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Abstract We study the cycle structure of permutations F (x) = x +
γf(x) on Fqn , where f : Fqn → Fq. We show that for a 1-homogeneous
function f the cycle structure of F can be determined by calculating the
cycle structure of certain induced mappings on parallel lines of γFq. Using
this observation we describe explicitly the cycle structure of permutations
x+γ Tr(x2q−1) over Fq2 , where q ≡ −1 (mod 3), γ ∈ Fq2 and γ3 = − 1
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A permutation can be expressed as a unique product of disjoint cycles (up to
reordering). Such a cycle decomposition provides information on both algebraic
as well as combinatorial properties of the permutation. Much of that informa-
tion is retained in the cycle structure of the permutation, which lists the lengths
of the cycles and their frequencies in the cycle decomposition. One of the main
current challenges in the research on permutations of finite fields is finding the
cycle structure for interesting families of permutation polynomials. At present,
this is studied for very few families of permutation polynomials, like monomial,
linearized or Dickson polynomials. In this paper we consider the class of permu-
tation polynomials of shape x+ γf(x) on Fqn , where γ ∈ F∗qn and f : Fqn → Fq.
In particular we will show that if f is 1-homogeneous, then it suffices to consider
the induced permutations on certain lines. We use this observation to describe
the cycle structure of permutations x + γ Tr(x2q−1) over Fq2 , where q ≡ −1
(mod 3), γ ∈ Fq2 and γ3 = − 1

27 .

1 Induced Permutations on Lines and Subspaces

The following result is straightforward:

Lemma 1.1. Let F (x) = x+ γf(x), where f : Fqn → Fq and γ ∈ Fqn . Then F
maps every line α+ γFq, α ∈ Fqn into itself.

Proof. Let α+ γu ∈ α+ γFq, then

F (α+ γu) = α+ γu+ γf(α+ γu) = α+ γ(u+ f(α+ γu)) ∈ α+ γFq.

So F maps α+ γFq into itself. ut
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The next lemma shows that the converse of the above lemma is also true.

Lemma 1.2. Let γ ∈ F∗qn . If F : Fqn → Fqn maps every line α+ γFq, α ∈ Fqn
into itself, then F (x) = x+ γf(x) for an appropriate mapping f : Fqn → Fq.

Proof. By assumption of the lemma for any α ∈ Fqn there exists a mapping
fα : Fq → Fq such that

F (α+ γu) = α+ γ(u+ fα(u)) = α+ γu+ γfα(u)

for u ∈ Fq. Let now A be a system of representatives for the cosets of the line γFq
in Fqn . Then every x ∈ Fqn can be uniquely written as α+γu with α ∈ A, u ∈ Fq.
For x = α+ γu with α ∈ A and u ∈ Fq we define f(x) = fα(u). Then clearly

F (x) = F (α+ γu) = α+ γu+ γfα(u) = x+ γf(x),

where f : Fq → Fq. ut

Remark 1.3. Let F (x) = x + γf(x), where f : Fqn → Fq and γ ∈ F∗qn . Further
let L be a subspace of Fqn containing γ. Since every coset of a subspace L in Fqn
is a union of lines α + γFq for certain α ∈ Fqn , the mapping F maps any coset
of L into itself.

As an immediate corollary of Lemma 1.1 we get:

Theorem 1.4. Let F : Fqn → Fqn , F (x) = x+ γf(x), where f : Fqn → Fq and
γ ∈ F∗qn . Then F permutes Fqn if and only if it permutes every line α+γFq with
α ∈ Fqn .

The next observation follows directly from Theorem 1.4:

Proposition 1.5. Let f : Fqn → Fq and γ ∈ F∗qn . If F (x) = x + γf(x) is a
permutation of Fqn , then every cycle in its cycle decomposition has a length not
exceeding q.

Let SA denote the symmetric group of a set A. Two permutations π : A→ A
and π′ : B → B are called conjugate , if there exists a bijection ϕ : A→ B, with
π = ϕ−1 ◦ π′ ◦ ϕ. The next well known fact is used often in the sequel:

Proposition 1.6. Let A,B be finite sets with |A| = |B| and F ∈ SA and G ∈
SB. Then F and G have the same cycle structure if and only if there exists a
bijection ϕ : A→ B, with F = ϕ−1 ◦G ◦ ϕ.

