
Graphs and Self-dual additive codes over GF (4)

Mithilesh Kumar, Srimathi Varadharajan, and H̊avard Raddum

Simula UiB, Bergen, Norway
mithilesh@simula.no, srimathi.varadharajan@uib.no, haavardr@simula.no

Abstract. We initiate the study of self-dual codes over GF (4) whose
corresponding graphs have fixed rankwidth. We show that by combin-
ing the structural properties of rankwidth 1 graphs, the classification
of corresponding codes becomes exponentially faster. We present a new
algorithm for computing weight enumerators using Binary Decision Dia-
grams (BDD), which is an essential step in the classification of the codes.
In addition, we show that the minimum distance of a code is at least 3 if
and only if the corresponding graph does not contain any pendant vertex
or any twin-pairs. We also present an algorithm for computing an ap-
proximate minimum distance of codes corresponding to general graphs.
Keywords— Stabilizer Code, Self-dual, Rankwidth, Binary Decision Di-
agram, Minimum Distance

1 Introduction

In cryptography, self-dual additive codes over GF (4) (of type IV) have been used
in the construction of secret sharing schemes as they provide higher security
level over linear codes [29, 4, 19]. Self-dual codes have strong connection to
quantum error correction [14, 5] and measurement-based quantum computation
[25, 18]. These codes have been used in the construction of unimodular lattices
[16, 17]. As lattices are interesting in cryptography, this provides additional
motivation to study self-dual codes. There has been a lot of work done in the
classification of these codes since early 70s [23]. Combinatorially, there is a one-
to-one correspondence between self-dual additive codes over GF (4) and simple
undirected graphs [31, 21, 3, 28]. There is a long list of papers [12, 1, 8, 9, 6,
7] that have tried to classify such codes using this relation. But most of these
approaches have tried to focus scantly on the richness graph theory can bring to
the study of such codes.

Trying to classify codes by considering all possible graphs makes the problem
extremely hard. This is evident since self-dual additive codes over GF (4) has
been classified only for n up to 12 [8]. It is natural to restrict the study to specific
graph classes in the hope that the classification of the corresponding codes can be
pushed further for larger values of n. In this paper, we initiate the study of self-
dual codes whose corresponding graphs have fixed rankwidth, where rankwidth
is a graph property giving non-negative integer values. For example, the class of
graphs with rankwidth 1 are exactly the distance-hereditary graphs. This choice
is motivated by the fact that two self-dual codes over GF (4) are equivalent

if and only if the corresponding graphs are related by local complementation
and the graph parameter rankwidth is preserved under local complementation.
We show that by combining the structural properties of these graphs with the
algorithm used in [13, 8], the classification of the corresponding codes becomes
exponentially faster. In the above branching algorithm, for graphs of rankwidth
1, instead of branching in 2n − 1 ways, we need only branch in 3n− 3 ways.

There are two computationally heavy steps in the above algorithm: graph
isomorphism and weight enumeration. For a fixed positive integer k, testing
graph isomorphism for graphs of rankwidth k is polynomial in the size of the
graph [15], and it is in fact linear in n for graphs of rankwidth 1 [30]. Hence,
looking at the problem of classification of such codes in terms of rankwidth has
additional advantages.

Another important step in the classification algorithm from [8] was comput-
ing weight-enumerators for a given code. The algorithm given in [8] to compute
the weight-enumerator for a linear [n, k] code is essentially a brute-force search
with complexity O(2k). If k > n/2, it is necessary to go via the dual code to cal-
culate the weight enumerators. We provide a new unified approach using Binary
Decision Diagrams (BDD) to compute the weight-enumerators.

The minimum distance of codes corresponding to distance hereditary graphs
is 2. We show that the minimum distance of a code is at least 3 if and only
if the corresponding graph does not contain any pendant vertex or any twin-
pairs. We also present an algorithm for computing an approximate minimum
distance of codes corresponding to general graphs and leave some interesting
open problems.

