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Abstract. In the present paper we present several generalizations of the
isotopic shift construction when the starting function is a Gold function.
In particular we derive a general family of APN functions which produces
15 new APN functions for n = 9.
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1 Introduction

For a prime p and a positive integer n let Fpn be the finite field with pn elements.
We will denote by F?pn its multiplicative group. Throughout the paper, ζ denotes
a primitive element of Fpn , so that F?pn = 〈ζ〉. A map from the field to itself
admits a unique representation as a polynomial of degree at most pn − 1, F ∈
Fpn [x],

F (x) =

pn−1∑
j=0

ajx
j , aj ∈ Fpn .

Given a function F we set ker(F ) to be the set of zeros of F over Fpn .
The function F is

– linear if F (x) =
∑n−1
i=0 cix

pi ;
– affine if it is the sum of a linear function and a constant;
– DO (Dembowski-Ostrom) polynomial if F (x) =

∑
0≤i≤j<n aijx

pi+pj , with
aij ∈ Fpn ;

– quadratic if it is the sum of a DO polynomial and an affine function.

Let δ be a positive integer, the function F is called differentially δ-uniform
if for any pairs a, b ∈ Fpn , with a 6= 0, the equation F (x + a) − F (x) = b
admits at most δ solutions. When F is used as an S-box inside a cryptosystem,
the differential uniformity measures its contribution to the resistance to the
differential attack [2]. The smaller δ is the better is the resistence of F to this
attack. So, 1-uniform functions are optimal and they are called perfect nonlinear
or PN. Hence, defining DaF (x) = F (x + a) − F (x) the derivative of F in the
direction of a, for a PN function for any non-zero a the function DaF (x) is a
permutation. PN functions are also called planar. In even characteristic such



functions do not exist. In this case, the best resistance belongs to functions that
are differentially 2-uniform, these functions are called almost perfect nonlinear
or APN.

Given a function F ∈ Fpn [x] and a linear map L ∈ Fpn [x] the isotopic shift
of F by L is defined as the map

FL(x) = F (x+ L(x))− F (x)− F (L(x)).

This notion was introduced in [3] (see also [4]) and is inspired by the notion of
isotopic equivalence of pre-semifields [1]. As we have shown in [3], for the case
p = 2, an isotopic shift of an APN function can lead to APN functions CCZ-
inequivalent to the original function. Moreover, all quadratic APN functions with
n = 6 (which are all known) can be obtained from x3 by isotopic shift, and a
new infinite family of quadratic APN functions is constructed for n divisible by
3 by isotopic shift of Gold functions [3].

In the present paper we consider different generalizations of isotopic shift
construction when the starting function is a monomial with a Gold exponent. In
particular, instead of the expression

xL(x)2
i

+ x2
i

L(x) (1)

provided by the isotopic shift of x2
i+1 by a linear function L we consider xL1(x)2

i

+

x2
i

L2(x) where both L1 and L2 are linear. This leads us to a general family of
APN functions which, for n = 9, provides 15 new APN functions and covers
the only known unclassified example of APN functions, that is, function 8.1 in
[5, Table 11], which is given by the polynomial x3 + x10 + ζ438x136. Further we

discuss the case when in (1) the function x2
i+1 is not necessarily APN. And

finally, we consider the case when in (1) the function L is not necessarily linear.

2 On the generalized linear shift over F2n

Let n = km for any positive integers m and k. An F2m-polynomial is linear map
given by L(x) =

∑k−1
j=0 Ajx

2jm , for some Aj ∈ F2n . We studied in [3, Theorem

6.3] the linear shift of the Gold function Gi = x2
i+1, defined over a finite field

F2n , by a F2m -polynomial, that is,

Gi,L(x) = xL(x)2
i

+ x2
i

L(x).

For the case n = 3m this construction leads to an infinite family of APN func-
tions, providing, in particular, a new APN function for n = 9.

In the following we will generalize the isotopic shift construction. This gen-
eralization produces further new APN functions, as will be shown below.