Recall that a mapping g : Fqn → Fq is called homogeneous of degree 1 or
1-homogeneous, if g(ux) = ug(x) for any u ∈ Fq and x ∈ Fqn . Next we consider a
special class of permutations F (x) = x+γf(x), where f is homogeneous of degree
1. The following theorem shows that the cycle structure of such permutations
has an interesting regularity.
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Theorem 1.7. Let f : Fqn → Fq be 1-homogeneous and γ ∈ F∗qn . Further let L
and M be subspaces of Fqn such that γ ∈ L, L < M and dim(L) = dim(M)− 1.
If F (x) = x + γf(x) permutes Fqn , then F has the same cycle structure on all
cosets m+ L 6= L of L in M .

Proof. Let α ∈ M \ L be fixed. Then for any m ∈ M \ L, the coset m + L
can be represented as αt + L with t ∈ F∗q . By Remark 1.3, the mapping F is a
permutation on the coset tα+ L. Let now l ∈ L. Then

F (tα+ l) = tα+ l + γf(tα+ l) = tα+Gt(l)

with Gt(l) : L → L, Gt(l) = l + γf(tα + l). Since Gt(l) = F (tα + l) − tα and
adding tα is a bijection from L to tα+L, Gt(l) is a permutation of L that has the
same cycle structure as F on tα+L by Theorem 1.6. Hence it remains to show,
that the cycle structure of Gt is independent of t. Since t ∈ F∗q , multiplying by
t is a permutation of L. Since f is homogeneous of degree 1, we have

t−1Gt(tl) = t−1(tl + γf(tα+ tl)) = t−1(tl + γf(t(α+ l))

= t−1(tl + tγf(α+ l)) = l + γf(α+ l) = G1(l).

This shows that Gt and G1 are conjugate permutations in the symmetric group
SL and consequently have the same cycle structure. ut

For the choice L = γFq and M any two dimensional subspace of Fqn con-
taining γ, Theorem 1.7 implies that the cycle structure of the permutation
F (x) = x + γf(x) is the same on all parallel lines m + γFq 6= γFq contained
in M . This is a key observation for understanding the cycle structure of permu-
tations of shape x+ γf(x) which we summarize in the following theorem:

Theorem 1.8. Let f : Fqn → Fq be 1-homogeneous and γ ∈ F∗qn . Suppose
F (x) = x+ γf(x) is a permutation on Fqn . Then the following properties hold:

(a) Let M be any two dimensional subspace of Fqn containing γ. Then the cycle
structure of F is the same on any line m+ γFq 6= γFq lying in M .

(b) There are at most 1 + (qn−1 − 1)/(q − 1) lines in Fqn such that the cycle
structure of F is pairwise different on them.

Proof. The statement follows from Theorem 1.7 with M of dimension 2 and

the observation that qn−1−1
q−1 is the number of pairwise different two dimensional

subspaces containing γ. ut

In the next sections we demonstrate applications of Theorem 1.8.

2 The Case F (x) = x+ γ Trqn/q(x
k)

In this section we consider the case f(x) = Trqn/q(x
k) with k ∈ N and Trqn/q :

Fqn → Fq, where Trqn/q(x) = x + xq + · · · + xq
n−1

is the trace mapping. The
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study of permutations x+γ Trqn/q(x
k) was originated in [3], where the complete

characterization of such permutations for q = 2 is achieved. Several families of
such permutations are found in [4], [7], [8] and [10]. In this paper we concentrate
on the cases n = 2 and n = 3. The following theorem lists the known families of
such non-linear permutations for n = 2 and n = 3:

Theorem 2.1. The polynomial F (x) = x+ γ Trqn/q(x
k) is a permutation poly-

nomial over Fqn in each of the following cases:

1. n = 2, q ≡ ±1 (mod 3), γ = −1/3, k = 2q − 1,
2. n = 2, q ≡ −1 (mod 3), γ3 = −1/27, k = 2q − 1,
3. n = 2, q ≡ 1 (mod 3), γ = 1, k = (q2 + q + 1)/3,
4. n = 2, q = Q2, Q > 0, γ = −1, k = Q3 −Q+ 1,
5. n = 2, q = Q2, Q > 0, γ = −1, k = Q3 +Q2 −Q,
6. n = 2, q ≡ 1 (mod 4), (2γ)(q+1)/2 = 1, k = (q + 1)2/4,
7. n = 2, q = 2s, s even, γ3 = 1, k = (3q − 2)(q2 + q + 1)/3,
8. n = 2, q = 2s, s odd, γ3 = 1, k = (3q2 − 2)(q + 4)/5,
9. n = 2, q = 2s, γ ∈ Fq, s. t. x3+x+γ−1 has no root in Fq, k = 22s−2+3·2s−2,

