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Abstract. Locally repairable codes (LRCs) with (r, t)-locality have received con-
siderable attention in recent years, since they are able to solve common problems
in distributed storage systems such as repairing multiple node failures and manage-
ment of hot data. Constructing LRCs with excellent parameters becomes an interest-
ing research subject in distributed storage systems and coding theory. In this paper,
we present two generic constructions of locally repairable codes with information
(r, t)-locality based on linear algebra and combinatorial designs. The newly pro-
posed LRCs based on linear algebra generalize the construction of high-rate codes
proposed by Hao and Xia while maintain the same code rate. The proposed LRCs
from finite geometries lead to new parameters with same minimum distance and
code rate as the one constructed by Hao and Xia. It is worth noting that all the new
binary LRCs with information (r, t)-locality proposed in this paper are optimal with
respect to the bound proposed by Rawat et al. in 2016.

Keywords: Locally repairable codes · distributed storage systems · partial geome-
try · repair locality · multiple failures · hot data.

1 Introduction

In recent years with rapid increase of data resources, distributed storage systems become
increasingly popular and important. In order to ensure reliability, data is preferred to store
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in a redundant form. The simplest way is to use straightforward replication, which needs
a very high storage overhead. To reduce the storage overhead, error-correcting codes have
been used in practical systems, where the original data are partitioned into k informa-
tion packets and then encoded into n packets (n > k). However, classical error-correcting
codes are inefficient during the repair procedure of failed nodes in terms of the number
of helper nodes accessed, repair bandwidth, etc. During the past decade, researchers have
been tried to find new error-correcting codes to address these issues. Repair locality de-
fined by Gopalan et al. [4] is an important metric for measuring the efficiency of repair.
Specifically, a code symbol of an [n, k] linear code has repair locality r if the value of
the code symbol can be recovered by accessing at most r other symbols (the set of those
symbols is called repair set). A linear code has information locality r if there exist an
information set such that every symbol in this set has locality r. In a distributed storage
system, the code with repair locality less than code dimension k is preferred since it has
low disk input/output (I/O) complexity during the repair process. The repair locality of
codes is the smallest number of nodes that participate in the repair process and was s-
tudied in [1, 4, 6, 8, 9, 11, 12] see also references therein. Some of these results have been
employed in practice, for example, codes with small locality were recently deployed in
Azure production clusters [7], while others have been tested in Facebook clusters [14].
Codes with small repair locality are required in archival and cold data.

There is a common problem in the distributed storage systems which is multiple fail-
ures of nodes. Assume there is only one repair set of locality r for a failed node (i-th node),
if one of these r nodes also failed, then the failed i-th node can no longer be retrieved by
accessing only these r nodes. One way to overcome this problem is to use the code with
(r, t)-locality. According to [16], the i-th code symbol is said to have (r, t)-locality if there
exist t disjoint subsets, each containing at most r other code symbols that can together re-
cover the i-th code symbol. Clearly, codes with (r, t)-locality can always tolerate up to t
erasures. Such codes can also support a scaling number of parallel reads. The main mo-
tivation for this property is the application of error-correcting codes for hot data which is
also a significant storage problem. Hot data is a frequently accessed information, often in
front-end systems facing end-users. There has been little work on the potential benefits
of coding for hot data. A system utilizing an [n, k] linear code with (r, t)-locality can not
only greatly reduce the disk I/O complexity for node repair but also can allow access of a
node from t ways in parallel which is particularly useful in hot data storage.

In this paper, we present two generic constructions of linear codes over an arbitrary
field Fq with information (r, t)-locality: one is based on linear algebra and another on
combinatorial designs. The proposed LRCs based on linear algebra generalize the con-
struction of high-rate codes proposed by Hao and Xia [5] and have the same code rate.
Finite geometries were used long ago for construction codes with majority logic decod-
ing, see e.g. [10] Chapter 10. We show that finite geometries can be used to design some
optimal locally repairable codes. The proposed LRCs from partial geometries lead to new
code lengths and dimensions with the same minimum distance and code rate as the ones
constructed by Hao and Xia [5]. All our constructions yield new LRCs with information
(r, t)-locality which have a only single parity symbol in each repair group. They are op-
timal in terms of the bound proposed by Rawat et al. in [13]. All the proposed codes can
achieve high code rates which is preferable in distributed storage systems involving hot
data.
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The rest of this paper is organized as follows. Section 2 recalls some notations about
LRCs. Section 3 introduces a class of new q-ary locally repairable codes from Square
codes and proves that they are optimal LRCs. Section 4 gives a construction of LRCs
based on partial geometry and some infinite families of optimal LRCs from the proposed
construction. Finally, we conclude this paper in Section 5.