2 Preliminaries

We use standard graph theory notation. A graph is a pair G = (V,E) where V
is a set of vertices, and E ⊆ V × V is a set of edges. A graph with n vertices
can be represented by an n × n binary matrix called the adjacency matrix A
such that Aij = 1 if and only if vivj ∈ E, and Aij = 0 otherwise. The open
neighbourhood of v ∈ V , denoted by N(v), is the set of vertices connected to v
by an edge. The closed neighbourhood of v ∈ V , denoted by N [v], is the set of
vertices connected to v by an edge along with v itself. The number of vertices
incident to v is called the degree of a vertex v. The complement or the inverse
of a graph G is a graph H such that two distinct vertices of H are adjacent if
and only if they are not adjacent in G. A vertex of degree 1 is called a pendant.
A pair of vertices u, v are called true twins if N [u] = N [v] and are called false
twins if N(u) = N(v). When we call a pair of vertices as twin-pair, then they can
either be true-twins or false-twins. Local complementation (LC) on v denoted by
G∗v replaces the induced subgraph of G on N(v) by its complement. See Figure
1. A graph code is an additive code over GF(4) that has a generator matrix of
the form C = A + ωI, where I is the identity matrix and A is the adjacency
matrix of a simple undirected graph. A graph code is self-dual since its generator
matrix has full rank over GF(2).

v0

v1
v2

v3
v4∗

v5
v0

v1
v2

v3
v4

v5

Fig. 1: Local complementation at v4

Theorem 1 ([31],[21]). Every self-dual additive code over GF(4) is equivalent
to a graph code.

2.1 Rankwidth

Let G be a simple undirected graph. A rank decomposition of G is a pair (T, L)
of tree T with leaves L such that every internal node in the tree has degree 3
and there is a bijection between the set of leaves L of T to the set of vertices V
of G. See Figure 2. For every edge e in T , we can associate a partition (A,B) of

v0

v1

v2

v3

v4 v0 v1 v2 v3 v4
L

T

1

2
2

1

1

11

1 0 1

1 0 0

󰀥 󰀦
v0
v1

v2 v3 v4

rank

Fig. 2: A rank decomposition (T,L) of a graph. The rankwidth of T is 2. It so happens
that the rankwidth of this graph is 2 as well.

V , where A and B are set of leaves in the two sub-trees that result after deleting
e. The weight of an edge e in T is the rank of the adjacency matrix of bipartite
graph ((A,B), E) where E is the set of edges whose one endpoint is in A and
other in B. The rankwidth of the decomposition (T, L) is the largest weight of
an edge in T . The rankwidth rw(G) of G is the smallest rankwidth of any tree
decomposition of G. Local complementation preserves the rankwidth of a graph.

Theorem 2 ([22]). Given a graph G and v ∈ V (G), rw(G) = rw(G ∗ v).

The distance between two nodes is the length of the shortest path between
them. A distance-hereditary graph is a graph in which the distances in any
connected induced subgraph are the same as they are in the original graph.

Theorem 3 ([22]). G is distance-hereditary if and only if the rankwidth of G
is at most 1.

2.2 Binary Decision Diagrams

The data structure we use for calculating the weight enumerators for self dual
additive code over GF (4) are Binary Decision Diagrams (BDD). Binary Deci-
sion Diagrams are used in various applications, such as representing system of
Boolean equations [27], application to permutations [20], or representing integer
multiplication [24]. In this paper, we describe the basic operations on a BDD in
order to compute the weight enumerators of self dual codes of GF (4).

Description of BDD A Binary Decision Diagram (BDD) is a directed acyclic
graph with a root node at the top and a true-node at the bottom. The nodes
in a BDD are arranged in horizontal levels, and we visualize a BDD by drawing
the levels in a top-down fashion.

All edges in the BDD are directed downwards, with an edge always going
between nodes on different levels. In other words, no edge is drawn between the
nodes on the same level. Each node, except for the bottom node, has one or two
outgoing edges, called the 0-edge and/or the 1-edge. The bottom node has only
incoming edges. 0-edges are drawn as dotted lines, while 1-edges are drawn as
solid lines. All the operations on BDD are done over GF(2). The transition from
GF(4) to GF(2) is explained in Section 3.

