Schedule:
Monday 16
- 14:00 - 14:30 : Welcome and Foreword
- 14:30 - 16:00 : Approximation of multivariate functions (1/4), Albert Cohen
- 16:00 - 16:30 : Coffee break
- 16:30 - 17:30 : Approximation of multivariate functions (2/4), Albert Cohen
- 17:45 - 19:15 : Cocktail
Tuesday 17
- 09:00 - 10:30 : Approximation of multivariate functions (3/4), Albert Cohen
- 10:30 - 11:00 : Coffee break
- 11:00 - 12:00 : Approximation of multivariate functions (4/4), Albert Cohen
- 12:00 - 14:00 : Lunch break
- 14:00 - 16:00 : Approximation with Hierarchical Low Rank Tensors (1/3), Lars Grasedyck
- 16:00 - 16:30 : Coffee break
- 16:30 - 17:30 : Approximation with Hierarchical Low Rank Tensors (2/3), Lars Grasedyck
Wednesday 18
- 08:30 - 10:30 : Approximation with Hierarchical Low Rank Tensors (3/3), Lars Grasedyck
- 10:30 - 11:00 : Coffee break
- 11:00 - 12:00 : Approximation theory of deep neural networks (1/3), Philipp Petersen
- 12:00 - 14:00 : Lunch break
- 14:00 - 16:00 : Approximation theory of deep neural networks (2/3), Philipp Petersen
- 16:00 - 16:30 : Coffee break
- 16:30 - 17:30 : Approximation lower bounds in L^p norm with applications to feedforward neural networks, Sébastien Gerchinovitz
- 19h15 : Gala dinner, Restaurant A Cantina, 28 Rue Kervégan, 44000 Nantes, link
Thursday 19
- 08:30 - 10:30 : Approximation with Hierarchical Low Rank Tensors (practical session 1/2), Sebastian Krämer
- 10:30 - 11:00 : Coffee break
- 11:00 - 12:00 : Statistical theory of deep learning (1/2), Sophie Langer
- 12:00 - 14:00 : Lunch break
- 14:00 - 16:00 : Statistical theory of deep learning (2/2), Sophie Langer
- 16:00 - 16:30 : Coffee break
- 16:30 - 17:30 : Benign overfitting : analysis of the generalisation paradox, Stéphane Chrétien
Friday 20
- 08:30 - 10:30 : Approximation theory of deep neural networks (3/3), Philipp Petersen
- 10:30 - 11:00 : Coffee break
- 11:00 - 13:00 : Approximation with Hierarchical Low Rank Tensors (practical session 2/2), Sebastian Krämer
- 13:00 - 14:30 : Lunch
Abstracts
- Course 1: Albert Cohen, Approximation of multivariate functions: reduced modeling and recovery from uncomplete measurements,
Fichier
- Course 2: Lars Grasedyck, Approximation with Hierarchical Low Rank Tensors
Fichier
- Course 3: Sophie Langer, On the statistical theory of deep learning,
Fichier
- Course 4: Philipp Petersen, Approximation theory of deep neural networks,
Fichier
- Lecture 1: Sébastien Gerchinovitz, Approximation lower bounds in L^p norm, with applications to feedforward neural networks
Fichier
- Lecture 2: Stéphane Chrétien, Benign overfitting : analysis of the generalisation paradox,
Fichier
Slides
- Course 1: Albert Cohen, Approximation of multivariate functions: reduced modeling and recovery from uncomplete measurements,
Fichier
- Course 2 : Lars Grasedyck, Approximation with Hierarchical Low Rank Tensors, Slides Part 1, Slides Part 2
- Course 3: Sophie Langer, On the statistical theory of deep learning,
FichierFichier
- Course 4: Philipp Petersen, Approximation theory of deep neural networks,
Practical sessions
- Practical session on tensor methods, Sebastian Krämer. Link to notebooks in Julia