2 Locally repairable codes

In this section, we give some preliminaries about locally repairable codes (LRCs). We
introduce certain bounds on the parameters of LRCs, which describe the optimality of
LRCs with given parameters.

Let q be a prime power and Fq be the finite field with q elements. A q-ary linear code
C of length n and dimension k is a k-dimensional linear subspace of the vector space Fn

q,
where n≥ k. As a linear subspace, the code C can be defined by a k×n full-rank generator
matrix G as

C = {uG : u ∈ Fk
q}.

In this paper, we mainly consider linear codes with systematic generator matrices of
code length n. Without loss of generality, we suppose the fist k symbols of a codeword
denote the information symbols. The systematic generator matrix is G = [Ik|A], where Ik
is the k× k identity matrix and A is the k× (n− k) matrix over Fq.

Let [n] = {1,2, . . . , n} and C be an [n, k, d] linear code over Fq with minimum
Hamming distance d. Let G = [g1, g2, . . . , gn] be the generator matrix of C and c =
(c1, . . . , cn) be a codeword of C . Now we give a formal definition of locally repairable
codes with (r, t)-locality.

Definition 1. ( [16]) The i-th code symbol ci, 1≤ i≤ n, in a codeword c= (c1, . . . , cn) of
an [n, k, d] linear code C over Fq is said to have (r, t)-locality if it satisfies the following
properties:

1. There exist t subsets R1(i), . . . , Rt(i)⊂ [n]\{i}, such that gi is a linear combination
of {gl : l ∈ R j(i)} for each j ∈ [t], where R j(i), j ∈ [t] is called a repair set.

2. |R j(i)| ≤ r, for all j ∈ [t].
3. R j(i)∩Rh(i) = /0, for all j 6= h and j,h ∈ [t].

If there exist an information set I such that for each i ∈ I, the i-th code symbol has (r, t)-
locality, then the code is a LRC with information (r, t)-locality.

With the definition of (r, t)-locality, the following well known proposition holds.

Proposition 1. For an [n, k, d] LRC C with information (r, t)-locality, the minimum
distance satisfies d ≥ t +1.

In 2016, Rawat et al. presented the following upper bound of minimum distance d for
an [n, k] LRC with information (r, t)-locality.

Lemma 1. ( [13]) Let C be an [n, k, d] LRC with information (r, t)-locality such that
each repair set contains a single parity symbol. Then, the minimum distance of the code
is bounded as

d ≤ n− k−
⌈

kt
r

⌉
+ t +1. (1)
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3 New Locally Repairable Codes obtained from Square codes

In this section, we propose a construction of q-ary locally repairable codes with informa-
tion (r, t)-locality which inspired by square codes [16]. In [16], Wang and Zhang provided
a lower bound of n for LRCs with information (r, t)-locality and gave an example of L-
RCs with all symbol (r, t)-locality which called square codes. However, square codes
can’t achieve the lower bound (1). We modify this codes by deleting a parity symbol and
show that the modified square codes are optimal with respect to the bound (1). Before
doing that, let us first recall the construction of square codes.

Let r be a positive integer and r+1 ≤ k ≤ r2. Define Ω = {Xi, j}1≤i, j≤r+1 to be a set
of (r+1)2 column vectors in Fk

q satisfying{
∑

r+1
i=1 Xi, j = 0, for 1≤ j ≤ r+1;

∑
r+1
j=1 Xi, j = 0, for 1≤ i≤ r+1.

Consider a [(r+ 1)2, k] code CΩ with generator matrix G(Ω) consisting of the (r+ 1)2

vectors in Ω as columns. Then CΩ is a [(r+1)2, k] square code with all symbol (r, t = 2)-
locality. Since the minimum distance of CΩ is undetermined, so we cannot say if the code
meets the bound (1) or not.