A level in a BDD is usually associated with a single variable over GF(2). In
our case, we allow a linear combination of variables over GF(2) associated with
each level. A path in a BDD is a sequence of consecutive edges, where the end
node of one edge is the start node for the next edge. A complete path starts in
the top node and ends in the bottom node. We regard each edge in a path to
assign a value over GF(2). If an e-edge starts from a node on a level associated
with linear combination l, it yields the linear equation l = e.

Adding and Swapping Levels The add operation allows us to add one linear
combination for a level onto the linear combination for the level directly below,
and to change the BDD accordingly to keep the set of binary vectors encoded
by the BDD unchanged. The add operation was first explained in [27], and the
basic operation done for each node on a level is shown in Figure 3.

l1

l2

A B C D

l1

l1 + l2

A B C D

Fig. 3: Adding levels in a BDD

How to swap the variables on two adjacent levels in a BDD and change the
nodes and edges such that the resulting BDD encodes exactly the same set of

vectors was first explained in [26]. By swapping levels the linear combination
associated with level i is swapped to level i+ 1 and vice versa without affecting
the set of vectors encoded by the BDD. The basic general operation of swapping
levels is shown in Figure 4.

l1

l2

A B C D

l2

l1

A B C D

Fig. 4: Swapping levels in a BDD

3 Construction of BDD

Let G be an n × n generator matrix of a code C over GF (4). We compute the
set of all code words by considering all possible linear combinations over GF (2)
of the rows of G. This is done by first expanding the matrix into an n × 2n
matrix G′ over GF (2) by associating (mapping) each GF (4)-element to two bits
as follows: 0 = (00), 1 = (01), ω = (10), ω2 = (11).

G =

[
ω 1
1 ω

]
n×n

=⇒ G′ =

[
1 0 0 1
0 1 1 0

]
n×2n

Now we multiply all binary strings (c1, c2, c3, ...cn) of length n to the matrix
G′ to get the set of all code words (x1, x2, x3,x2n−1, x2n).

In order to construct the BDD that has all code words as paths, we introduce
the parity check matrix H. The parity check matrix describes the set of linear
relations that the coordinates of each code word must satisfy. If x is a code word
and H is the parity check matrix then xHT = 0.

Let the linear equations given by xHT = 0 be li = 0 for 1 ≤ i ≤ n. It is now
easy to construct a BDD that encodes all code words of the code, i.e. x-vectors
satisfying all li = 0. Start by listing l1, . . . , ln as the linear combinations for the
top n levels. Each level has a single node with a 0-edge going to the node on the
level below. This ensures that only x-vectors satisfying li = 0, i = 1, . . . , n are
encoded in the BDD. The bottom n levels have n ”free” variables as associated
linear combinations, in the sense that all free variables are linearly independent
from each other and the li’s. The node on the level of ln has a 0-edge that jumps
over the bottom n levels, going straight to the bottom node.

We now use add and swap operations on this basic BDD to resolve the linear
combinations li. By resolving the linear combinations we mean that we add
together some of the linear combinations and free variables to transform li into
a single variable. We use the swap operation to move levels that need to be
added so they are adjacent to each other, before doing the add operation.

We apply the operations until only single variables appear on all levels. We
sort the levels in order such that x1 appears on the top and x2n appears on the
lowest level.Now the paths of the BDD represent all code words in C.

Complexity: In this paper we are concerned with the special case where
the codes are of length 2n and dimension n. However, constructing the BDD
representing a binary code can be done for any length n and any dimension
k ≤ n. We give the complexity, in terms of number of nodes in the final BDD,
in the general case for an [n, k] linear code C over GF (2).

Lemma 1. The number of nodes on any level of the final BDD after resolving
all linear combinations for a code C is at most 2k.

Lemma 2. The number of nodes on any level of the final BDD after resolving
all linear combinations for a code C is at most 2n−k.

Combining lemmas 1 and 2 we get the following result.

Theorem 4. The number of nodes in the final BDD representing the code words
of a binary linear [n, k] code is of order O(2min{k,n−k}).

3.1 Algorithm for computing weight enumerator

Recall that pairs of coordinates (x2i−1, x2i) actually represent one element in
GF (4). A path in the BDD with resolved and sorted levels has length 2n, but
represents a code word of length n with elements from GF (4). When computing
the weight enumeration we therefore count how many non-zero GF (4)-elements
a path (code word) represents.