Denote d = gcd(2m − 1, 2
km−1
2m−1 ) and let d′ be the positive integer with the

same prime factors as in d and satisfying gcd(2m− 1, 2km−1
(2m−1)d′ ) = 1. Now denote



U = 〈ζd′(2m−1)〉 the multiplicative subgroup of F?2n of order
(
2km−1
2m−1

)
/d′. Note

that it is possible to write every element x ∈ F?2n as x = ut with u ∈ W and
t ∈ F?2m , where W = {ζsy : y ∈ U, 0 ≤ s ≤ d′ − 1}.
Then it is possible to obtain the following generalization of [3, Theorem 6.3].
The proof use similar ideas as the proof of the theorem mentioned above, and
so we omit it.

Theorem 1. Let n = km for m > 1 and set q = 2n. Let L1(x) =
∑k−1
j=0 Ajx

2jm

and L2(x) =
∑k−1
j=0 Bjx

2jm be two F2m-polynomials. Then, let i be such that
gcd(i,m) = 1 and F ∈ Fq[x] given by

F (x) = xL1(x)2
i

+ x2
i

L2(x) (2)

is APN over Fq if and only if the following statements hold for any v ∈W :

– (L1(v)
v )2

i 6= L2(v)
v .

– If u ∈W \ {1} and (L1(uv)
uv )2

i

= L2(v)
v , then (L1(v)

v )2
i 6= L2(uv)

uv .

– If u ∈W \ {1} and (L1(uv)
uv )2

i 6= L2(v)
v , then L1(v)

2i (uv)+L2(uv)v
2i

L1(uv)2
iv+L2(v)(uv)2

i 6∈ F?2m .

The obtained APN function (2) is of the form

F (x) = (A2i

0 +B0)x2
i+1 +

k−1∑
j=1

[A2i

j x
2i+jm+1 +Bjx

2jm+2i ]

For the linear functions L1 and L2 we obtain also the following properties.

Proposition 1. Let n, q, L1, L2 and F be as in Theorem 1. If F is APN over
Fq, then the following statements hold:

(i) ker(L1(x) + rx) ∩ ker(L2(x) + r2
i

x) = {0} for any r ∈ F2n .

(ii) | ker(L1(x)2
i

+ rx) ∩ ker(L2(x) + w2ix2
i

)| ≤ 2 for any r, w ∈ F2n .
(iii) If ker(L1) ∩ ker(L2(x) + x) 6= {0}, then ker(L1(x) + x) ∩ ker(L2) = {0}.
(iv) ker(L1(x) + rx2

j

) ∩ ker(L2(x) + r2
i

x(2
j−1)2i+1) = {0} for any r ∈ F2n and

j ≥ 0.

Proof. For any nonzero a we define the function ∆a(x) = F (x+a)+F (x)+F (a).

Suppose there exists a non-zero a ∈ ker(L1(x) + rx) ∩ ker(L2(x) + r2
i

x). As

∆a(x) = aL1(x)2
i

+ xL1(a)2
i

+ x2
i

L2(a) + a2
i

L2(x),

we clearly have aF2m ⊆ ker(∆a), but since m > 1, this contradicts | ker(∆a)| = 2.
This establishes (i).

For (ii), suppose {0, a, b} ⊂ ker(L1(x)2
i

+ rx) ∩ ker(L2(x) + w2ix2
i

). Then

∆a(b) = a(rb) + b(ra) + a2
i

(w2ib2
i

) + b2
i

(w2ia2
i

) = 0.



Next suppose a ∈ ker(L1)∩ker(L2(x)+x). Then we have ∆a(x) = a(L1(x)+

x)2
i

+ a2
i

L2(x). Clearly any b ∈ ker(L1(x) + x) ∩ ker(L2) satisfies ∆a(b) = 0.
Since f is APN, ker(∆a) = {0, a}, so that ker(L1(x) + x) ∩ ker(L2) ⊂ {0, a}.
However, ker(L1)∩ ker(L1(x) + x) = {0}, so that no non-zero element of Fq can
lie in both ker(L1)∩ker(L2(x)+x) and ker(L1(x)+x)∩ker(L2). This establishes
(iii).