10. n = 2, q = 2s, s ≡ 1 (mod 3), γ = 1, k = (2q2 − 1)(q + 6)/7,
11. n = 2, q = 2s, s ≡ −1 (mod 3), γ = 1, k = −(q2 − 2)(q + 6)/7,
12. n = 2, q = 2s, s odd, γ(q+1)/3 = 1, k = (22s−1 + 3 · 2s−1 + 1)/3,
13. n = 2, q = 2s, s even, γ = 1, k = (q2 − 2q + 4)/3,
14. n = 2, q = Q2, Q = 2s, γ ∈ F∗Q, k = 24s−1 − 23s−1 + 22s−1 + 2s−1,

15. n = 2, q = 3s, s ≥ 2,γ(q−1)/2 = (γ − 1)(q−1)/2, k = 32s−1 + 3s − 3s−1,
16. n = 3, q odd, γ = 1, k = (q2 + 1)/2,
17. n = 3, q odd, γ = −1/2, k = q2 − q + 1.

It can be easily seen that in all cases of Theorem 2.1 the integers k and n
satisfy k ≡ 1 (mod q − 1), implying:

Proposition 2.2. If q and k appear in one of the cases of Theorem 2.1, then
xk = x for any x ∈ Fq, and hence the function Trqn/q(x

k) is homogeneous of
degree 1.

Consequently every permutation listed in Theorem 2.1 fulfills the conditions
of Theorem 1.8. Thus to determine the cycle structure of these permutations,
it is enough to find the cycle structure of the induced permutations on lines
parallel to γFq. By Theorem 1.8 (b), for n = 2 there are at most two lines with
different cycle structure, and for n = 3 there are at most q + 2 such lines. One
of the lines for which we need to compute the cycle structure is γFq:

Remark 2.3. Let F (x) = x + γ Trqn/q(x
k) be one of the cases appearing in

Theorem 2.1. Then the cycle structure of F on γFq is easy to determine. Indeed,
for any γu ∈ γFq it holds F (γu) = γ(1 + Trqn/q(γ

k))u, and hence the cycle

containing γu has length equal to the multiplicative order of (1 + Trqn/q(γ
k)) in

Fq.
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In some of the cases listed in Theorem 2.1 there are multiple choices for γ
defining permutations. However in some of these cases the choice of γ does not
impact the cycle structure of permutations:

Proposition 2.4. Let γ1 and γ2 define permutations Fγ1 and Fγ2 appearing in
one of the cases 2, 6, 8 and 12 of Theorem 2.1. Then Fγ1 and Fγ2 are conjugate
and hence they have the same cycle structure.

Since the proofs are similar, we only put the proof for case 2.

Proof. Let F (x) = x+γ Trq2/q(x
2q−1), where γ3 = − 1

27 . One possible choice for

γ is − 1
3 . Let F ∗(x) = x− 1

3 Trq2/q(x
2q−1). In the following we proceed similar to

the proof of Theorem 3.2 from [7]: Let ω := −3γ, then ω3 = 1 and consequently
ω2q−1 = 1, s. t.

F (ωx) = ωx− 1

3
ωTrq2/q(ω

2q−1x2q−1) = ω(x− 1

3
Trq2/q(x

2q−1))

= ωF ∗(x)

It follows that F is a conjugate of F ∗ for any admissible γ, that is the cycle
structure of F is the same for every such γ. ut

Remark 2.5. With notation from the proof of Proposition 2.4 and α = ωβ, the
mapping ϕ : β + Fq → α+ γFq given by ϕ(x) = ωx is a bijection. Consequently
the cycle structure of F on α+ γFq is the same as the cycle structure of F ∗ on
β + Fq. This shows that for all possible choices of γ the cycle structure on lines
parallel to γFq is the same as well.

Tables 1 and 2 describe numerical results on the cycle structure on affine
lines l parallel to γFq and l 6= γFq for some of the permutations from Theorem
2.1. If a permutation has r1 cycles of length m1, r2 cycles of length m2, . . . and
ri cycles of length mi, where m1 < m2 < · · · < mi, we denote its cycle structure
by mr1

1 m
r2
2 . . .mri

i .