We proceed to describe our algorithm for computing weight enumerators
using BDDs. Assume that we have constructed the BDD representing a GF (4)-
code, with the levels having x1, . . . , x2n as linear combinations.

1. Start with setting (1, 0, 0, . . . , 0) as the vector for the true-node at the bot-
tom. We say there is one path of weight 0 from the true-node to itself.

2. We compute the vectors for the other nodes in a recursive way, from the lower
levels to higher ones. When a pair of edges from a node T to A contribute
0 to the path weight, the weight distribution below T along this path is the
same as for A. In other words, prepending the partial code words with a
zero does not change the weight distribution. When the pair of edges from
T to A contribute 1 to the weight, the paths of weight i below A become
paths of weight i+ 1 below T . Hence the weight enumeration vectors for T
are obtained by shifting the vector for A by one position to the right.

3. Assuming all weight distribution vectors have been computed for the nodes
on one level, compute the weight distribution for the nodes two levels above
by adding all the weight contributions, shifting them by one position to the
right as needed. This is shown in Figure 5.

4. Compute weight distributions for all nodes in the BDD, moving upwards two
levels at the time. In the end, the vector for the root node gives the weight
distribution of the whole code.

(a0, a1, ..an)(b0, b1, ..bn) (c0, c1, ..cn)(d0, d1, ..dn)

(a0, a1, a2, .., an)
+(0, b0, b1, .., bn−1)
+(0, c0, c1, .., cn−1)
+(0, d0, d1, .., dn−1)

Fig. 5: Computing weight enumeration for one node.

The complexity of computing the weight enumeration of a given code rep-
resented as a BDD is O(N), where N is the number of nodes in the BDD and
adding two integer vectors counts as a unit operation. In terms of single integer
additions, the complexity is O(nN).

We have described the algorithm for computing the weight enumeration when
the code represented as a BDD is regarded as being over GF (4). Going back to
the general case of an [n, k] linear code over GF (2), we can easily modify the
algorithm to compute the weight distribution for any binary linear code when it
is represented as paths in a BDD.

Computing the weight distribution in general is a hard problem, that can
only be solved by brute force. The naive way of doing it (without the BDD rep-
resentation) is to run through all the code words and count their weights. This
has complexity O(2k). If k > n/2, the complexity of doing weight enumeration
becomes bigger than it needs to be. Then one can compute the weight distribu-
tion for the dual code (of dimension n−k and complexity O(2n−k) < O(2k)), and
use MacWilliams’ identity [11, p. 127] to find the weight distribution of the given
code. Theorem 4 gives a unified approach to calculate the weight enumeration
irrespective of whether k is bigger or smaller than n/2.

4 Classification for Rankwidth 1 graphs

The algorithm for classifying self-dual codes corresponding to general graphs as
described in [8]: Let Ln−1 be the set of representatives for classes of graphs on
n− 1 vertices corresponding to equivalent self-dual codes.

– Compute the set of graphs En by adding a vertex to each graph in Ln−1 in
2n−1 − 1 ways i.e. making the vertex adjacent to every possible non-empty
subset of the vertex set.

– For each set of of isomorphic graphs keep only one graph in En.
– Use weight-enumerators to partition the set En i.e. graphs corresponding to

same weight-enumerators are put in one class.
– Partition each class in En by checking for self-dual equivalence.
– Output Ln that contains one graph from each class in En.

We utilize the following definition of distance hereditary graphs.

Theorem 5 ([2]). Let G be a finite graph with at least two vertices. Then G is
distance-hereditary if and only if G is obtained from an edge by a sequence of
one of the following vertex extensions: add vertex as a pendant, add vertex as
a true-twin to an existing vertex and add vertex as a false-twin to an existing
vertex.

Let Gn−1 be all connected graphs of rankwidth 1 on n− 1 vertices. Then Gn
can be obtained by adding a vertex to each graph in Gn−1 as a pendant or a twin
to some vertex. Consider C to be the orbit of a graph G ∈ Gn−1. Let G1, G2 ∈ C.
Then there is a sequence of LC operations S that can take G1 to G2. Let E1
and E2 be the 3(n − 1) extensions of G1 and G2 obtained via adding pendants
or twins. We show that via applying S on any graph in E1, we end-up with a
graph in E2 implying that E1 and E2 are LC-equivalent.