For (iv), suppose a ∈ ker(L1(x) + rx2
j

)∩ ker(L2(x) + r2
i

x(2
j−1)2i+1) is non-

zero. Then for any t ∈ F2m we have

∆a(ta) = ar2
i

t2
i

a2
j+i

+ tar2
i

a2
j+i

+ (ta)2
i

r2
i

a(2
j−1)2i+1 + a2

i

r2
i

ta(2
j−1)2i+1

= r2
i

a2
j+i+1

(
t2

i

+ t+ t2
i

+ t
)

= 0,

so that aF2m ⊆ ker(∆a), a contradiction. ut

For the case k = m = 3 we consider generalized linear shift as (2) with L1

and L2 having coefficients in the subfield F23 . In Table 1 we list all the known
APN functions for n = 9, as reported in [3, Table I]. In Table 2, we list all new
APN functions obtained from Theorem 1. We see that the family of Theorem 1
covers the only known example of APN functions for n = 9, function 8.1 of Table
11 in [5], which has not previously been identified as a part of an APN family.
Hence, currently we do not have any known example of APN functions for n = 9
which would not be covered by an APN family. Finally, Table 2 indicates 15 new
APN functions all obtained from Theorem 1.

Table 1. Known CCZ-inequivalent APN polynomials over F29

Functions Families no. Table 11 in [5]

x3 Gold 1.1

x5 Gold 2.1

x17 Gold 3.1

x13 Kasami 4.1

x241 Kasami 6.1

x19 Welch 5.1

x255 Inverse 7.1

Tr91(x
9) + x3 [6] 1.2

Tr93(x
18 + x9) + x3 [7] 1.3

Tr93(x
36 + x18) + x3 [7] 1.4

x3 + x10 + ζ438x136 – 8.1

ζ337x129 + ζ424x66 + ζ2x17 + ζx10 + ζ34x3 [3] –

We conclude this section with the observation that the isotopic shift can lead
to an APN function also starting from a non-APN function.



Table 2. APN polynomials over F29 derived from Theorem 1. All are either new or
correspond to the one known but unclassified case.

i, L1, L2 Function Eq. to known ones

i = 1,

L1 = ζ365x64 + ζ146x8 + x ζ219x129 + ζ292x66 + ζ292x17 + ζ219x10 + x3 new

L2 = ζ292x64 + ζ219x8

i = 1,

L1 = ζ438x64 + ζ438x8 + x ζ365x129 + ζ292x66 + ζ365x17 + ζ73x10 + x3 new

L2 = ζ292x64 + ζ73x8

i = 1,

L1 = ζ438x64 + ζ73x8 + x ζ365x129 + ζ365x66 + ζ146x17 + ζ365x10 + x3 new

L2 = ζ365x64 + ζ365x8

i = 1,

L1 = ζ438x64 + ζ146x8 ζ365x129 + ζ219x66 + ζ292x17 + ζ73x10 + x3 new

L2 = ζ219x64 + ζ73x8 + x

i = 1,

L1 = ζ292x64 + ζ292x8 ζ73x129 + ζ365x66 + ζ73x17 + ζ73x10 + x3 new

L2 = ζ365x64 + ζ73x8 + x

i = 1,

L1 = ζ438x64 + x ζ365x129 + ζ438x66 + ζ292x10 + x3 new

L2 = ζ438x64 + ζ292x8

i = 1,

L1 = ζ438x64 + x ζ365x129 + x66 + ζ438x10 + x3 new

L2 = x64 + ζ438x8

i = 1,

L1 = ζ292x64 + x ζ73x129 + ζ292x66 + x10 + x3 new

L2 = ζ292x64 + x8

i = 1,

L1 = ζ292x64 + ζ365x8 ζ73x129 + x66 + ζ219x17 + x3 new

L2 = x64 + x

i = 2,

L1 = ζ292x64 + x ζ146x257 + ζ438x68 + ζ438x12 + x5 new

L2 = ζ438x64 + ζ438x8

i = 2,

L1 = ζ292x64 + ζ219x8 ζ146x257 + ζ365x33 + ζ365x12 + x5 eq. to 8.1

L2 = ζ365x8 + x in [5, Table 11]

