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Abstract. After giving a new interpretation of the skew metric defined
in [4], we show that the decoding algorithm of [2] for skew Reed-Solomon
codes remains valid with respect to this metric.

1 Introduction

Skew Reed-Solomon codes are a generalization of Reed-Solomon codes and
Gabidulin codes. These codes are MDS codes for the Hamming metric and a
decoding algorithm inspired from Welch-Berlekamp algorithm was designed in
[2] over finite fields. In [4], the author defines a new metric, called skew-metric,
which is optimal for skew Reed-Solomon codes defined over any division ring
(Maximum Skew Distance codes, Theorem 1 of [4]).

The aim of this note is to give a new interpretation of the skew metric defined
in [4] and prove that the decoding Algorithm 1 page 22 of [2] can be adapted
from the Hamming metric to the skew metric.

In Section 2, we recall the material for defining skew Reed-Solomon codes
and the skew metric. In Section 3 we give a new interpretation of the skew metric
using a least common left multiple of linear skew polynomials. In Section 4, we
prove that Algorithm 1 page 22 of [2] can be adapted from the Hamming metric
to the skew metric.

2 Generalities on skew Reed-Solomon codes

Consider a division ring A, θ be an automorphism over A, δ be a θ-derivation
which is a map δ : A→ A such that for all a and b in A:

δ(a+ b) = δ(a) + δ(b)

δ(ab) = δ(a)b+ θ(a)δ(b),

The ring R = A[X; θ, δ] is defined on the set {
∑n
i=0 aiX

i|n ∈ IN, ai ∈ A} where
the addition is the usual addition of polynomials and the multiplication is defined
by the rule : for a in A

X · a = θ(a)X + δ(a). (1)

The ring R is called a skew polynomial ring or Ore ring (cf. [6]) and its
elements are skew polynomials. When θ is not the identity, the ring R is not



commutative, it is a left and right Euclidean ring whose left and right ideals are
principal. Left and right gcd and lcm exist in R and can be computed using the
left and right Euclidean algorithms. In what follows we will assume that least
common left multiples of skew polynomials and greatest common right multiples
of skew polynomials are necessarily monic skew polynomials.

Definition 1. ([3] p. 310) Let A be a division ring, θ be an automorphism over
A and δ be a θ-derivation. Consider the ring R = A[X; θ, δ]. For f ∈ R and
a ∈ A, the (right) remainder evaluation of f at a is denoted f(a) and is
defined as the remainder of the right division of f by X − a. If f(a) = 0, then
a is a right root of f .

The following definition ([3] p. 310) generalizes the classical notion of the

norm of a field element : for a in A, for i ∈ IN, Nθ,δ
i (a) is recursively defined as

Nθ,δ
0 (a) = 1

Nθ,δ
i+1(a) = θ(Nθ,δ

i (a)) a+ δ(Nθ,δ
i (a)).

If f =
∑
i fiX

i ∈ R and a ∈ A then f(a) =
∑
i fiN

θ,δ
i (a) (see Lemma 1 of

[2] or Proposition 2.9 of [3]).

Definition 2. ([3], page 321) Let A be a division ring, θ be an automorphism
over A, δ be a θ-derivation and n ∈ IN∗. Let α1, . . . , αn in A. The (θ, δ)-
Vandermonde matrix of α = (α1, . . . , αn) is defined by

V θ,δn (α) =


1 1 · · · 1

Nθ,δ
1 (α1) Nθ,δ

1 (α2) · · · Nθ,δ
1 (αn)

...
... · · ·

...

Nθ,δ
n−1(α1) Nθ,δ

n−1(α2) · · · Nθ,δ
n−1(αn)

 .

Remark 1. If A is a finite field (A = IFpm , with p prime number), θ is the
Frobenius automorphism (θ : a 7→ ap and δ = 0), then one gets the classical

notion of the norm of a field element : Ni(a) = θi−1(a) · · · θ(a)a = a
pi−1
p−1 .

Later, we will define the skew Reed-Solomon codes by evaluating some skew
polynomials at points α1, . . . , αn of A such that rank(V θ,δn (α)) = n. We will say
that these points are P-independent. The following theorem establishes a link
between the rank of the Vandermonde matrix mentioned above and the degree
of the least common left multiple of linear skew polynomials.