Let u be a new vertex added toG1 as a pendant or twin to a vertex v ∈ V (G1).
The LC operations at vertices in G1 switch the role of u relative to v as a pendant
or a twin. At the same time, G1 changes to G2 after S has been performed.
Then, u can be seen as being attached to G2 as a pendant or twin (according
to what happens after apply S to G1 + u). Hence, any graph E2 can be seen
as being obtained from a graph in E1 via applying S. This implies that instead
of considering extensions of C, we need only consider extensions of just one
representative from C. Let Ln−1 be the set of representatives of all orbits in Gn−1.
Since rankwidth is preserved by LC operations, the graphs in the sets Ln−1, En

and Ln must be of rankwidth 1. Hence by above discussion, in the computation
of En from Ln−1, the vertex must be added as a pendant or a false-twin or a
true-twin. There are at most 3(n− 1) ways to do that. So instead of branching
in 2n−1− 1 ways, we need only branch in at most 3n− 3 ways. Furthermore, the
isomorphism testing in En is linear in n for rankwidth 1 graphs.

5 Minimum Distance

Glynn et al [13] showed that the minimum distance of a code is equal to one
plus the minimum vertex degree over all graphs in the corresponding LC orbit.

Lemma 3. If a connected graph contains a twin-pair, then the minimum dis-
tance of the corresponding code is 2.

Lemma 4. Codes with corresponding graphs of rankwidth 1 have minimum dis-
tance 2.

Lemma 5. If a graph contains a twin-pair, then every graph in its LC orbit will
contain a twin-pair or a pendant.

Lemma 6. If G does not have a pendant or a twin-pair, then no graph in the
LC orbit of G will have a twin-pair.

Combining Lemma 3, Lemma 5 and Lemma 6 gives the following theorem.

Theorem 6. The minimum distance of a self-dual additive code over GF (4) is
at least 3 if and only if the corresponding graph G has no pendants or twin-pairs.

5.1 An approximation algorithm for minimum distance

The problem of computing the minimum distance of a binary linear code is NP-
hard [32]. In addition, the problem is hard to approximate within any constant
factor in random polynomial time [10]. For self-dual codes over GF (4), the min-
imum distance is 1 + δ where δ is the minimum degree of any vertex in any
graph in the LC orbit of the graph corresponding to the code. It is possible to
get the minimum distance from the weight enumerator polynomial or from the
LC orbit, but both these approaches take exponential time. In this section we
discuss a heuristic approach to get some upper bound on the minimum distance.

Computing δ is equivalent to finding a sequence of LC operations starting at
some vertex u such that at the end, there is a vertex of degree δ in the resulting
graph. Clearly, finding this sequence is hard. The strategy we use is to pick a
vertex in the graph and try to decrease its degree as much as possible via LC
operations.

The sequence of LC operations corresponds to a path in a Breadth-First-
Search (BFS) tree T of G with u as the root vertex. A BFS tree is constructed
as follows: Pick u as root. At each layer i, the vertices in layer i are neighbors
of vertices in layer i− 1 that have not been already placed in some layer.

We aim to use this tree to find a path that gives a sequence of LC operations
to decrease the degree of u. If no such path exists, then the algorithm reports
the degree of u as a candidate for δ. See Figure 6. Now, we state the algorithm:

u
. . .

v0

A0

B0

v1

A1

B1

v2

A2

B2

v3

A3

B3

T
u

v0

v1
...

...
v2

v3
...

Fig. 6: Decomposition of the graph G along a path uv0v1v2v3 . . . in the BFS-tree T with
u as root vertex. Black-filled circles represent vertices. Other shapes represent sets. An
edge from a vertex to a set represents that every vertex in the set is a neighbor of the
vertex. Edges between sets have not been shown.