Now, we modify this code. Firstly, we choose r2 linearly independent vectors from
Fr2

q and denote by {Xi, j}1≤i, j≤r. Then let

Xi,r+1 =
r

∑
j=1

ai, jXi, j, for 1≤ i≤ r

and

Xr+1, j =
r

∑
i=1

bi, jXi, j, for 1≤ j ≤ r,

where ai, j, bi, j ∈ Fq \ {0}. Define a r2 × (r2 + 2r) matrix G(Ω′) consisting of all the
vectors in Ω′ as its columns, where

Ω
′ = {Xi, j}1≤i, j≤r ∪{Xi,r+1}1≤i≤r ∪{Xr+1, j}1≤ j≤r.

Then we have:

Theorem 1. The code CΩ′ generated by G(Ω′) is an [n = r2 + 2r, k = r2, d = 3] q-ary
LRC with information (r, t = 2)-locality. It is optimal in terms of the bound (1).

Proof. Clearly, the code CΩ′ has length n = (r+1)2−1 = r2 +2r and dimension k = r2.
With the construction of Ω′ and CΩ′ , we obtain that C has information (r, t = 2)-locality.
From Proposition 1, we have d ≥ 3. Taking the code parameters in (1), we have d ≤ 3.
Hence, the minimum distance is equal to 3 and CΩ′ is optimal in terms of the bound (1).

ut

Note that the square code can only tolerate t = 2 symbol erasures. Can we construct
LRCs that can tolerate t > 2 erasures? In fact, we can solve the problem. With the similar
construction, we can generalize the case t = 2 to t ≥ 2.
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Let r, t ≥ 2 be positive integers and k = rt be the dimension of the linear code. Define
the k = rt linearly independent vectors {Xi1,i2,...,it} over Fk

q corresponding to the informa-
tion symbols, where 1 ≤ i j ≤ r for j ∈ [t]. The parity symbols in the code C , which we
are constructing, are partitioned into t groups and corresponding to the following vectors:

Xh
i1,i2,...,ih−1,ih+1,...,it =

r

∑
ih=1

ai1,i2,...,it Xi1,i2,...,it , for h ∈ [t],

where ai1,...,it ∈ Fq \ {0}. Then there are trt−1 parity symbols. Define a set of column
vectors in Fk

q as follows:

Φ = {Xi1,i2,...,it}∪{X
h
i1,i2,...,ih−1,ih+1,...,it}, (2)

where 1≤ ih ≤ r and h ∈ [t].
Consider the code C with generator matrix G = G(Φ) consisting of the vectors in Φ

as columns. Then we have the following theorem.

Theorem 2. Let r, t ≥ 2 be positive integers. The code C with generator matrix G=G(Φ)
where Φ is defined in (2) is an [n= k+trt−1, k = rt , d = t+1] q-ary LRC with information
(r, t)-locality. It is optimal in terms of the bound (1).

Proof. The parameters n,k follows directly from the construction. For any information
symbol Xi1,i2,...,it in the code C , the following t sets

Ri1,...,it (h) = {Xi1,...,ih−1,ξ,ih+1,...,it : ξ 6= ih}∪{Xh
i1,i2,...,ih−1,ih+1,...,it}, for h ∈ [t],

are all disjoint, and for all 1≤ h≤ t, we have

Xi1,...,it = aXh
i1,i2,...,ih−1,ih+1,...,it −

r

∑
ξ=1,ξ6=ih

aai1,...,ih−1,ξ,ih+1,...,it Xi1,...,ih−1,ξ,ih+1,...,it ,

where a = a−1
i1,...,ih−1,ih,ih+1,...,it

. Therefore, C has information (r, t)-locality. And the code
has the minimum distance d≥ t+1 by Proposition 1. Note that each of the t disjoint repair
sets contains only one parity symbol. By (1), we have d ≤ t + 1. Hence the minimum
distance d = t +1 achieves the bound (1). ut

We give a simple example to demonstrate the construction.

Example 1. Let r = 2, t = 3 and ai1,...,it = 1 for 1≤ i j ≤ r and j ∈ [t]. Then we have rt = 8
information symbols and trt−1 = 12 parity symbols. They are listed as follows:

– The vectors corresponding to information symbols are:

X1,1,1, X1,1,2, X1,2,1, X1,2,2, X2,1,1, X2,1,2, X2,2,1, X2,2,2

– The vectors corresponding to parity symbols are defined by :

X1
1,1 = X1,1,1 +X2,1,1; X1

1,2 = X1,1,2 +X2,1,2; X1
2,1 = X1,2,1 +X2,2,1; X1

2,2 = X1,2,2 +X2,2,2;

X2
1,1 = X1,1,1 +X1,2,1; X2

1,2 = X1,1,2 +X1,2,2; X2
2,1 = X2,1,1 +X2,2,1; X2

2,2 = X2,1,2 +X2,2,2;

X3
1,1 = X1,1,1 +X1,1,2; X3

1,2 = X1,2,1 +X1,2,2; X3
2,1 = X2,1,1 +X2,1,2; X3

2,2 = X2,2,1 +X2,2,2.

