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Abstract. We consider the coin weighing problem, which is one of the most well-known in group testing.

The goal is to minimize the number of weighings with a spring scale to determine two counterfeit (heavier)

coins in a set of n coins. We focus only on adaptive strategies, that is the latter weightings may depend

on the results of the previous ones. In fact, the problem is equivalent to the following game on graph

G = Kn. Given graph G = (V,E), Alice selects an edge e ∈ E, and Bob wants to guess it by asking

the minimal number N(G) of specific questions. One question is a subset S ⊂ V . The answer is the

cardinality of e ∩ S. It is known that N(Kn,n) ≤ N(K2n) ≤ N(Kn,n) + 1. In most previous papers, base

search strategies were obtained for complete bipartite graphs Kn,n with some small values n, whereas

the recursion was performed for an arbitrarily large number of coins. We generalize this approach and

propose to “mix” base strategies. Given the union of ` copies of Kn,n, we design ` strategies for Kn,n,

and apply to each copy the corresponding strategy. As an outcome, we want to get at most ` disjoint

edges-candidates. Based on such a collection of strategies, we recursively construct an algorithm for an

arbitrarily large number of coins. Our asymptotic analysis shows that the proposed scheme outperforms

previously known explicit algorithms and requires 1.2938 log2 n(1 + o(1)) weighings in the worst case, and

1.2710 log2 n(1 + o(1)) weighings on average. The information theory bound established by Belokopytov

says that at least 1.2640 log2 n(1 + o(1)) weighings are necessary on average.

Keywords: Sequential algorithm · coin weighing problem · search on graphs.

1 Introduction

We investigate one famous coin weighing problem. Suppose there is a collection of n coins so that s of them are

false. In other words, we know that the weight of n− s coins is a, and the weight of the remaining coins is b,

where integers a and b are given. The goal is to identify the weight of each coin by weighing subsets of coins on

a spring scale. The problem is to design an adaptive weighing strategy, where the latter weighings may depend

on the results of the previous ones, that minimizes the number of required weighings in the worst-case (WC)

and in the average-case (AC). In this paper we mainly concentrate on the settings with a very large number of

coins.

If the number of false coins is s = 1, then the answer to the problem is trivial, and coincide with results

for non-adaptive strategy, namely log2 n(1 + o(1)) weightings are necessary and sufficient in WC and in AC.

However, the simplest non-trivial case of the problem, i.e., s = 2, is open, and hence we focus on it in this

work.

The problem considered in this paper can be rephrased using the language [Aig86] of graphs and group

testing. Let a graph G = (V,E) be given. Alice conceals an edge e ∈ E. Bob tries to identify it by asking the



2 Z. Jiang et al.

number of questions, which are answered by Alice. Each question is a subset S ⊂ V ; each answer is |e ∩ S|.
The problem is how to minimize the numbers Nwc(G) and Nac(G) of tests in WC and in AC, respectively. If a

statement holds for both AC and WC, then we omit a subscript and write N(G). One can easily see that the

minimal number of weighting to identify two false coins among n coins is exactly N(Kn). It is also known that

N(Kn,n) ≤ N(K2n) ≤ N(Kn,n) + 1, and the main term of N(Kn) has order log2 n as n → ∞. The constant

factor for Nwc(Kn) is still not determined.

1.1 Related Work

It is worth noticing that the value N(Kn,n) has been studied in coding theory and combinatorics independently.

Indeed, the coin weighting problem corresponds to the two-user binary adder (erasure) channel with complete

feedback [CT06]. We highlight that the strongest results were established in coding theory.

Cover and Leung [CL81] derived a random coding bound for the symmetric point in the capacity region for

the binary two-user adder channel with complete feedback, and, thus, gave an upper bound for Nav(Kn,n) ≤
1.2640 log2 n(1 + o(1)). Based on the results in [Wil82,Wil84], the exact value of constant factor for Nav(Kn,n)

was finally determined by Belokopytov [Bel86], namely the upper bound by Cover and Leung is tight. However,

so far there is no explicit construction achieving this constant factor. Very recently, Karimy et al. [KKHS18]

suggested a simple explicit scheme which requires about 1.365 log2 n weighings on average.