1: Construct BFS tree For u ∈ V (G), construct Breadth-First-Search tree T
with u as the root node. The neighborhood of a vertex at layer i in T lie
only in layers i − 1, i and i + 1. Note that we would require to reconstruct
the tree after LC operations along the path. The tree T is used to guide the
sequence of LC operations to be applied to decrease the degree of u.

v0 A0 B0 C1

v1 A00 A01 B00 B01 A1 B1

v2 A10 A11 B10 B11 A2 B2

v3 A20 A21 B20 B21 A3 B3

C2

C3

C4

Vertex Partition of neighborhood Conditions for LC

|C1| < max{|A0|, |B0|}

|A1|+ |C2| < t1 := max{|A00|+ |B01|,
|B00|+ |A01|}

|A2|+ |C3| < t2 := t1 − (|A10|+ |B11|)

|A3|+ |C4| < t3 := t2 − (|A20|+ |B21|)
...

Fig. 7: At each vertex vi store sets Ai, Bi, Ci and ti. If |A3|+|C4| < t3, then |A2|+|C3| <
t2 which in turn implies |A1| + |C2| < t1. Hence, just by looking at v3 we can decide
whether degree of u can be decreased.

2: Partition neighborhoods At each node of the tree, we store some infor-
mation that can be used to check whether LC along the path to the root
will decrease the degree of u.
At the root node u, we have C = N(u).
At the second layer in the tree, for each vertex v0 ∈ C0 = N(u), the neigh-
borhood of v0 can be partitioned as (apart from u) as (A0, B0, C1) where
B0 = C0 ∩N(v0), A0 = C0 −B0 and C1 = N(v0)− (u ∪ C0).
At the ith layer with j = i−1, k = i+1, for each vertex vi ∈ Ci, partition the
neighborhood of vi as (apart from vj) (Aj0, Aj1, Bj0, Bj1, Ai, Bi, Ck) where
Aj0 = Aj −N(vi), Aj1 = Aj −Aj0, Bj0 = Bj −N(vi), Bj1 = Bj −Bj0, Bi =
Ci −N(vi), Ai = Ci −Bi, Ck = N(vi)− (vj ∪Aj1 ∪Bj1 ∪Bi). See Figure 6.

3: Book keeping For each i ≥ 2 with j = i − 1, k = i + 1, at each vertex vi,
we store the sets Ai, Bi, Ck and the values ai := |Aj0| + |Bj1|, ti := tj − ai
and |Ai|+ |Ck|.

4: Check for LC If |Ai|+ |Ck| ≤ ti, then an LC operation along the path from
vi to the root will decrease the degree of u. See Figure 7. Then apply LC
operations along this path and construct the BFS-tree T for the new graph
and repeat.

5: Return degree of u If there does not exist any vertex in the tree with |Ai|+
|Ck| ≤ ti, return the current degree of u as δu.

6: Terminate Finally, the algorithm outputs the smallest δu over all vertices
in the graph.

Running Time: For a given graph G, the BFS-tree can be constructed in linear
time. For each vertex v, the partition for neighborhood of v can be computed
in polynomial time and it will take polynomial space to store the necessary
information. Hence, in polynomial time we can decide whether there exists a
path in the tree along which LC operations decreases the degree of u. Hence,
the algorithm terminates in polynomial time.

References

[1] Christine Bachoc and Philippe Gaborit. “On Extremal Additive I 4 Codes
of Length 10 to 18”. In: Electronic Notes in Discrete Mathematics 6 (2001),
pp. 55–64. doi: 10.1016/S1571-0653(04)00157-X. url: https://doi.
org/10.1016/S1571-0653(04)00157-X.

[2] Hans-Jürgen Bandelt and Henry Martyn Mulder. “Distance-hereditary
graphs”. In: J. Comb. Theory, Ser. B 41.2 (1986), pp. 182–208. doi: 10.
1016/0095-8956(86)90043-2. url: https://doi.org/10.1016/0095-
8956(86)90043-2.

[3] André Bouchet. “Graphic presentations of isotropic systems”. In: Journal
of Combinatorial Theory, Series B 45.1 (1988), pp. 58 –76. issn: 0095-8956.
doi: https://doi.org/10.1016/0095-8956(88)90055-X. url: http:
//www.sciencedirect.com/science/article/pii/009589568890055X.