i = 2,

L1 = ζ146x64 + x8 ζ73x257 + ζ146x68 + x33 + x5 new

L2 = ζ146x64 + x

i = 2,

L1 = ζ219x64 + ζ219x8 + x ζ365x257 + ζ438x68 + ζ365x33 + ζ438x12 + x5 new

L2 = ζ438x64 + ζ438x8

i = 2,

L1 = ζ292x64 + ζ146x8 + x ζ146x257 + ζ219x68 + ζ73x33 + x12 + x5 new

L2 = ζ219x64 + x8

i = 2,

L1 = ζ146x64 + ζ219x8 ζ73x257 + ζ219x68 + ζ365x33 + x5 new

L2 = ζ219x64 + x

i = 4,

L1 = ζ146x64 + x ζ292x3 + ζ146x80 + ζ73x24 + x17 new

L2 = ζ146x64 + ζ73x8



Remark 1. It is possible to generate an APN map with a linear shift starting
from a function that it is not APN. For example, consider F26 , where the function
F (x) = x5 is not APN. With L(x) = ζx8 we construct the APN map

FL(x) = x4L(x) + xL(x)4 = ζx12 + ζ4x33,

where FL(x) = M(x3) for the linear permutation M(x) = ζx4 + ζ4x32.

3 Isotopic shifts with nonlinear functions

In this section we consider the case when the function used in the shift is not
necessarily linear.

In [3], it has been proved that in even dimension an isotopic shift of the
Gold function, with a linear function defined over F2[x], cannot be APN. In the
following, we show that for any quadratic function in even dimension we cannot
obtain APN functions shifting by any polynomial with all coefficients in F2.

Proposition 2. Let n be an even integer and consider a quadratic function F .
An isotopic shift FL for any L ∈ F2[x] cannot be APN.

Proof. Given F (x) =
∑
i<j bijx

2i+2j +
∑
i bix

2i + c we have

FL(x) =
∑
i<j

bij [x
2iL(x)2

j

+ x2
j

L(x)2
i

] + c

and L(x2) = L(x)2. Let F4 = {0, 1, α, α + 1}. Defining ∆α(x) = FL(x + α) +
FL(x) + FL(α), we have

∆α(α+ 1) =
∑
i<j

bij [L(α+ 1)2
j−i

(α+ 1) + (α+ 1)2
j−i

L(α+ 1)

+ L(α)α2j−i

+ αL(α)2
j−i

]2
i

+ c

When j − i odd, the term of the sum is zero since α2j−i

= α + 1, L(α)2
j−i

=

L(α+ 1) and L(α+ 1)2
j−i

= L(α). In the case j− i even, the term of the sum is

also zero due to the fact that α2j−i

= α and L(α)2
j−i

= L(α). So the function
cannot be APN. ut

3.1 Nonlinear shift for the Gold functions

If we consider an isotopic shift of a Gold function without the restriction L(x)
linear function, then L(x) =

∑
cjx

j and the isotopic shift will be of the form

Gi,L(x) = x2
i

L(x) + xL(x)2
i

. (3)

We have Gi,L(x2)2
−1

= x2
i

M(x)+xM(x)2
i

, whereM =
∑
c2
−1

j xj , and ζ−2
i−1Gi,L(ζx) =

x2
i

N(x) + xN(x)2
i

, where N(x) =
∑
cjζ

j−1xj . Hence we obtain the following.