As for the worst case scenario, Dueck [Due85, Section 2] established a characterization for a class of discrete

memoryless multiple-access channels including the two-user adder channel with complete feedback. But, pinning

down the precise value of constant factor for Nwc(Kn) is an open problem. The best upper bound Nwc(Kn) ≤
1.2662 log2 n(1+o(1))) was proved by Belokopytov [Bel89] based on Dueck’s characterization. Although Dueck’s

characterization shows that there exist good strategies, it does not provide a way of constructing the best

algorithm explicitly. If we use the scheme suggested by the proof of Dueck’s theorem and generate an algorithm

at random with the appropriate distribution, the algorithm constructed is likely to be good. However, without

some structure in the algorithm, it is computationally very difficult to decode. Hence the theorem does not

provide a practical scheme.

In the context of group testing or a search problem on graphs, the “Fibonaccian algorithm” by Chris-

ten [Chr80] and Aigner [Aig86] gives an explicit algorithm for searching an edge in KFn+1,Fn , where Fn is the

nth Fibonacci number, which implies thatNwc(Kn) ≤ logφ 2 log2 n(1+o(1)) = 1.4404 log2 n(1+o(1)), where φ =

1.61834 is the golden ratio. Later, the Fibonacci algorithm was rediscovered by Zhang et al. [ZBM87, Theorem

1], and was refined [ZBM87, Theorem 2] to achieve Nwc(Kn) ≤ logφ′ 2 log2 n(1+o(1)) = 1.3954 log2 n(1+o(1)),

where φ′ = 1.64333 is the real root of x11 = x10 + x9 + 5. Using the language of decision trees, Gargano et

al. [GMSV92] constructs an algorithm for K32,32 with at most 7 steps in an attempt to improve the Fibonacci

code, i.e., ≤ 1.4 log2 n(1 + o(1)) tests are sufficient for their scheme. Before our work, the best construction is

an algorithm for K2235n+61,2235n+61 with at most 312n + 123 weighings due to Belokopytov [BL87], achieving

Nwc(Kn) ≤ 312/235 log2 n(1 + o(1)) = 1.3277 log2 n(1 + o(1)).

If all the weighings are predetermined, then we emphasize that the situation is completely different. In

particular, searching two coins among n coins is equivalent to the problem of the binary B2-sequences for

which the best known construction and upper bound were presented in [Lin69] and in [CLZ01], respectively.

In particular, the number of weighings in WC is between 1.7382 log2 n(1 + o(1)) and 2 log2 n(1 + o(1)). As

for AC, we mention [Ahl73,Lia72], where it was proved for a related problem that 4/3 log2 n(1 + o(1)) =

1.3333 log2 n(1 + o(1)) weighings are sufficient and necessary. For larger number of false coins s, we refer the

reader to [Dja75,DR81,Pol87].
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1.2 Outline

We propose to “mix” base strategies forKn,n. Given the union of ` copies ofKn,n, we devise ` strategies forKn,n,

and apply to each copy of Kn,n the corresponding strategy. As an outcome, we want to get at most m disjoint

edges-candidates. Based on such collection of strategies, we recursively construct an algorithm for arbitrary

large number of coins. Using a language of decision trees, we present in Section 2 a near-optimal algorithm for

adaptive searching of two counterfeit coins. Our asymptotic analysis in the worst case shows that the proposed

algorithm outperforms the previously known explicit schemes, and x′ log2 n(1 + o(1)) = 1.2938 log2 n(1 + o(1))

are sufficient in WS, where x′ is a root of the equation 1 = x′h(1/x′) and h(x) is the binary entropy function.

The analysis of the proposed strategy in AC is carried out in Section 3. We describe the same algorithm in the

language of coding theory, and derive that, for our scheme, 1.2710 log2 n(1 + o(1)) weighings are sufficient in

AC.

2 An Algorithm in the Worst-Case Setting

Let a graph G = (V,E) be given. Suppose there is only one defective edge ed in the set of edges E. After each

test S ⊂ V , which depends on the previous weightings, we receive a result y which is the cardinality of ed ∩ S.