The generator matrix is
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G = (X1,1,1 X1,1,2 X1,2,1 X1,2,2 X2,1,1 X2,1,2 X2,2,1 X2,2,2 X1
1,1 X1

1,2 X1
2,1 X1

2,2 X2
1,1 X2

1,2 X2
2,1 X2

2,2 X3
1,1 X3

1,2 X3
2,1 X3

2,2)

=



g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


.

The code generated by G is an [20, 8, 4] q-ary LRC with (2, 3)-locality. For c1, which
corresponds to X1,1,1 (i.e. g1), we have g1 = g9− g5 = g13− g3 = g17− g2 and we have
c1 = c9−c5 = c13−c3 = c17−c2. Hence the repair sets of c1 are: R1(1) = {5,9}, R2(1) =
{3,13}, R3(1) = {2,17}. Similarly, we obtain the repair sets of the other code symbols are
: R1(2) = {6,10}, R2(2) = {4,14}, R3(2) = {1,17} and so on.

4 Locally Repairable Codes based on partial geometries

In this section, we give a new construction of q-ary locally repairable codes with infor-
mation (r, t)-locality based on partial geometries. This construction utilizes the incidence
matrix of partial geometries and we demonstrate that the codes we constructed attain the
bound in (1). Before doing that, let us briefly introduce some concepts of partial geome-
tries.

4.1 Partial geometry

Definition 2. ( [3]) A (finite) partial geometry is an incidence structure S = (P , B, I) in
which P is a set of points, B is a set of lines and I is a symmetric point-line incidence
relation satisfying the following axioms:

1. Each point P ∈ P is incident with u+ 1 lines(u ≥ 1), and two distinct points are
incident with at most one line.

2. Each line l ∈B is incident with s+1 points(s≥ 1), and two distinct lines are incident
with at most one point.

3. If a point P and a line l are not incident, then there are exactly α points P1, P2, · · · , Pα

and α lines l1, l2, · · · , lα such that P is incident with li and Pi is incident with l for
i = 1, 2, . . . , α, where α≥ 1.

We denote the partial geometry S = (P , B, I) with above parameters as PG(s+1, u+
1, α). Let v = |P | and b = |B|, then from [3] we have following relations:

v =
(s+1)(su+α)

α
, b =

(u+1)(su+α)

α
. (3)

Define the incidence matrix of a partial geometry PG(s + 1, u + 1, α) as a b× v
matrix N = (ni j), where ni j = 1 if the ith line is incident with the jth point and ni j = 0
otherwise. Then N is a b× v matrix. Consider an example to explain the definition of a
partial geometries.
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Example 2. Let s = 2, u = 2, α = 3, then the PG(3, 3, 3) is an incidence structure with
v = 9 points and b = 9 lines where the point set is P = {P1, P2, · · · , P9} and the line set is
B = {l1, l2, · · · , l9} with the following point-line incidence relation:l1 = {P1, P4, P7}, l2 =
{P2, P5, P8}, l3 = {P3, P6, P9}, l4 = {P1, P5, P9}, l5 = {P2, P6, P7}, l6 = {P3, P4, P8}, l7 =
{P1, P6, P8}, l8 = {P2, P4, P9}, l9 = {P3, P5, P7}. The incidence matrix of PG(3,3,3) is

N =



P1 P2 P3 P4 P5 P6 P7 P8 P9

l1 1 0 0 1 0 0 1 0 0
l2 0 1 0 0 1 0 0 1 0
l3 0 0 1 0 0 1 0 0 1
l4 1 0 0 0 1 0 0 0 1
l5 0 1 0 0 0 1 1 0 0
l6 0 0 1 1 0 0 0 1 0
l7 1 0 0 0 0 1 0 1 0
l8 0 1 0 1 0 0 0 0 1
l9 0 0 1 0 1 0 1 0 0


. (4)

The dual of a partial geometry is the incidence structure obtained by exchanging the
set of points and the set of lines, which is also a partial geometry with parameters PG(u+
1, s+1, α).