Table 2 shows in particular that in cases 16 and 17 the upper bound q + 1
from Theorem 1.8 for different cycle structures on lines is not achieved. Instead
for q = 25 there are only 6 in both cases and for q = 125 there are 9 in case 16
and 14 in case 17.

Remark 2.6. Although the cycle structure of F (x) = x+Trq3/q(x
(q2+1)/2), which

is case 16 of Theorem 2.1, seems to be complex, this is not the case for the
cycle structure of F ◦ (xq

2+q−1) = xq
2+q−1 + Trq3/q(x). The latter is explicitly

determined in [5].

Numerical results for case 2 show that the cycle structure of these permuta-
tions on lines l ‖ γFq,l 6= γFq is always the same as the cycle structure of x3 on
Fq, which is known from the next theorem. We denote by ordt(k) the order of k
modulo t, i. e. the smallest positive integer m with km ≡ 1 (mod t).
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Table 1. Examples of cycle structure on
lines for n = 2. Here a is a root of x10 +
x6 + x5 + x3 + x2 + x + 1 in F1024, b is a
root of x5 + x2 + 1 in F32 and c is a root of
x5 − x+ 1 in F243.

case q γ cycle structure on any line
l ‖ γFq,l 6= γFq

1 289 11422810

2 125 1321304

3 289 11422810

4 289 1141122142281622801

5 289 15811945211481

6 289 114541285

7 1024
1 14112019204210

6= 1 1430270280226014001

8 2048 1220112214416658851101

1322176119812421

9 1024
1 416017

a 21656211865

10 1024 141022053546064001

11 2048 21224552138111652

12 2048 1682212262

13 1024 224530280132015401

14 1024
1 411252063656051802

b 2564

15 243
c 112421

c4 112161132262782

Table 2. Examples of cycle structure
on lines for n = 3. Here column A
contains the cycle structure on lines
l ‖ γFq, l 6= γFq and B the number of
planes P > γFq with such lines.

case q A B

16

25

11315361 2

142133101 3

213142121 3

115391 6

11213191101 6

111141 6

125

1221324162123211421 9

21111342441 9

2179101501 9

21145531 9

5161183601 9

144691 9

324291183242 18

1279102202 27

122132416191125361 27

17

25

11315361 2

1121324161 3

1325121 3

1261171 6

2141191 6

251 6

125

1122317191131151201531 9

11314171181391531 9

223181481621 9

125191461631 9

12111161301661 9

6181441671 9

142251121291711 9

251261741 9

81411761 9

223281261811 9

2251331831 9

1122314281151861 9

1122718191961 9

12811151 9
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Theorem 2.7 ([1]). The polynomial xk , gcd(k, q − 1) = 1, permuting F∗q has
a cycle of length m if and only if m = ordt(k), where t | (q − 1). The number
Nm of those cycles satisfies

m ·Nm = gcd(km − 1, q − 1)−
∑

i|m,i 6=m

i ·Ni, N1 = gcd(k − 1, q − 1).

Remark 2.8. On Fq, xk has the additional fixed point x = 0.

In the next section we show, that in case 2 the cycle structure on lines
l ‖ γFq,l 6= γFq is indeed the same as the cycle structure of x3 on Fq.

3 Determining the Cycle Structure of x+ γ Trq2/q(x
2q−1).

We write Tr(x) = x + xq for the trace map from Fq2 to Fq. In this section we
determine the cycle structure of F (x) = x+γ Tr(x2q−1), where q ≡ −1 (mod 3)
and γ3 = − 1

27 .
By Proposition 2.4 and Remark 2.5 for all admissible choices of γ the cycle

structure of F as well as its cycle structure on lines parallel to γFq is the same.
Hence we consider the case γ = − 1

3 , for which γFq = Fq holds.
First we determine the cycle structure of F on Fq:

Lemma 3.1. Let q ≡ −1 (mod 3) and p be the characteristic of Fq. Then the
permutation F (x) = x − 1

3 Tr(x2q−1) reduces to F (x) = 1
3x on the line Fq.

Consequently, it has one fixed point and q−1
ordp(3)

cycles of length ordp(3) on Fq.

Proof. Let x ∈ Fq, then

F (x) = x− 1

3
Tr(x2q−1) = x− 1

3
Tr(x) = x− 2

3
x =

1

3
x.