After m weightings S1, . . . , Sm and m results y1, . . . , ym, we present our knowledge in the form of a subgraph

G′ = G′(y1, . . . , ym) = (V,E′) of graph G which contains edge-candidates of the defective edge, i.e., each edge

in E′ is consistent with all previous weightings and results. In other words, any adaptive strategy which finds a

defective edge forms a ternary decision tree such that any vertex at height m denoted by (y1, . . . , ym) is assigned

with graph G′(y1, . . . , ym) and all the leafs are assigned with either one edge or the empty graph. Define the

value Nwc(G) as the minimal number of consecutive tests to search a defective edge in G, i.e., the minimal

height in a decision tree which finds a defective edge. A basic observation says that to find asymptotically good

constructions it is sufficient to focus on finite n.

Lemma 1 (Theorem 6 of [Hao90]). Given an upper bound Nwc (Kn′,n′) ≤ N0, the minimal number of

weighings Nwc(Kn,n) satisfies

Nwc(Kn,n) ≤ N0

log2 n
′ log2 n(1 + o(1)).

One illustrative example based on this concept was provided in [GMSV92]. In particular, it was proved

Nwc(K32,32) = 7 what leads to Nwc(Kn,n) ≤ 7/5 log2 n(1 + o(1)).

We now generalize this approach. Let G be a disjoint union of m copies of a complete bipartite graph

Kn,n. Define the value Nwc (Kn,n,m) as the minimal number of consecutive tests to find at most m disjoint

edge-candidates in G, i.e., the defective edge is one of the candidates.

Lemma 2. Given an upper bound Nwc (Kn′,n′ ,m) ≤ N0, the minimal number of weighings Nwc(Kn,n) satisfies

Nwc(Kn,n) ≤ N0

log2 n
′ log2 n(1 + o(1)).

Proof. Let us fix an integer k and N = nk. First we prove

Nwc(KN,N )
(a)

≤ Nwc(KN,N ,m) + dlog2me
(b)

≤ kNwc(Kn,n,m) + dlog2me.

The inequality (a) holds since after applying strategy designed for the disjoint union of m copies of KN,N

directly to the graph KN,N we find at most m disjoint edge-candidates. In addition, we need at most dlog(m)e
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tests to find a defective edge among m edge candidates. Now let us explain the inequality (b). We can think

about N vertices in each part of KN,N as a disjoint union of n classes of vertices consisting of N/n vertices.

In other words, m copies of KN,N can be represented as m copies of Kn,n in which each vertex is a class of

vertices. At first step we may apply the strategy designed for the disjoint union of m copies of Kn,n to the m

copies of KN,N and find at most m disjoint edges connecting classes of vertices which can be seen as m copies

of KN/n,N/n. Then we recursively use the same arguments and after kNwc(Kn,n,m) tests we find at most m

disjoint edges.

The statement of this lemma holds, since m is fixed and k can be taken arbitrary large.

Now we are ready to state the main result.

Theorem 1. Let integers n and m, n/2 ≤ m ≤ n satisfy(
2n− 2m

n−m

)
23m−2n ≤

(
n

m

)
.

Then we have

Nwc

(
K2m,2m ,

(
n

m

)
2n−m

)
≤ n.

Moreover,

Nwc(Kn,n) ≤ log2 n(1 + o(1))/x,

where x is a nonzero root of the equation x = h(x) and h(x) is the binary entropy function.

Remark 1. Notice that the upper bound provided by Theorem 1 is ≤ 1.2938 log2 n(1 + o(1)) which is a bit

worse than the bound ≤ 1.2662 log2 n(1 + o(1))) due to Belokopytov [Bel89]. However, the strategy given in

the proof of Theorem 1 is explicit unlike Belokopytov’s proof of existence.