Theorem 3. ( [3]) Up to duality, the parameters of the known partial geometries are the
following:

Type 0: s = w, u = wm−1−1, α = w, with m≥ 2 and w is a power of prime;
Type 1: s = 2h−2m, u = 2h−2h−m, α = (2h−m−1)(2m−1), with 1≤ m≤ h;
Type 2: s = 2h−1, u = (2h +1)(2m−1), α = 2m−1, with 1≤ m≤ h;
Type 3: s = 22h−1−1, u = 22h−1, α = 22h−2, with 1 < h;
Type 4: s = 32m−1, u = (34m−1)/2, α = (32m−1)/2, with m≥ 1;

4.2 New codes

Let us build a b× (b+ v) systematic generator matrix G containing of the b× b identity
matrix and a b× v matrix N where b and v are defined in (3):

G = [Ib|N], (5)

where N is the incidence matrix of a partial geometry PG(s+1, u+1, α). We denote the
code over Fq constructed from a partial geometry PG(s+1, u+1, α) as C(s+1, u+1, α).

Theorem 4. The q-ary linear code C(s+1, u+1, α) over Fq with systematic generator matrix
(5) is an [n, k, d] locally repairable code with information (r, t)-locality, where

n = v+b, k = b, d = s+2, r = u+1, t = s+1.

The code is optimal in terms of the bound in (1).

Proof. Obviously, C(s+1, u+1, α) has length b+v and dimension b. Recall that the columns
in Ib correspond to the information symbols, and the columns in N correspond to the parity
symbols. Since N is the incidence matrix of partial geometry PG(s+1, u+1, α), each row
has Hamming weight s+1, that implies that every information symbol has t = s+1 repair
sets. Note that each column of N has Hamming weight u+1. Any two distinct columns of
N are common in at most one coordinate. Hence the code has locality r = u+1. The repair
sets for a fixed information symbol are disjoint and each repair set includes only a single
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parity symbol. Note that each row of G has weight s+2, therefore the minimum distance
d ≤ s+ 2. On the other hand, we have d ≥ t + 1 = s+ 2 from Proposition 1. Hence the
minimum distance of C(s+1, u+1, α) is d = s+ 2. It is easy to verify that C(s+1, u+1, α) is
optimal in terms of the bound (1). ut

Theorem 5. The dual code D of linear code C(s+1, u+1, α) over Fqwith systematic gen-
erator matrix G = [Ib|N] is an [n, k, d] locally repairable code with information (r, t)-
locality, where

n = v+b, k = v, d = u+2, r = s+1, t = u+1.

The code is optimal with respect to the bound in (1).

Proof. The statement follows from the duality of partial geometries and Theorem 4.

In order to demonstrate the construction above, we use PG(3, 3, 3) to construct an
optimal LRC with (r = 3, t = 3)-locality in the next example.

Example 3. Let N be the incidence matrix of PG(3,3,2) see (4). Then the code C(3,3,3) in
Theorem 4 is an optimal [n = 18, k = 9, d = 4] LRC over Fq with information (r = 3, t =
3)-locality. The generator matrix G of C(3,3,2) defined by (5) is as follows:

G =



g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0


.

For c1, which corresponds to g1, we have g1 = g10−g4−g7 = g13−g6−g8 = g16−g5−
g9 and we obtain for the first information symbol the repair relations: c1 = c10−c4−c7 =
c13− c6− c8 = c16− c5− c9. Hence the repair sets of c1 are: R1(1) = {4,7,10},
R2(1) = {6,8,13}, R3(1) = {5,9,16}. Similarly, we obtain the repair sets of the other code
symbols are : R1(2) = {5,8,11}, R2(2) = {4,9,14}, R3(2) = {6,7,17} and so on.

In the following, we give some specific constructions of optimal q-ary LRCs under the
above framework. Recall that we enumerate some partial geometries in Section 2. Then
we have following results.

Theorem 6. With the partial geometry in Theorem 3, we have optimal LRCs with the
following parameters.

1. For partial geometry of Type 0 in Theorem 3, the code C(s+1, u+1, α) in Theorem 4
is an optimal [n = wm−1(wm−1 + q+ 1), k = w2(m−1), d = w+ 2] q-ary LRCs with
information (r = wm−1, t = w+1)-locality in terms of the bound (1).