Theorem 1 (Theorem 8, [3] page 326). Let A be a division ring, θ be an
automorphism of A and δ be a θ-derivation. Consider the ring R = A[X; θ, δ]. Let
α1, . . . , αn ∈ A and g = lclm1≤i≤n(X−αi) ∈ R be the least common left multiple
of X − αi, i = 1, . . . , n, then deg(g) = rank

(
Vθ,δ

n (α1, . . . , αn)
)
. If deg(g) = n

then α1, . . . , αn are P-independent.



Consider a subset Ω of A, the rank of Ω is Rank(Ω) := deg lclmu∈Ω(X−u).
Assume that α1, . . . , αn are P-independent. If Ω is a subset of A such that
lclm1≤i≤n(X − αi) = lclmu∈Ω(X − u), then (α1, . . . , αn) is a P -basis of Ω.

Definition 3 (Definition 7 of [2], Definition 19 of [4]). Let A be a division
ring, θ be an automorphism of A and δ be a θ-derivation. Let n ∈ IN∗, k ∈
{1 . . . , n}. Consider the ring R = A[X; θ, δ] and α1, . . . , αn on A P-independent
in A. The skew Reed-Solomon code of length n, dimension k and support
α = (α1, . . . , αn) is defined as

Rθ,δk,n(α) = {(f(α1), . . . , f(αn)) | f ∈ R,deg(f) < k}.

Skew Reed-Solomon codes are MDS codes for the Hamming metric ([2])
and MSD (Maximum Skew Distance) for the skew metric (see Definition 9 and
Theorem 1 of [4] or Theorem 3 at the end of Section 3). In what follows we recall
the definition of the skew metric and give a new interpretation of this metric by
using the least common left multiple of linear skew polynomials.

3 Skew metric

Recall that for y = (y1, . . . , yn) in An, the Hamming weight of y is the number
of non-zero coordinates of y :

wH(y) := #{i ∈ {1, . . . , n} | yi 6= 0}.

Consider a division subring K of A, the rank weight of y is the dimension
of the space generated by its coordinates over K:

wR(y) := dim(< y1, . . . , yn >K).

Reed-Solomon codes are optimal for the Hamming metric (Maximum Sep-
arable Distance codes), while Gabidulin codes are optimal for the rank metric
(Maximum Rank Distance codes).

Definition 4 (Definition 9 of [4]). Let A be a division ring, θ be an auto-
morphism of A and δ be a θ-derivation. Let n ∈ IN∗, k ∈ {1 . . . , n}. Consider
the ring R = A[X; θ, δ] and α = (α1, . . . , αn) in An such that α1, . . . , αn are
P-independent. Consider P = lclm1≤i≤n(X − αi) in R. The skew weight of
y = (y1, . . . , yn) ∈ An is

wα(y) = n−Rank(Zα(F ))

where F ∈ R is the skew interpolation polynomial of degree < n at the n points
(αi, yi) and Zα(F ) = {u ∈ A | F (u) = P (u) = 0}.

Note that the skew interpolation polynomial F at the points (αi, yi) in the
above definition exists because the n points α1, . . . , αn are P-independent (see
also [3] page 326).



Example 1. Consider IF26 = IF2(a) where a6 + a4 + a3 + a + 1 = 0 and θ
the automorphism Frobenius over IF26 . Consider α = (a, a2, a3, a4, a5, a6). Us-
ing Magma, one computes lclm1≤i≤6(X − ai) = X6 − 1 in IF26 [X; θ], there-
fore a, a2, a3, a4, a5, a6 are P-independent (and α is a P-basis of IF∗26). Consider
e = (0, 0, 0, 0, a56, a55), its skew weight is wα(e) = 6 − Rank(Zα(F )) where
F = aX5 + a31X4 + a46X3 + a22X2 + a10X + a4 is the skew interpolation poly-
nomial at the points (ai, ei)1≤i≤6. The set of roots of F in IF∗26 is Zα(F ) =
{a, a2, a3, a4, a8, a9, a10, a11, a12, a14, a21, a22, a24, a26, a28, a29, a30, a33, a34,
a39, a43, a45, a48, a50, a51, a54, a57, a58, a59, a61, a62} and its rank isRank(Zα(F )) =
deg lclmu∈Zα(F )(X − u) = deg(X5 + a30X4 + a45X3 + a21X2 + a9X + a3) = 5.
Therefore the skew weight of e is 6 − 5 = 1. Notice here that the Hamming
weight of e is 2 and the rank weight of e is dim(< a56, a55 >IF2) = 2.