So x = 0 is a fixed point and the n-th iterate of F is
(
1
3

)n
x. Therefore if x 6= 0 it

is contained in the cycle
(
x, 13x, . . . ,

(
1
3

)k
x
)

where k = ordp
(
1
3

)
= ordp(3). ut

To determine the cycle structure on the other lines parallel to Fq, we only
need to pick one of them and find the cycle structure on it. The following lemma
will be used for a suitable choice of this line.

Lemma 3.2. If q ≡ −1 (mod 3) and odd, then − 1
3 is a nonsquare of Fq.

Proof. Let p be the characteristic of Fq, then p ≡ −1 (mod 3) and q = pn, where
p and n are odd. − 1

3 is a nonsquare of Fq if and only if x2 + 1
3 is irreducible in

Fq[x]. Since q = pn with odd n, x2 + 1
3 is irreducible in Fq[x] if and only if it is

irreducible in Fp[x]. x2 + 1
3 is irreducible in Fp[x] if and only if − 1

3 is a nonsquare
in Fp. Consequently it suffices to show that − 1

3 is a nonsquare of the prime field
Fp, where p ≡ −1 (mod 3) and odd. Obviously − 1

3 is nonsquare if and only if
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−3 is nonsquare. The rest follows from the law of quadratic reciprocity for the
Legendre symbol: (

−3

p

)
=

(
−1

p

)(
3

p

)
.

Now we consider two cases.
For p ≡ 1 (mod 4), we have(

−1

p

)
= 1,

(
3

p

)
=

(
p

3

)
=

(
2

3

)
= −1, s. t.

(
−3

p

)
= 1 · (−1) = −1.

For p ≡ 3 (mod 4), we have(
−1

p

)
= −1,

(
3

p

)
= −

(
p

3

)
= −

(
2

3

)
= −(−1) = 1, s. t.

(
−3

p

)
= (−1) ·1 = −1.

In both cases
(−3
p

)
= −1, implying −3 and so − 1

3 are nonsquares of Fp. ut

Now we are ready to determine the rest of the cycle structure of F .

Theorem 3.3. Let q ≡ −1 (mod 3) and α ∈ Fq2 \ Fq. Then the permutation
F (x) = x− 1

3 Tr(x2q−1) has the same cycle structure on α+Fq as the permutation
x3 on Fq.

Proof. According to Corollary 1.8 the cycle structure of F on a line α + Fq is
the same for any choice of α ∈ Fq2 \ Fq. As in the proof of Theorem 1.7 for
any α and l ∈ Fq the following holds: F (α + l) = α + Gα(l) where Gα(l) :=
l + γ Tr((α + l)2q−1) permutes Fq and has the same cycle structure as F on
α + Fq. Next we show that for a suitable choice of α, the permutation Gα is a
conjugate of m(x) = x3 in SFq . This choice depends on the parity of q.

If q is even, then Gα(l) = l + Tr((α + l)2q−1). Since q = pn with n odd,
x2+x+1 is irreducible over Fq. This means we find α ∈ Fq2 \Fq with α2 = α+1.
Consequently

α3 = α(α+ 1) = α2 + α = 1, Tr(α) = αq + α = α3j+2 + α = α2 + α = 1,

Tr(α2) = Tr(α+ 1) = Tr(α) = 1, Tr(α3) = Tr(1) = 0

and

(α+l)q+1 = (α+l)(αq+l) = (α+l)(α+1+l) = α2+α+αl+αl+l+l2 = l2+l+1.

Using these equations we see that

Gα(l) = l + Tr((α+ l)2q−1) = l + Tr

(
(αq + l)2

α+ l

)
= l +

(αq + l)2

α+ l
+

(α+ l)2

αq + l
= l +

(αq + l)3 + (α+ l)

(α+ l)(αq + l)

= l +
Tr((α+ l)3)

(α+ l)q+1
= l +

2l3 + 3l2 Tr(α) + 3lTr(α2) + Tr(α3)

l2 + l + 1

= l +
l2 + l

l2 + l + 1
=
l3 + l2 + l + l2 + l

l2 + l + 1
=

l3

l2 + l + 1
.
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Now we can show that Gα = f−1 ◦m ◦ f for

f(l) := lq−2 + 1 =

{
1
l + 1 , l 6= 0,

1 , l = 0,

by the following computations.

(f ◦Gα)(0) = f(0) = 1 = m(1) = (m ◦ f)(0).

If l 6= 0 then

(f ◦Gα)(l) =
l2 + l + 1

l3
+ 1 =

1

l3
+

1

l2
+

1

l
+ 1 =

(
1

l
+ 1

)3

= (m ◦ f)(l).

