-complexity is still a safe choice with respect to the optimisations
presented in this paper. We have additionally demonstrated that low-qubit im-
plementations in particular can exploit the STO method to lower the circuit-size
for these problems and that sometimes there is little advantage with regards to
quantum circuit-size in using large numbers of qubits other than to improve the
performance of the implementation of the cheaper quantum oracle Og.

Explicit details of all proofs and theorems will be in the final paper and the code
used in computations will be made available.
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