[4] Stefka Bouyuklieva and Zlatko Varbanov. “Some connections between self-
dual codes, combinatorial designs and secret sharing schemes”. In: 5 (May
2011).

[5] A. Robert Calderbank et al. “Quantum Error Correction Via Codes Over
GF(4)”. In: IEEE Trans. Information Theory 44.4 (1998), pp. 1369–1387.
doi: 10.1109/18.681315. url: https://doi.org/10.1109/18.681315.

[6] Lars Eirik Danielsen and Matthew G. Parker. “Edge Local Complementa-
tion and Equivalence of Binary Linear Codes”. In: CoRR abs/0710.2243
(2007). arXiv: 0710.2243. url: http://arxiv.org/abs/0710.2243.

[7] Lars Eirik Danielsen and Matthew G. Parker. “Edge local complementa-
tion and equivalence of binary linear codes”. In: Des. Codes Cryptography
49.1-3 (2008), pp. 161–170. doi: 10.1007/s10623- 008- 9190- x. url:
https://doi.org/10.1007/s10623-008-9190-x.

[8] Lars Eirik Danielsen and Matthew G. Parker. “On the classification of
all self-dual additive codes over GF(4) of length up to 12”. In: J. Comb.
Theory, Ser. A 113.7 (2006), pp. 1351–1367. doi: 10.1016/j.jcta.2005.
12.004. url: https://doi.org/10.1016/j.jcta.2005.12.004.

[9] Lars Eirik Danielsen and Matthew G. Parker. “Spectral Orbits and Peak-
to-Average Power Ratio of Boolean Functions with Respect to the {I,
H, N}n Transform”. In: Sequences and Their Applications - SETA 2004,
Third International Conference, Seoul, Korea, October 24-28, 2004, Re-
vised Selected Papers. 2004, pp. 373–388. doi: 10.1007/11423461_28.
url: https://doi.org/10.1007/11423461_28.

[10] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. “Hardness of approx-
imating the minimum distance of a linear code”. In: IEEE Trans. Infor-
mation Theory 49.1 (2003), pp. 22–37. doi: 10.1109/TIT.2002.806118.
url: https://doi.org/10.1109/TIT.2002.806118.

[11] F.J.Macwilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-Holland, 1977.

[12] Philippe Gaborit et al. “On additive GF (4) codes”. In: Codes and Asso-
ciation Schemes, Proceedings of a DIMACS Workshop, Piscataway, New
Jersey, USA, November 9-12, 1999. 1999, pp. 135–150.

[13] David Glynn et al. The geometry of additive quantum codes. Jan. 2004.
[14] Daniel Gottesman. “Stabilizer Codes ad Quantum Error Correction”. In:

Phd Thesis, Caltech (May 1997). doi: arXiv:quant-ph/9705052.
[15] Martin Grohe and Pascal Schweitzer. “Isomorphism Testing for Graphs of

Bounded Rank Width”. In: IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015. 2015, pp. 1010–1029. doi: 10.1109/FOCS.2015.66. url: https:
//doi.org/10.1109/FOCS.2015.66.

[16] T. Aaron Gulliver and Masaaki Harada. “Certain Self-Dual Codes over
Z4 and the Odd Leech Lattice”. In: Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, 12th International Symposium, AAECC-12,
Toulouse, France, June 23-27, 1997, Proceedings. 1997, pp. 130–137. doi:
10.1007/3-540-63163-1_10. url: https://doi.org/10.1007/3-540-
63163-1_10.

[17] Masaaki Harada. “Optimal self-dual Z4-codes and a unimodular lattice
in dimension 41”. In: Finite Fields and Their Applications 18.3 (2012),
pp. 529 –536. issn: 1071-5797. doi: https://doi.org/10.1016/j.ffa.
2011.11.004. url: http://www.sciencedirect.com/science/article/
pii/S1071579711001018.

[18] M. Hein, J. Eisert, and H. J. Briegel. “Multiparty entanglement in graph
states”. In: Phys. Rev. A 69 (6 2004), p. 062311. doi: 10.1103/PhysRevA.
69.062311. url: https://link.aps.org/doi/10.1103/PhysRevA.69.
062311.