2. Let the parameters of partial geometry be of Type 1 in Theorem 3. Then the code
C(s+1, u+1, α) in Theorem 4 is an optimal [n= 2(2h+1)(2h−2m−1−2h−m−1+1), k =
(2h + 1)(2h− 2h−m + 1), d = 2h− 2m + 2] q-ary LRC with information (r = 2h−
2h−m +1, t = 2h−2m +1)-locality in terms of the bound (1).
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3. Consider partial geometry of Type 2 in Theorem 3. Then the code C(s+1, u+1, α) in
Theorem 4 is an optimal [n = 2m+2h(2h +1), k = 2m+2h(2h−2h−m +1), d = 2h +1]
q-ary LRC with information (r = 2m(2h−2h−m +1), t = 2h)-locality in terms of the
bound (1).

4. For partial geometry of Type 3 in Theorem 3, the code C(s+1, u+1, α) in Theorem 4 is
an optimal [n = 24h− 1, k = (22h−1 + 1)(22h− 1), d = 22h−1 + 1] q-ary LRC with
information (r = 22h−1 +1, t = 22h−1)-locality in terms of the bound (1).

5. Take partial geometry as Type 4 in Theorem 3. Then the code C(s+1, u+1, α) in Theo-

rem 4 is an optimal [n = 34m(32m+1)2

2 , k = 34m(34m+1)
2 , d = 32m + 1] q-ary LRC with

information (r = 34m+1
2 , t = 32m)-locality in terms of the bound (1).

Proof. Follows directly from Theorem 3 and Theorem 4.

Note that all codes from our constructions were not covered in previous literature.
Thus our constructions lead to codes with new parameters. We give some parameters of
some known LRCs and the newly proposed LRCs with information (r, t)-locality in Table
1. We list 4 classes of LRCs constructed before (see No. 1-4) and 6 classes of LRCs with
new parameters. All of these LRCs have same minimum distance t + 1. And all of these
LRCs have same code rate 1

1+t/r except No. 2, which can have rate greater than 1
2 when

r > t. Furthermore, all the codes listed in Table 1 are optimal in terms of bound (1).

Table 1. Some optimal LRCs with (r, t)-locality

No. n k d r t R = k
n Ref.

1
(r+t

t

) (r+t−1
t

)
t +1 r t 1

1+t/r [17]
2 2(4m +2m +1), m≥ 1 4m +2m +1 t +1 2m +1 2m +1 1/2 [5]
3 r2 + tr, r ≥ t and r is prime r2 t +1 r t 1

1+t/r

4 rm+ tm, m≥ 2 rm t +1 r t 1
1+t/r [15]

5 (m+1)l, 1≤ m≤ r
l = r(r−1)x+1, x≥ 1 l t +1 r rm 1

1+t/r [2]

6 rt + trt−1 rt t +1 r t 1
1+t/r Thm 2

7 wm−1(wm−1 +w+1), m≥ 2,
w is a power of prime w2(m−1) t +1 wm−1 w+1

1
1+t/r Thm 68 (2h +1)(2h+1−2m−2h−m +2),

1≤ m≤ h (2h +1)(2h−2h−m +1) t +1 2h−2h−m +1 2h−2m +1

9 2m+2h(2h +1), h≥ m≥ 1 2m+2h(2h−2h−m +1) t +1 2m(2h−2h−m +1) 2h

10 24h−1, h > 1 (22h−1 +1)(22h−1) t +1 22h−1 +1 22h−1

11 34m(32m+1)2

2 , m≥ 1 34m(34m+1)
2 t +1 34m+1

2 32m

5 Conclusions

In this paper, we proposed two generic constructions of LRCs with information (r, t)-
locality. All our codes have only one parity symbol in each repair group and their min-
imum distances achieve the upper bound proposed by Rawat in [13]. Based on linear
algebra, we constructed a class of LRCs over arbitrary field Fq with new optimal param-
eters. These LRCs generalize the construction of high-rate codes proposed by Hao and
Xia in [5]. From the known proper partial geometries, we constructed the second class of
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q-ary LRCs with new parameters, which are optimal with respect to the bound (1). The
key problem of this construction is the existence of partial geometries. It may be possible
to obtain more new q-ary LRCs using other partial geometries with new parameters.
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