In what follows, a new interpretation of the skew metric is given (Proposition
1). First two intermediate Lemmas (Lemma 1 and Lemma 2) will be useful.

Lemma 1. Let A be a division ring, θ be an automorphism of A and δ be a
θ-derivation. Consider α = (α1, . . . , αn) in An such that α1, . . . , αn are P-
independentd y = (y1, . . . , yn) in An. Consider the ring R = A[X; θ, δ], P =
lclm1≤i≤n(X − αi) in R and F ∈ R the skew interpolation polynomial of degree
< n at the n points (αi, yi). Then

wα(y) = deg(P )− deg(gcrd(P, F )) = deg(lclm(P, F ))− deg(F ).

Proof. According to Definition 4, wα(y) = deg(P )− deg(lclmu∈U (X − u))
where U = {u ∈ A | F (u) = P (u) = 0}. Let us prove that lclmu∈U (X − u) is
equal to gcrd(F, P ). For all u in U , X−u divides F and P on the right, therefore
lclmu∈U (X − u) divides gcrd(F, P ) on the right.

Consider a common right factor H of F and P . According to Theorem 4 of
[6], as P is a least common left multiple of irreducible skew polynomials, H is also
the least common left multiple of irreducible skew polynomials. Furthermore, all
the degrees of these factors are necessarily equal to 1. Consider V ⊂ A such
that H = lclmv∈V (X − v). Consider v in V ; as H divides P and F on the
right, X − v divides P and F on the right, therefore v ∈ U and H divides
lclmu∈U (X − u). One can conclude that lclmu∈U (X − u) is equal to gcrd(F,P)
and wα(y) = deg(P )− deg(gcrd(P, F )) = deg(lclm(P, F ))− deg(F ).

Example 2. Consider A = IF3(z) and θ ∈ Aut(A) defined by θ(z) = z−1
z+1 . Its

inverse automorphism is defined by θ−1(z) = 1+z
1−z . Consider α = (z, z2, z3, z4).

The least common left multiple of X − z,X − z2, X − z3 and X − z4 in A[X; θ]
is P = X4 + 2 therefore z, z2, z3 and z4 are P-independent over A. Consider
e = (0, 0, z2 + z, z3 + z) ∈ A4 and F the skew interpolation polynomial at the
points (zi, ei)1≤i≤4. One has F = (z5 +z4 +z2 +z)/(z4 +2z2 +z+2)X3 +(2z4 +
2z3 + 2z + 2)/(z5 + 2z4 + z3 + 2z)X2 + (2z2 + z + 2)/(z3 + 2z2 + 2z)X + (z3 +
2z2 + z)/(z2 + z+ 2) and F divides P on the right, therefore the skew weight of
e is wα(e) = 4− deg(gcrd(F, P )) = 1.



Definition 5. ([3]) Let A be a division ring, θ be an automorphism over A and
δ be a θ-derivation. The (θ, δ)−conjugacy class of an element a ∈ A is the
set of all its conjugates

ac := θ(c)ac−1 + δ(c)c−1

where c is taken over A∗.

The following property will be useful next (product formulae) :

Theorem 2 (Product theorem 2.7 of [3]). Let A be a division ring, θ be an
automorphism over A, δ be a θ-derivation and R = A[X; θ, δ]. Let f, g in R and
a ∈ A. If g(a) = 0, then (f ·g)(a) = 0. If g(a) 6= 0, then (f ·g)(a) = f(ag(a))g(a).

Lemma 2. Let A be a division ring, θ be an automorphism over A, δ be a
θ-derivation and R = A[X; θ, δ]. Consider α1, . . . , αn in A, P-independent, con-
sider F ∈ R \ {0} and P = lclm1≤i≤N (X − αi) ∈ R. Consider the monic skew

polynomial E = lclmF (αi) 6=0(X −αF (αi)
i ), then E ·F = λ · lclm(P, F ) where λ is

a non zero constant.