Proposition 3. Let q = 2n, Fq = 〈ζ〉 and Gi = x2
i+1 be APN over Fq. Suppose

Gi,L is constructed with L(x) =
∑2n−2
j=0 bjx

j. Then Gi,L is linear equivalent to

Gi,M , where M(x) =
∑2n−2
j=0 (bjζ

k(j−1))2
t

xj for any k, t integers.

Hence it is possible to restrict the search of one possible non-zero coefficient of
the function.

Theorem 2. Over F2n with n an odd integer, consider F (x) a known APN
power function (excluding the Dobbertin function). Then there exists a monomial

L(x) and a Gold function Gi = x2
i+1 such that the shift Gi,L is equivalent to F .

Proof. 1. Consider the Kasami function x2
2t−2t+1. If t is odd, then let i be an

integer such that n = 2i+ t. Then, considering L = ax2
n−i+2n−i+1...+2n−i+t−1

we have
Gi,L = a2

i

x2
t

+ ax2
n−i+2n−i+1...+2n−i+t−1+2i

= a2
i

x2
t

+ ax2
i(2t+2t+1...+22t−1+1)

= a2
i

x2
t

+ ax2
i(22t−2t+1).

If t is even, let i be an integer such that t = 2i. Then, with L = ax2
i+2i+1+...+23i−1

we have Gi,L = a2
i

x2
2t−2t+1 + ax2

3i

.

2. For the inverse function, x2
n−2, considering L(x) = ax2

2t−2, where t is such

that n = 2t+ 1, we have G1,L = a2x2(2
n−2) + ax2

2t

.

3. Let n = 2t + 1 and consider the Welch function x2
t+3. If t is odd, then

consider i such that t = 2i − 1. With L(x) = ax2
i+2i+1

we obtain Gi,L =

a2
i

x2
2i(22i−1+3) + ax2

i+2

. If t is even, then consider i such that t = 2i. Using
L(x) = ax2

3i+1+23i+2

we obtain Gi,L = a2
i

x4 + ax2
3i+1(22i+3).

4. For n = 2t+ 1, with t odd, let t = 2i− 1. Then, with L = ax2
n−2i we obtain

Gi,L = a2
i

x2
i−22i+1 + ax = a2

i

x2
2i(2−i+2−2i−1) + ax

= a2
i

x2
2i(23i−1+22i−1−1) + ax = a2

i

x2
2i(2(3t+1)/2+2t−1) + ax

is equivalent to the Niho function (indeed (3t+1)/2 = (6i−3+1)/2 = 3i−1).

If t is even, let t = 2i. Then with L = ax2
n−i+2n−i+1...+2n−1

Gi,L = a2
i

x2
i

+ ax2
n−i+2n−i+1...+2n−1+2i

= a2
i

x2
i

+ ax2
n−i(1+2...+2i−1+22i)

= a2
i

x2
i

+ ax2
n−i(2i−1+22i)

is equivalent to Niho function.
5. Let n = 2i + 1 and j be an integer such that gcd(n, j) = 1. Then with

L = ax2
i+j−2i

Gi,L = a2
i

x2
2i+j−22i+1 + ax2

i+j

= a2
i

x2
2i(2j+2−2i−1) + ax2

i+j

= a2
i

x2
2i(2j+1) + ax2

i+j



is equivalent to Gold with parameter j.
ut

4 Conclusions

We presented some generalizations of the isotopic shift construction introduced
in [3] for the case when the starting function is a Gold power function. In partic-
ular, using a generalized form of the isotopic shift with Fq-polynomials, we were
able to construct a general family of quadratic APN functions. This allows us to
classify into an infinite family the only previously known unclassified example of
APN functions for n = 9, and to provide 15 new APN functions on F29 . We also
investigated the case of constructing an isotopic shift with a nonlinear function.
In this case, for any odd n we can obtain all known power APN functions (except
the Dobbertin case) using a nonlinear monomial function.

Clearly, the introduced ideas of generalized isotopic constructions are appli-
cable also in case when the starting function is not necessarily a Gold function,
but this is currently a matter for further investigations.
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