
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Le théorème de Mazur-Ulam établit un lien entre la structure métrique et la structure affine d'un espace vectoriel normé.
Jouer avec les nombres ou avec les figures géométriques.
On illustre géométriquement des formules bien connues de sommes d'entiers.
Le théorème de Lagrange énonce que l’ordre d’un sous-groupe d’un groupe fini divise l’ordre de ce groupe...
Platon attribue à Théodore de Cyrène la preuve de l’irrationalité des racines de 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 15 et 17.
Quelques chercheurs rennais tentent de répondre à cette question.
Découverte et différenciation des trois grandes géométries en dimension 2.
L'analogie entre entier et polynôme a donné naissance à une correspondance entre arithmétique et géométrie.
Parmi toutes les formes de périmètre fixé, quelle est celle qui a la plus grande surface ?
Si l’on veut construire un solide régulier de l’espace, il n’y a que 5 possibilités !
Comment reconnaître si une tresse est vraiment tressée ? Est-ce qu'un ordinateur est capable de le faire rapidement ?
Comment se comporte un « grand » objet combinatoire ? Comment paver un grand diamant aztèque par des dominos ?
La mal nommée décomposition de Dunford est une décomposition d'une application linéaire en somme d'une application diagonalisable et d'une application nilpotente...
Les nombres p-adiques sont des nombres qui, contrairement aux nombres usuels, possèdent une infinité de chiffres avant la virgule...