Proof.
Consider Ẽ such that Ẽ · F = lclm(P, F ). Let us first prove that Ẽ divides

E on the right. This amounts to show that Ẽ · F divides E · F on the right. As
F divides E · F on the right and Ẽ · F = lclm(P, F ), it remains to prove that P
divides E ·F on the right. Consider i in {1, . . . , N}. If F (αi) 6= 0, then according

to the definition of E, E(α
F (αi)
i ) = 0. According to product formulae (Theorem

2), (E · F )(αi) = E(α
F (αi)
i )× F (αi), therefore one has

(E · F )(αi) = 0. (2)

If F (αi) = 0 then the previous equality (2) still holds (according to Theorem 2).
One concludes that P divides E · F on the right. Therefore lclm(P, F ) = Ẽ · F
divides E ·F on the right and Ẽ divides E on the right. To prove that E divides Ẽ

on the right, it suffices to prove that Ẽ cancels at α
F (αi)
i for all i in {1, . . . , N}

such that F (αi) 6= 0. Consider i in {1, . . . , N} such that F (αi) 6= 0. As P
divides Ẽ · F on the right, its right roots are also right roots of Ẽ · F , therefore
Ẽ ·F cancels at αi. Furthermore F (αi) 6= 0, therefore, according to the product

formulae, Ẽ(α
F (αi)
i ) = 0.

To conclude, there exists λ in A \ {0} such that E = λẼ.

From Lemma 1 and Lemma 2, one deduces a new interpretation of the skew
weight. :

Proposition 1. Let A be a division ring, θ be an automorphism over A, δ be
a θ-derivation and R = A[X; θ, δ]. Consider α = (α1, . . . , αn) in An such that
α1, . . . , αn are P-independent. Consider y = (y1, . . . , yn) in An. The skew weight
of y satisfies :

wα(y) = deg lclmyi 6=0(X − αyii ). (3)



Proof. Consider P = lclm1≤i≤n(X − αi) and F the interpolation skew
polynomial with degree < n such that F (αi) = yi for all i in {1, . . . , n}. Ac-
cording to Lemma 1, wα(y) = deg(lclm(P, F )) − deg(F ). According to Lemma
2, lclm(P, F ) = E · F where E = lclmyi 6=0(X − αyii ), therefore wα(y) = deg(E).

Example 3. (see Example 1) Consider IF26 = IF2(a) where a6+a4+a3+a+1 = 0
and θ : x 7→ x2. Consider α = (a, a2, a3, a4, a5, a6) and e = (0, 0, 0, 0, a56, a55).
The skew weight of e is equal to the degree of the lclm of X − a56 × θ(a5)/a5 =
X − a61 and X − a55 × θ(a6)/a6 = X − a61, therefore it is equal to 1.

Example 4. (see Example 2) Consider A = IF3(z) and θ the automorphism of A
defined by θ(z) = (z− 1)/(z+ 1). Consider α = (z, z2, z3, z4) and e = (0, 0, z2 +
z, z3+z). The skew weight of e is equal to the degree of the lclm of X−z3×θ(z2+
z)/(z2 + z) = X − z3(2z2 + z)/((z2 + 2z+ 1)(z2 + z)) = X − (2z4 + z3)/(z3 + 1)
and X− z4× θ(z3 + z)/(z3 + z) = X− z4(2z3 + z2 + 2z+ 1)/((z3 + 1)(z3 + z)) =
X − (2z4 + z3)/(z3 + 1), therefore wα(e) is equal to 1.

Remark 2. Consider the notations of Proposition 1. If θ = id and δ = 0 then
lclmyi 6=0(X−αyii ) = lcmyi 6=0(X−αi) =

∏
yi 6=0(X−αi) therefore the skew weight

of y is equal to its Hamming weight : wα(y) = wH(y) (see also Example 36 of
[4]).

Remark 3. Consider the notations of Proposition 1. If all the αi are conjugate,
consider ξ ∈ A, ai ∈ A∗ such that αi = ξai , then if yi 6= 0, αyii = ξaiyi and the
skew weight of y is the rank of the Vandermonde matrix of (ξaiyi). According to
Theorem 4.5 of [3], this is the rank weight of (aiyi) :wα(e) = wR((aiyi)yi 6=0) =
wR((aiyi)1≤i≤n).

Example 5. We give here some computations of skew weights and rank weights
over IF2

4 and IF2
9 where θ is the Frobenius automorphism.

Consider A = IF4 = IF2(a), θ : x 7→ x2 and δ = 0. There are 6 vectors e of
IF2

4 of Hamming weight wH(e) = 1 and 9 of Hamming weight wH(e) = 2. There
are 9 vectors e of rank weight wR(e) = 1 and 6 of rank weight wR(e) = 2. There
are 6 P-independent couples α = (α1, α2) . For each such α, there are 9 vectors e
of skew weight wα(e) = 1 and 6 vectors e of skew weight wα(e) = 2. The details
are given in Table 5.