Proof. Fix two integers n ≥ 2 and m, n/2 ≤ m ≤ n. Let N = 2m. Let S(m,n) be a collection sequences of

length n over {∗, 0, 1} so that the number of stars is m. For any sequence (t1, . . . , tn) ∈ S(m,n) define a decision

tree of height n recursively. In the root of the decision tree we always set G = KN,N . Assume by induction that

all the graphs assigned to the vertices at height i have the form either G′ = K2v,2v + . . .+K2v,2v︸ ︷︷ ︸
2s times

, s+ v ≤ m,

or G′ = ∅. If ti = 1 (ti = 0), then we take Si = V (G′) (Si = ∅). One can see that a child corresponding to the

result 2 (0) is assigned with the same graph G′, while other two children are assigned with the empty graph. If

ti = ∗, then we take each disjoint component of G′, namely, K2v,2v and divide each (left and right) part into 2

equal portions. Then the first portion of vertices is included to Si. A child corresponding to the result 0 or 2 is

assigned with a copy of K2v−1,2v−1 + . . .+K2v−1,2v−1︸ ︷︷ ︸
2s times

, while a child corresponding to the branch 1 is assigned

with K2v−1,2v−1 + . . .+K2v−1,2v−1︸ ︷︷ ︸
2s+1 times

.

Now let us check what goes to the leaf denoted by (y1, . . . , yn). First, if for some i ∈ {1, . . . , n} we have

ti = 0 or ti = 1 and yi 6= 2ti, then the leaf is assigned with the empty graph. If the leaf is not assigned with the

empty graph, then a disjoint union of at most 2m edges comes to this leaf. Moreover, the number of edges is a

power of 2. To define this value, we calculate the number p of i’s, i ∈ {1, . . . , n}, such that ti = ∗ and yi = 1.

In this case 2p disjoint edges come to the leaf.

Consider |S(m,n)| =
(
n
m

)
2n−m copies of graph KN,N and apply to the i-th copy the decision tree corre-

sponding to the i-th sequence in S(m,n). Let us find the restrictions on n and m so that, for any leaf in the
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union of decision trees, the total number of disjoint edges, coming there, is at most |S(m,n)|. For any leaf,

denoted by (y1, . . . , yn), compute the number u of i’s, i ∈ {1, . . . , n}, such that yi = 1. The total number of

edges, denoted by L(y1, . . . , yn), is

L(y1, . . . , yn) =

(
n− u
n−m

)
2u,

because any decision tree has either the empty graph, or 2u disjoint edges in the leaf (y1, . . . , yn) and the

number of decision trees with non-empty graph in the leaf (y1, . . . , yn) is exactly
(
n−u
n−m

)
. In other words, we

could apply Lemma 2 to the union of decision trees if we have

max
u∈{0,...,m}

(
n− u
n−m

)
2u ≤ |S(m,n)| =

(
n

m

)
2n−m.

One can easily check that the maximum in the left hand side of the inequality is attained at umax = max(0, 2m−
n). If m ≥ n/2, then umax = 2m− n. For any n ≥ 2 and m, n/2 ≤ m ≤ n provided that(

2n− 2m

n−m

)
22m−n ≤

(
n

m

)
2n−m,

we have Nwc
(
K2m,2m ,

(
n
m

)
2n−m

)
≤ n. Let x = m/n, x ∈ (1/2, 1). Since we can take n arbitrary large, Lemma 2

completes the statement of the given theorem.

3 An Algorithm in the Average-Case Setting

In this section we analyze the problem in language of the coding theory. The two-user adder (erasure) channel

takes symbols x1, x2 from the input alphabet X := {0, 1} given by two senders, and outputs the sum y = x1+x2

from the output alphabet Y := {0, 1, 2}.
Since a received y ∈ Y cannot be unambiguously decoded, the central problem in two-user communication

theory is to coordinate the two senders to send simultaneously as much information as possible to a single

receiver through n uses of the union channel.

Let the message sets U1 and U2 specified for the senders be of size M1 and M2, and let w1 ∈ S1, w2 ∈ S2

be two messages chosen by the two senders beforehand. During the kth use of the channel, two functions e1k

and e2k respectively encode w1 and w2 to two codewords x1k ∈ {0, 1} and x2k ∈ {0, 1}. The binary adder

channel then takes x1k, x2k and outputs yk := x1k + x2k ∈ Y. The sequence of outputs (yk)nk=1 is decoded by

the receiver to the estimate (ŵ1, ŵ2) of (w1, w2).

Now we describe a zero-error communication scheme for the two-user union channel with complete feedback.

