Soeren Fournais
Salle
Rennes
Date et heure
-
Workshop - Magnetic fields and semi-classical analysis

We introduce the following nonlinear eigenvalue, or optimal magnetic Sobolev constant:

$\newcommand{\indice}[2]{_}$

$$\lambda(\Omega, {\bf A}, p,h)=\inf_{\psi\in H^1_{0}(\Omega), \psi\neq 0}\frac{\indice{\mathcal{Q}}{h,{\bf A}}(\psi)} {\left(\int_{\Omega}|\psi|^p dx \right)^{\frac{2}{p}}}=\inf_{\underset{ |\psi|{ L^p(\Omega)}=1}{\psi\in H^1{0} (\Omega),}}\mathcal{Q}_{h,{\bf A}}(\psi), $$

where the magnetic quadratic form is defined by

$\forall \psi\in H^1_{0}(\Omega),\quad\indice{\mathcal{Q}}{h,{\bf A}}(\psi)=\int_{\Omega}|(-ih\nabla+{\bf A})\psi|^2 dx.$

This object, and the corresponding minimizing functions, are of obvious interest in non-linear evolution problems.

We obtain---under different classes of assumptions on the magnetic field generated by the vector potential ${\bf A}$---leading order asymptotic estimates on $\lambda(\Omega, {\bf A}, p,h)$ as well as localisation estimates for the minimizers.

This work is based on collaboration with Nicolas Raymond.

Slides

Your browser does not support the video tag.
Fichier attaché Taille
Fournais.pdf 249.55 Ko