Consider A = IF9 = IF3(a) with a2 − a − 1 = 0, θ : x 7→ x2 and δ = 0.
There are 16 vectors of IF2

9 of Hamming weight 1 and 64 of Hamming weight
2; 32 vectors of rank weight 1 and 48 vectors of rank weight 2. There are 72
P-independent couples (α1, α2). For 48 P-independent α, there are 16 vectors e
of IF2

9 with skew weight wα(e) = 1 and 64 with skew weight wα(e) = 2. For the
other 24 P-independent α, there are 32 vectors e with skew weight wα(e) = 1
and 48 vectors e with skew weight wα(e) = 2.

Here is a proof of Theorem 1 of [4] using formulation (3).



e ∈ IF2
4 1, 0 a, 0 a2, 0 0, 1 1, 1 a, 1 a2, 1 0, a 1, a a, a a2, a 0, a2 1, a2 a, a2 a2, a2

wH(e) 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2

wR(e) 1 1 1 1 1 2 2 1 2 1 2 1 2 2 1

w(a,1)(e) 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2
w(1,a)(e) 1 1 1 1 2 1 2 1 2 2 1 1 1 2 2
w(a2,a)(e) 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2

Table 1. Hamming weight, rank weight, skew weights of vectors of IF2
4

Theorem 3 (Theorem 1 of [4]). Let A be a division ring, θ be an auto-
morphism of A and δ be a θ-derivation. Let n ∈ IN∗, k ∈ {1 . . . , n}. Consider

α1, . . . , αn on A P-independent in A. The skew Reed-Solomon code Rθ,δk,n(α) is
MDS for the skew metric (Maximum Skew Distance).

Proof. Consider a codeword c = (f(α1), . . . , f(αn)) of skew weight w <
n − k + 1 where f ∈ R is of degree < k. Consider E(X) = lclmci 6=0(X − αcii ),
then according to Product Theorem 2, for all i in {1, . . . , n}, (E · f)(αi) = 0.
Furthermore, according to (3), the degree of the skew polynomial E is equal
to the skew weight of c, therefore the degree of E · f is less than or equal to
(n− k) + (k− 1) = n− 1. As E · f cancels at n P-independent points, it cancels.
As E is nonzero, f = 0 and c = 0.

4 Decoding algorithm

We prove here that the decoding algorithm 1 on page 22 of [2] with respect to
the Hamming distance still works with respect to the skew metric. We first need
a small technical lemma.

Lemma 3. Let A be a division ring, θ be an automorphism over A, δ be a
θ-derivation and R = A[X; θ, δ]. Consider α = (α1, . . . , αn) in An such that
α1, . . . , αn are P-independent. Consider g and Q in R then

wα((Q · g)(α1), . . . , (Q · g)(αn)) ≤ wα(g(α1), . . . , g(αn)).

Proof. Consider P = lclm1≤i≤n(X − αi). According to Lemma 1,{
wα(g(α1), . . . , g(αn)) = deg(P )− deg(gcrd(g, P ))
wα((Q · g)(α1), . . . , (Q · g)(αn)) = deg(P )− deg(gcrd(Q · g, P ))

,

therefore, wα((Q·g)(α1), . . . , (Q·g)(αn)) = wα(g(α1), . . . , g(αn))+deg(gcrd(g, P ))−
deg(gcrd(Q · g, P )) ≤ wα(g(α1), . . . , g(αn)).

Proposition 2. Decoding algorithm 1 is correct.

Proof. The n equations of point 1. of the algorithm are linear in the d0 +
d1+2 ≥ n+1 unknowns q0,0, . . . , q0,d0 , q1,0, . . . , q1,d1 , therefore there is a nonzero
solution (Q0, Q1) satisfying point 1. of the algorithm.

Consider Z(X) = Q0(X) +Q1(X) · f(X) ∈ R and E(X) = lclmZ(αi) 6=0(X −
α
Z(αi)
i ). According to Product Theorem 2, the skew polynomial E ·Z cancels at



Algorithm 1 Skew weight Decoding algorithm of skew Reed-Solomon code

Require: A a division ring, θ ∈ Aut(A), δ a θ-derivation, R = A[X; θ, δ], α =
(α1, . . . , αn) P-independent over A, r ∈ An such that r = c + e with wα(e) ≤
t := b(n− k)/2c, c = (f(α1), . . . , f(αn)), f ∈ R and deg(f) < k.