This scheme uses a large number B+1 of blocks with carefully chosen length of each block. Suppose the message

sets of the senders are both {0, 1}N , N = Bm, and let w1, w2 ∈ {0, 1}Bm be the messages of the two senders.

Here we analyze the average-case, i.e., we suppose that both users choose their messages independently and

uniformly and we want to estimate the average number of channel uses.

To state the communication scheme in each block, we represent the current uncertainty left over from block

b by U(b) ⊆ ({0, 1} × {0, 1})bm. In other words, the receiver, at the end of block b, has learned that the first

bm digits of w1 and w2 are in U(b), that is, the receiver knows that

((w1i, w2i))
bm
i=1 ∈ U(b).

In addition, we assume for a moment that at the end of block b each sender also knows the first bm digits of

the other message.
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adder channel
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ŵ1
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Fig. 1. Two-user adder channel with complete feedback.

At the start of block b+ 1, the senders and the receiver index the elements in U(b) by

S =
{

(s1, . . . , snb+1
) : sk ∈ {∗, 0, 1} such that |{k : sk = ∗}| = m

}
.

We shall choose as a length of block the minimal number nb+1 such that |Ub| ≤ |S| =
(
nb+1

m

)
2nb+1−m. The

method of indexing can be agreed beforehand between the senders and the receiver. For example, they can

order both U(b) and S lexicographically, and index the elements in the ordered set U(b) by the first elements in

S. According to the assumption of our scheme, both senders know ((w1i, w2i))
bm
i=1, and so they share its index

(s1, . . . , snb+1
).

During the kth use of the channel in block b, both senders simply send sk if sk ∈ {0, 1}; or send w1,bm+i

and w2,bm+i respectively if sk is the ith star in (s1, . . . , snb
). In the latter case, based on the feedback, each

sender learns the (bm+ i)th digit of the other message. Because there are a total of m stars in (s1, . . . , snb
), at

the end of block b+ 1, both senders know m more digits of the other message, maintaining the assumption of

the scheme.

In the last block B + 1, the senders simply resolve the rest of the uncertainty U(B) through dlog3 |U(B)|e
uses of the channel.

Theorem 2. The average length of the code in the communication scheme described above less than x′ log2N(1+

o(1)), where x′ = 1.2710 is the unique root of the equation

(x− 0.5)h

(
1

2x− 1

)
+ 1.5− x ≤ xh(1/x).

Proof. Note that U(0) consists of the empty sequence, hence, n1 = m. During the (b+ 1)st block, the receiver

has received (y1, . . . , ynb+1
) ∈ {0, 1, 2}n. We shall estimate the size of the uncertainty set U(b+ 1) at the end of

the (b+ 1)st block. Suppose that ((ŵ1i, ŵ2i))
bm
i=1 ∈ U(b) is indexed by (s1, . . . , snb+1

). Recall that if sk ∈ {0, 1},
then yk = 2sk; otherwise sk is the ith star and yk = ŵ1,bm+i+ ŵ2,bm+i. Suppose L := {k : yk = 1} and ` := |L|.
A potential (s1, . . . , snb+1

) ∈ S must have stars on coordinates indexed by L and additional m − ` stars on

the rest nb+1 − ` positions. This (s1, . . . , snb+1
), if it indexes an element in U(b), will contribute 2` elements to

U(b+ 1). Therefore, we can estimate |U(b+ 1)| ≤
(
nb+1−`
m−`

)
2`.

We can obtain yk = 1 only if sk = ∗ and yk = ŵ1,bm+i + ŵ2,bm+i. Recall that both users choose their

messages uniformly and independently from {0, 1}Bm, hence ` has binomial distribution Bin(m, 0.5).
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Let ε = 1/ lnm. If we obtain that ` satisfies |`− 0.5m| > εm in some block, then users may apply trivial

strategy with code length 2Bm to transmit their messages. In this case the total number of channel uses could

be roughly upper-bounded by 4Bm. We estimate the probability that at any block |`− 0.5m| > εm by the

union bound and the Chernoff bound as follows

≤ B · Pr(|Bin(m, 0.5)− 0.5m| > mε) ≤ 2Be−2mε
2

Now consider the case when |`− 0.5m| ≤ εm for every block. We must find the minimal nb+1 such that(
nb − `
m− `

)
2` ≤

(
nb+1

m

)
2nb+1−m.