If q is odd, then − 1
3 is a nonsquare of Fq (according to Lemma 3.2) and we

find α ∈ Fq2 \ Fq with α2 = − 1
3 . Consequently (αq)2 = (α2)q = α2 and thus

αq = −α, Tr(α) = Tr(−α) = 0, Tr(α2) = 2α2, Tr(α3) = Tr(−α3) = 0.

Using these equations we see that

Gα(l) = l − 1

3
Tr((α+ l)2q−1) = l − 1

3
(α+ l)2(q+1) Tr

(
1

(α+ l)3

)
= l − 1

3
[(αq + l)(α+ l)]

2

(
1

(α+ l)3
+

1

(αq + l)3

)
= l − 1

3
(l2 − α2)2 · (α+ l)3 + (αq + l)3

(l2 − α2)3
= l − 1

3
· Tr((l + α)3)

l2 − α2

= l − 1

3
· 2l3 + 3l2 Tr(α) + 3lTr(α2) + Tr(α3)

l2 − α2

= l − 1

3
· 2l3 + 6lα2

l2 − α2
= l − 1

3
· 2l3 − 2l

l2 + 1/3
,

(
α2 = −1

3

)
= l − l(2l2 − 2)

3l2 + 1
=
l(3l2 + 1)− l(2l2 − 2)

3l2 + 1
=
l(l2 + 3)

3l2 + 1
.

Now we can show that Gα = f−1 ◦m ◦ f for

f(l) :=

(
1

2
l +

1

2

)q−2
− 1 =

{
1−l
1+l , l 6= −1,

−1 , l = −1,

by the following computations.

(f ◦Gα)(−1) = f

(
−1(1 + 3)

3 + 1

)
= f(−1) = −1 = m(−1) = (m ◦ f)(−1)

If l 6= −1 then

(f ◦Gα)(l) =
1− l(l2+3)

3l2+1

1 + l(l2+3)
3l2+1

=
1− 3l + 3l2 − l3

1 + 3l + 3l2 + l3
=

(
1− l
1 + l

)3

= (m ◦ f)(l)
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We now see that in any case there is an α ∈ Fq2 \ Fq, such that Gα is a
conjugate of x3 on SFq

. Consequently f has the same cycle structure on α + L
as x3 on Fq and since F has the same cycle structure on any one of these lines
the assertion follows. ut

We conclude by describing explicitly the cycle structure of F in the general
case γ3 = − 1

27 :

Theorem 3.4. Let q ≡ −1 (mod 3), p be the characteristic of Fq and γ ∈ Fq2
with γ3 = − 1

27 . Let Nm be defined by the following recursion:

m ·Nm = gcd(3m − 1, q− 1)−
∑

i|m,i6=m

i ·Ni, N1 = gcd(2, q− 1) =

{
1, q even

2, q odd
.

Then F (x) = x+ γ Tr(x2q−1) permuting Fq2 has

1. one fixed point and q−1
ordp(3)

cycles of length ordp(3) on γFq and

2. one fixed point and Nm cycles of lenght m for any m = ordt(3), where
t | (q − 1), on any of the q − 1 affine lines α+ γFq, α ∈ Fq2 \ γFq.

Proof. As we mentioned at the beginning of this section, the choice of γ is
irrelevant for the cycle structure of F and for the cycle structure on lines parallel
to γFq, so we can w. l. o. g. choose γ = − 1

3 . In this case we get γFq = Fq. Then
part 1 is Lemma 3.1 and part 2 follows in this way: According to Theorem 3.3
the cycle structure of F on α + γFq is the same as the cycle structure of x3 on
Fq, which is known (see Theorem 2.7). ut

If we count the fixed points of F we get:
For p = 2, there are q fixed points on γFq and 1 + gcd(3− 1, q− 1) = 2 fixed

points on any of the q − 1 affine line α+ γFq, in total q + 2(q − 1) = 3q − 2.
For p 6= 2, there is 1 fixed point on γFq and 1 + gcd(3 − 1, q − 1) = 3 fixed

points on any of the q − 1 affine lines α+ γFq, in total 1 + 3(q − 1) = 3q − 2.

Corollary 3.5. Let q ≡ −1 (mod 3) and γ ∈ Fq2 with γ3 = − 1
27 . Then the

permutation F (x) = x+ γ Tr(x2q−1) has 3q − 2 fixed points on Fq2 .
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