Ensure: f
1: Computation of Q0 and Q1 in R such that deg(Q0) ≤ d0 := n− 1− t, deg(Q1) ≤
d1 := d0 − (k − 1) and (Q0 +Q1 · ri)(αi) = 0 for all i in {1, . . . , n} :
Solve the linear system with unknowns q0,0, . . . , q0,d0 , q1,0, . . . , q1,d1 :

if ri = 0 :

d0∑
j=0

q0,j N
θ,δ
j (αi) = 0

if ri 6= 0 :

d0∑
j=0

q0,j N
θ,δ
j (αi) +

d1∑
j=0

q1,j N
θ,δ
j (αrii ) ri = 0

Q0(X)←
d0∑
j=0

q0,jX
j

Q1(X)←
d1∑
j=0

q1,jX
j

2: Computation of the quotient f in the left division of Q0(X) by −Q1(X) in R
3: return f

αi for all i in {1, . . . , n}. Furthermore, for i in {1, . . . , n}, (Q0 +Q1 · ri)(αi) = 0
therefore, Z(αi) = (Q1 · f)(αi) − (Q1 · ri)(αi) = (Q1 · (f − ri))(αi). Consider g
in R of degree < n such that for all i in {1, . . . , n}, g(αi) = ri. Consider i in
{1, . . . , n}, one has

Z(αi) = (Q1 · (f − ri))(αi) = (Q1 · (f − g))(αi) + (Q1 · (g − ri))(αi).

As (g− ri)(αi) = 0, one gets Z(αi) = (Q1 · (f − g))(αi). According to Lemma 3,
as wα((f − g)(α1), . . . , (f − g)(αn)) := wα((f − r1)(α1), . . . , (f − rn)(αn)) ≤ t,
one gets wα((Q1 · (f − g))(α1), . . . , (Q1 · (f − g))(αn)) ≤ t, therefore

wα(Z(α1), . . . , Z(αn)) ≤ t.

According to (3), the degree of E is equal to wα(Z(α1), . . . , Z(αn)), therefore, it
is less than or equal to t. As the degree of Z is less than or equal to n− t−1, the
degree of E ·Z is ≤ n− t− 1 + t < n. The skew polynomial E ·Z cancels at n P-
independent points, therefore it is equal to 0. To conclude, the skew polynomial
Z is equal to 0. As (Q0, Q1) 6= (0, 0), f is the quotient in the left division of −Q0

by Q1.

Example 6. (see Examples 1 and 3) Consider IF26 = IF2(a) where a6 +a4 +a3 +
a+1 = 0 and θ the Frobenius automorphism over IF26 . Consider the skew Reed-
Solomon code with support α = (a, a2, a3, a4, a5, a6) and dimension 3, f = a



and e = (0, 0, 0, 0, a56, a55). The skew weight of e is equal to 1 (see Example 1).
Consider r = (a, a, a, a, a, a) + e = (a, a, a, a, 1, a19). Then the unknown skew
polynomials Q0 and Q1 have degrees at most 4 and 2 and a non zero solution to
the linear system satisfied by their coefficients is (1, 0, a9, 0, 0, a62, 0, a5). There-
fore Q0 = 1 + a9X2 = (a62 + a5X2) · a, Q1 = a62 + a5X2 and the quotient in
the left division of Q0 by −Q1 is equal to a.

Example 7. (see Examples 2 and 4) Consider A = IF3(z) with θ(z) = (z −
1)/(z+1) and R = A[X; θ]. Consider the skew Reed-Solomon code with support
α = (z, z2, z3, z4) and dimension 2. Consider f = X + 1/z and e = (0, 0, z2 +
z, z3 +z). The skew weight of e is equal to 1 (see Example 2). The received word
is r = (z + 1/z, z2 + 1/z, z3 + 1/z, z4 + 1/z) + e = ((z2 + 1)/z, (z3 + 1)/z, (z4 +
z3+z2+1)/z, (z5+z4+z2+1)/z). Then the unknown skew polynomials Q0 and
Q1 have degrees at most 2 and 1 and a non zero solution to the linear system
satisfied by their coefficients is (1, (z5 + 2z4 + 2z3 + z + 1)/(z4 + z3 + z2), (z3 +
1)/(z3 + 2z2), 2z, (2z3 + 2)/(z3 + 2z2)). Therefore Q0 = (z3 + 1)/(z3 + 2z2)X2 +
(z5 + 2z4 + 2z3 + z + 1)/(z4 + z3 + z2)X + 1, Q1 = (2z3 + 2)/(z3 + 2z2)X + 2z
and the quotient in the left division of Q0 by −Q1 in R is equal to X + 1/z.