Let xb = nb/m and x = max
b∈{1,...,B}

xb. Taking logarithm, dividing by m, and letting m tend to infinity, we obtain

sufficient condition

(x− 0.5)h

(
1

2x− 1

)
+ 1.5− x ≤ xh(1/x).

Solving the equation with respect to x numerically, we find an unique root x′ = 1.2710. Therefore, the mathe-

matical expectation of code length is upper bounded by

4m · 2Be−2m/(lnm)2 + (B + 1)mx′(1 + o(1)) =
B + 1

B
x′ log2N(1 + o(1)).

Letting B tend to infinity, we obtain the statement of the theorem.

4 Open Problems

One can see that the asymptotic bounds on the number of weighings in the worst-case are still not sharp. It

would be quite interesting and challenging to close the gap. We suspect that the upper bound on Nwc(Kn)

proved by Belokopytov [Bel89] is tight, but are not able to prove that.

Conjecture A. The minimal number of weighings to find 2 false coins among n coins in the worst-case setting

is

Nwc(Kn) = 1.2662 log2 n(1 + o(1)).

There is much less known for the case s > 2 coins. Deriving new upper and lower bounds on the minimal

number of weighings to search s false coins is one of possible future research directions.
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[CL81] Thomas M. Cover and Cyril S. K. Leung. An achievable rate region for the multiple-access channel with

feedback. IEEE Trans. Inform. Theory, 27(3):292–298, 1981.

[CLZ01] Gérard Cohen, Simon Litsyn, and Gilles Zémor. Binary B2-sequences: A new upper bound. Journal of

Combinatorial Theory, Series A, 94(1):152 – 155, 2001.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience [John Wiley &

Sons], Hoboken, NJ, second edition, 2006.

[Dja75] AG Djackov. On a search model of false coins. In Topics in Information Theory (Colloquia Mathematica

Societatis Janos Bolyai 16). Budapest, Hungary: Hungarian Acad. Sci, pages 163–170, 1975.

[DR81] Arkadii Georgievich D’yachkov and Vladimir Vasil’evich Rykov. On a coding model for a multiple-access

adder channel. Problemy Peredachi Informatsii, 17(2):26–38, 1981.

[Due85] G. Dueck. The zero error feedback capacity region of a certain class of multiple-access channels. Problems

Control Inform. Theory/Problemy Upravlen. Teor. Inform., 14(2):89–103, 1985.

[GMSV92] L. Gargano, V. Montouri, G. Setaro, and U. Vaccaro. An improved algorithm for quantitative group testing.

Discrete Applied Mathematics, 36(3):299 – 306, 1992.

[Hao90] Fred H. Hao. The optimal procedures for quantitative group testing. Discrete Appl. Math., 26(1):79–86,

1990.

[KKHS18] Esmaeil Karimi, Fatemeh Kazemi, Anoosheh Heidarzadeh, and Alex Sprintson. A simple and efficient

strategy for the coin weighing problem with a spring scale. Proc. IEEE Int’l Symp. on Inf. Theory, pages

1730–1734, 2018.

[Lia72] Henry Herng-Jiunn Liao. Multiple access channels. Technical report, Hawaii University, Honolulu, September

1972.

[Lin69] Bernt Lindström. Determination of two vectors from the sum. J. Combinatorial Theory, 6:402–407, 1969.

[Pol87] G Sh Poltyrev. Improved upper bound on the probability of decoding error for codes of complex structure.

Problemy Peredachi Informatsii, 23(4):5–18, 1987.

[Wil82] Frans M. J. Willems. The feedback capacity region of a class of discrete memoryless multiple access channels.

IEEE Trans. Inform. Theory, 28(1):93–95, 1982.

[Wil84] F Willems. On multiple access channels with feedback (corresp.). IEEE Transactions on Information Theory,

30(6):842–845, 1984.

[ZBM87] Zhen Zhang, T. Berger, and J. Massey. Some families of zero-error block codes for the two-user binary adder

channel with feedback. IEEE Transactions on Information Theory, 33(5):613–619, September 1987.