[19] Jon-Lark Kim and Nari Lee. “Secret sharing schemes based on additive
codes over GF(4)”. In: Appl. Algebra Eng. Commun. Comput. 28.1 (2017),
pp. 79–97. doi: 10.1007/s00200-016-0296-5. url: https://doi.org/
10.1007/s00200-016-0296-5.

[20] Shin-ichi Minato. “πDD: A New Decision Diagram for Efficient Problem
Solving in Permutation Space”. In: Theory and Applications of Satisfiabil-
ity Testing - SAT 2011 - 14th International Conference, SAT 2011, Ann
Arbor, MI, USA, June 19-22, 2011. Proceedings. 2011, pp. 90–104. doi:
10.1007/978-3-642-21581-0_9. url: https://doi.org/10.1007/978-
3-642-21581-0_9.

[21] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. “Graphical
description of the action of local Clifford transformations on graph states”.
In: Phys. Rev. A 69 (2 2004), p. 022316. doi: 10.1103/PhysRevA.69.
022316. url: https://link.aps.org/doi/10.1103/PhysRevA.69.

022316.
[22] Sang-il Oum. “Rank-width and vertex-minors”. In: J. Comb. Theory, Ser.

B 95.1 (2005), pp. 79–100. doi: 10.1016/j.jctb.2005.03.003. url:
https://doi.org/10.1016/j.jctb.2005.03.003.

[23] Vera Pless and N.J.A Sloane. “On the classification and enumeration of
self-dual codes”. In: Journal of Combinatorial Theory, Series A 18.3 (1975),
pp. 313 –335. issn: 0097-3165. doi: https://doi.org/10.1016/0097-

3165(75)90042- 4. url: http://www.sciencedirect.com/science/
article/pii/0097316575900424.

[24] H̊avard Raddum and Srimathi Varadharajan. “Factorization Using Binary
Decision Diagrams”. In: Cryptography and Communications (2018). to ap-
pear.

[25] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. “Measurement-
based quantum computation on cluster states”. In: Phys. Rev. A 68 (2
2003), p. 022312. doi: 10 . 1103 / PhysRevA . 68 . 022312. url: https :

//link.aps.org/doi/10.1103/PhysRevA.68.022312.
[26] Richard Rudell. “Dynamic variable ordering for ordered binary decision di-

agrams”. In: Proceedings of the 1993 IEEE/ACM International Conference
on Computer-Aided Design, 1993, Santa Clara, California, USA, Novem-
ber 7-11, 1993. 1993, pp. 42–47. doi: 10.1109/ICCAD.1993.580029. url:
https://doi.org/10.1109/ICCAD.1993.580029.

[27] Thorsten Ernst Schilling and H̊avard Raddum. “Solving Compressed Right
Hand Side Equation Systems with Linear Absorption”. In: Sequences and
Their Applications - SETA 2012 - 7th International Conference, Waterloo,
ON, Canada, June 4-8, 2012. Proceedings. 2012, pp. 291–302. doi: 10.
1007/978-3-642-30615-0_27. url: https://doi.org/10.1007/978-3-
642-30615-0_27.

[28] D. Schlingemann. “Stabilizer Codes Can Be Realized As Graph Codes”.
In: Quantum Info. Comput. 2.4 (June 2002), pp. 307–323. issn: 1533-7146.
url: http://dl.acm.org/citation.cfm?id=2011477.2011481.

[29] S Mesnager ST Dougherty and P Solé. “Secret-sharing schemes based on
self-dual codes”. In: Information Theory Workshop, Porto (2008), pp. 338–
342.

[30] Ryuhei Uehara and Takeaki Uno. Canonical tree representation of distance
hereditary graphs and its applications. Tech. rep. 2006.

[31] M Van Den Nest. “Local Equivalence of Stabilizer States and Codes”. In:
Phd thesis, K. U. Leuven, Belgium (May 2005).

[32] Alexander Vardy. “The intractability of computing the minimum distance
of a code”. In: IEEE Trans. Information Theory 43.6 (1997), pp. 1757–
1766. doi: 10.1109/18.641542. url: https://doi.org/10.1109/18.
641542.