Lastly one can notice that the ring R = A[X; θ, δ] can be considered in a
more general setting, when θ is an endomorphism of A (and not necessarily an
automorphism). In this setting (see [3]), the ring R is right Euclidean; divisions
on the right, greatest common right divisors and least common left multiples
of skew polynomials still exist, therefore the skew metric and the skew Reed-
Solomon codes are still defined. For the decoding algorithm, we still have the
relation Q0 + Q1 · f = 0, but f cannot be uniquely determined as the quotient
in the left division of Q0 by −Q1, because the division on the left requires θ
to be invertible. However, one can recover f by considering the skew reciprocal
polynomial of Q0 + Q1 · f . Namely, one gets that Q∗0 + Θdeg(Q1)(f∗) · Q∗1 = 0
where Θ :

∑
aiX

i 7→
∑
θ(ai)X

i and for a(X) =
∑
aiX

i with degree d, a∗(X) :=∑
Xd−i·ai. Therefore Θdeg(Q1)(f∗) is the quotient in the right division of −Q∗0 by

Q∗1. As θ is an endomorphism over the division ring A, θ is injective, therefore one
can recover f∗ from Θdeg(Q1)(f∗). As we know the degree of f and its valuation
(given by the degrees and the valuations of Q0 and Q1), one can recover f from
f∗. The following example illustrates a situation where θ is an endomorphism
which is not bijective.

Example 8. Consider A = IF3(z), θ the endomorphism of A defined by θ(z) = z2

and R = A[X; θ]. Consider α = (z, z2, . . . , z6). The degree of lclm(X − zi, i =
1, . . . , 6) is equal to 6, therefore z, z2, . . . z6 are P-independent. Consider the skew
Reed-Solomon code with support α and dimension 2. Its minimum distance is 5.

Consider e = (0, 0, z, 2, 0, 2z/(z + 2)), one can verify that the skew weight
wα(e) of e is equal to 2.

Consider f = zX − 1/z. The codeword associated to f is
c = (z2 − 1/z, z3 − 1/z, z4 − 1/z, z5 − 1/z, z6 − 1/z, z7 − 1/z).
Consider the received word r = c + e. The unknown skew polynomials Q0

and Q1 have degrees at most 3 and 2. Solving the linear system given by point



1. of the algorithm yields : Q0 = (2z5 +z2 +z+1)/(z16 +2z12 +2z10)X3 +(z23 +
2z17 + 2z16 + 2z15 + 2z14 + z5 + 2z2 + 2z + 2)/(z24 + 2z20 + 2z18)X2 + (2z16 +
z12 + z10 + 2z9 + z3 + z2 + z+ 1)/(z14 + 2z10 + 2z8)X + 1 and Q1 = (z5 + 2z2 +
2z + 2)/(z20 + 2z16 + 2z14)X2 + (2z9 + z3 + z2 + z + 1)/(z12 + 2z8 + 2z6)X + z.

Performing the right division of −Q∗0 = −(X3 + (2z64 + z48 + z40 + 2z36 +
z12 +z8 +z4 +1)/(z56 +2z40 +2z32)X2 +(z46 +2z34 +2z32 +2z30 +2z28 +z10 +
2z4 + 2z2 + 2)/(z48 + 2z40 + 2z36)X + (2z5 + z2 + z+ 1)/(z16 + 2z12 + 2z10)) by
Q∗1 = z4X2 + (2z18 + z6 + z4 + z2 + 1)/(z24 + 2z16 + 2z12)X + (z5 + 2z2 + 2z +
2)/(z20+2z16+2z14) yields 2/z8X+z4. As deg(Q1) = 2, one gets f∗ = 2/z2X+z
and f = zX + 2/z.

5 Conclusion

In this paper, a new interpretation of the skew metric defined in [4] is given
and the decoding algorithm of [2] is adapted to the skew metric for skew Reed-
Solomon codes. This algorithm was improved recently by the authors of [5] who
obtained an algorithm with a quadratic complexity. This algorithm handles a
more general setting (linearized Reed-Solomon codes with the skew metric).
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